Molecular Manufacturing pp 115-130 | Cite as
NMR Structure Determination and Rational Drug Design
Abstract
In biological and biomedical research, the area of structural biology, in particular atomic resolution studies of the three-dimensional structure of biological macromolecules and their intermolecular interactions, has never before had as central a role and enjoyed as much popularity as today. This is mainly due to the facts that with the use of DNA recombination and chemical synthesis, a virtually unlimited array of different polypeptide sequences can be generated, and that the relations of the resulting primary structures with corresponding biological functions can only be rationalized through knowledge of the three-dimensional structure. In addition to its key role in academic institutions, structure determination of proteins, nucleic acids and other classes of biomolecules has therefore become a discipline that is actively pursued also in profit-oriented organizations, especially in the major pharmaceutical companies. Although X-ray diffraction with single crystals has for two decades, until 1984, been unique in its potential for efficient determination of three-dimensional molecular structures at atomic resolution, it presently shares this role with nuclear magnetic resonance (NMR) spectroscopy in solution. During the period 1990–1993, 607 new X-ray crystal structures, 179 new NMR solution structures, and 2 structures determined by other methods were published (Hendrickson and Wüthrich, 1991; 1992; 1993; 1994). This article presents a description of the NMR approach for three-dimensional structure determination of biological macromolecules and a discussion of the impact of molecular structural biology in biomedical research.
Keywords
Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Data Amide Proton Nuclear Magnetic Resonance ExperimentPreview
Unable to display preview. Download preview PDF.
References
- Bax, A., and Grzesiek, S., 1993, Acc. Chem. Res. 26: 131–138.CrossRefGoogle Scholar
- Billeter, M., Braun, W., and Wüthrich, K., 1982, J. Mol. Biol. 155: 321–346.PubMedCrossRefGoogle Scholar
- Boelens, R., Koning, T. M. G., van der Marel, G. A., van Boom, J. H., and Kaptein, R., 1989, J. Magn. Reson. 82: 290–308.Google Scholar
- Borel, J. F., 1986, Ciclosporin, Karger, Basel.Google Scholar
- Borgias, B. A., Gochin, M., Kerwood, O. S., and James, T. L., 1990, Progr. NMR Spectrosc. 22: 83–100.CrossRefGoogle Scholar
- Braun, W., and Gô, N., 1985, J. Mol. Biol. 186: 611–626.PubMedCrossRefGoogle Scholar
- Briinger, A. T., Clore, G. M., Gronenbom, A. M., and Karplus, M., 1986, Proc. Natl. Acad. Sci. USA 83: 3801–3805.CrossRefGoogle Scholar
- Clore, G. M., and Gronenborn, A. M., 1991, Science 252: 1390–1399.PubMedCrossRefGoogle Scholar
- Crippen, G. M., and Havel, T.F., 1988, Distance Geometry and Molecular Conformation. Wiley, New York.Google Scholar
- Dubs, A., Wagner, G., and Wüthrich, K., 1979, Biochim. Biophys. Acta 577: 177–194.PubMedCrossRefGoogle Scholar
- Ernst, R. R., Bodenhausen, G., and Wokaun, A., 1987, Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon, Oxford.Google Scholar
- Fesik, S. W., 1988, Nature 332: 865–866.CrossRefGoogle Scholar
- Fesik, S. W., Gampe, R. T., Eaton, H. L., Gemmecker, G., Olejniczak, E. T., Neri, P., Holzman, T. F., Egan, D. A., Edalji, R., Simmer, R., Helfrich, R., Hochlowski, J., and Jackson, M., 1991, Biochemistry 30: 6574–6583.PubMedCrossRefGoogle Scholar
- Griffey, R. H., and Redfield, A. G., 1987, Q. Rev. Biophys. 19: 51–82.PubMedCrossRefGoogle Scholar
- Güntert, P., Braun, W., and Wüthrich, K., 1991, J. Mol. Biol. 217: 517–530.PubMedCrossRefGoogle Scholar
- Güntert, P., Berndt, K. D., and Wüthrich, K., 1993, J. Biomol. NMR 3: 601–606.CrossRefGoogle Scholar
- Handschumacher, R. E., Harding, M. W., Rice, J., and Drugge, R. J., 1984, Science 226: 544–547.PubMedCrossRefGoogle Scholar
- Havel, T. F., and Wüthrich, K., 1984, Bull. Math. Biol. 46: 673–698.Google Scholar
- Havel, T. F., and Wüthrich, K., 1985, J. Mol. Biol. 182: 281–294.PubMedCrossRefGoogle Scholar
- Hendrickson, W. A., and Wüthrich, K., 1991, Macromolecular Structures 1991, Current Biology, London.Google Scholar
- Hendrickson, W. A., and Wüthrich, K., 1992, Macromolecular Structures 1992, Current Biology, London.Google Scholar
- Hendrickson, W. A., and Wüthrich, K., 1993, Macromolecular Structures 1993, Current Biology, London.Google Scholar
- Hendrickson, W.A., and Wüthrich K., 1994, Macromolecular Structures 1994, Current Biology, London.Google Scholar
- Kaptein, R., Zuiderweg, E. R. P., Scheek, R. M., Boelens, S. R., and van Gunsteren, W.F., 1985, J. Mol. Biol. 182: 179–182.PubMedCrossRefGoogle Scholar
- Kessler, H., Köck, M., Wein, T., and Gehrke, M., 1990, Helu Chim. Acta 73: 1818–1832.CrossRefGoogle Scholar
- Ko, S.Y., and Dalvit, C., 1992, Int. J. Peptide Protein Res. 40: 380–382.CrossRefGoogle Scholar
- Koletsky, A.S., Harding, M.W., and Handschuhmacher, R.E., 1986, J. Immunol. 137: 1054–1059.PubMedGoogle Scholar
- Lautz, J., Kessler, H., Kaptein, R., and van Gunsteren, W. F., 1987, J. Computer-Aided Mol. Design 1: 219–241.CrossRefGoogle Scholar
- Loosli, H. R., Kessler, H., Oschkinat, H., Weber, H. P., Petcher, T., and Widmer, A., 1985, Helu Chim. Acta 68: 682–704.CrossRefGoogle Scholar
- Mertz, J. E., Güntert, P., Wüthrich, K., and Braun, W., 1991, J. Biomol. NMR 1: 257–269.PubMedCrossRefGoogle Scholar
- Otting, G., and Wüthrich, K., 1989, J. Magn. Reson. 85: 586–594.Google Scholar
- Otting, G., and Wüthrich, K., 1990, Q. Rev. Biophys. 23: 39–96.PubMedCrossRefGoogle Scholar
- Otting, G., Senn, H., Wagner G., and Wüthrich, K., 1986, J. Magn. Reson. 70: 500–505.Google Scholar
- Pflügl, G., Kallen, J., Schirmer, T., Jansonius, J. N., Zurini, M. G. M., and Walkinshaw, M. D., 1993, Nature 361: 91–94.PubMedCrossRefGoogle Scholar
- Qian, Y. Q., Billeter, M., Otting, G., Müller, M., Gehring, W. J., and Wüthrich, K., 1989, Cell 59: 573–580.PubMedCrossRefGoogle Scholar
- Schreiber, S. L., 1991, Science 251: 283–287.PubMedCrossRefGoogle Scholar
- Sodano, P., Chary, K. V. R., Björnberg, O., Holmgren, A., Kren, B., Fuchs, J. A., and Wüthrich, K., 1991, Eur. J. Biochem. 200: 369–377.PubMedCrossRefGoogle Scholar
- Spitzfaden, C., Weber, H. P., Braun, W., Kallen, J., Wider, G., Widmer, H., Walkinshaw, M.D., and Wüthrich, K., 1992, FEBS Lett. 300: 291–300.PubMedCrossRefGoogle Scholar
- Spitzfaden, C., Braun, W., Wider, G., Widmer, H., and Wüthrich, K., 1994, J. Biomol. NMR 4: 463–462.PubMedCrossRefGoogle Scholar
- Szyperski, T., Wider, G. Bushweller, J. H., and Wüthrich, K., 1993, J. Am. Chem. Soc. 115: 9307–9308.CrossRefGoogle Scholar
- Szyperski, T., Güntert, P., Stone, S. R., Tulinsky, A., Bode, W., Huber, R., and Wüthrich, K., 1992, J. Mol. Biol. 228: 1206–1211PubMedCrossRefGoogle Scholar
- Thériault, Y., Logan, T. M., Meadows, R., Yu, L., Olejniczak, E. T., Holzman, T. E, Simmer, R. L., and Fesik, S. W., 1993, Nature 361: 88–91.PubMedCrossRefGoogle Scholar
- Wagner, G., and Wüthrich K., 1982, J. Mol. Biol. 155: 347–366.PubMedCrossRefGoogle Scholar
- Weber, C., Wider, G., von Freyberg, B., Traber, R., Braun, W., Widmer, H., and Wüthrich, K., 1991, Biochemistry 30: 6563–6574.PubMedCrossRefGoogle Scholar
- Wider, G., Weber, C., Traber, R., Widmer, H., and Wüthrich, K., 1990, J. Am. Chem. Soc. 112: 9015–9016.CrossRefGoogle Scholar
- Williamson, M. P., Havel, T. E, and Wüthrich, K., 1985, J Mol. Biol. 182: 295–315.PubMedCrossRefGoogle Scholar
- Wüthrich, K., 1986, NMR of Proteins and Nucleic Acids. Wiley, New York.Google Scholar
- Wüthrich, K., 1989, Science 243: 45–50.PubMedCrossRefGoogle Scholar
- Wüthrich, K., 1990, J. Biol. Chem. 265: 22059–22062.PubMedGoogle Scholar
- Wüthrich, K., Billeter, M., and Braun, W., 1983, J. Mol. Biol. 169: 949–961.PubMedCrossRefGoogle Scholar
- Yip, P., and Case D. A., 1989, J. Magn. Reson. 83: 643–648.Google Scholar
- Zuiderweg, E. R. P., Kaptein, R., and Wüthrich, K., 1983, Eur. J. Biochem. 137: 279–292.PubMedCrossRefGoogle Scholar