Modeling of Structural and Spectroscopic Properties of Transition Metal Compounds

  • Peter Comba

Abstract

Chemistry is the art of isolating known and preparing new materials and compounds, of their purification, their elemental analysis, and of analyzing and interpreting their properties. The ability to thoroughly interpret and understand properties of materials such as stabilities, reactivities, solubilities and colors, the knowledge of why exactly compounds behave as they do, would enable scientists to create at their own will new materials with desirable properties. This clearly is not possible. The missing link is an unambiguous interpretation of macroscopic properties on a molecular and submolecular level. The way to bridge this gap is to invent and refine laws that are based on patterns in empirically observed properties within a group of compounds, and thus enable us to relate species within this group, whether known or unknown, to one another. Such a model and the emerging instrument, the theory, may be more or less efficient, rigorous or accurate, but the model never is right or wrong. And a molecular model is always limited in its applicability by and to the set of observations from whose regularities it was derived. Using a molecular model has nothing to do with the truth. Molecular modeling is just an instrument to explain observations and predict new ones. It is not important that a particular model is sophisticated and rigorous in terms of modern theories, it rather is the question of whether and how accurate the observable properties may be reproduced in the well defined limits of application that determines the quality of a model.

Keywords

Redox Potential Force Field Dalton Trans Potential Energy Function Ligand Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    Brubaker, G.R., and Johnson, D.W. Coord. Chem. Rev. (1984) 53:1.CrossRefGoogle Scholar
  2. 1b.
    Boeyens, J.C.A., Struct. Bonding (Berlin) 63:65 (1985).CrossRefGoogle Scholar
  3. 1c.
    Hancock, R.D., Prog. Inorg. Chem. 37:187 (1989).CrossRefGoogle Scholar
  4. 1d.
    Hambley, T.W., Comm. Inorg. Chem. 14:1 (1992).CrossRefGoogle Scholar
  5. 1e.
    Comba, P., Coord. Chem. Rev. 123:1 (1993).CrossRefGoogle Scholar
  6. 1f.
    Hay, B.P., Coord. Chem. Rev. 126:177 (1993).CrossRefGoogle Scholar
  7. 1g.
    Comba, P., Comm. Inorg. Chem. 16:133 (1994).CrossRefGoogle Scholar
  8. 1h.
    Deeth, R.J. Struct. Bonding (Berlin) 82:1 (1995).CrossRefGoogle Scholar
  9. 1i.
    Landis, C.R., Root, D., and Cleveland, T., in “Reviews in Computational Chemistry” Lipkowitz, K.B., and Boyd, D.B., eds., VCH, Weinheim. 6:73 (1995).CrossRefGoogle Scholar
  10. 1j.
    Zimmer, M., Chem. Rev. in press.Google Scholar
  11. 2.
    Burkert, U., and Allinger, N.L., “Molecular Mechanics” ACS Monograph, Washington D.C. (1982).Google Scholar
  12. 3.
    Comba, P., and Hambley, T.W, “Molecular Modeling of Inorganic Compounds,” VCH, Weinheim. (1995).Google Scholar
  13. 4a.
    Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., and Skiff, W.M., J. Am. Chem. Soc. 114:10024 (1992).CrossRefGoogle Scholar
  14. 4b.
    Casewit, C.J., Colwell, K.S., and Rappé, A.K., J. Am. Chem. Soc. 114:10035 (1992).CrossRefGoogle Scholar
  15. 4c.
    Casewit, C.J., Colwell, K.S., and Rappé, A.K., J. Am. Chem. Soc. 114:10046 (1992).CrossRefGoogle Scholar
  16. 4d.
    Rappé, A.K., Colwell, K.S., and Casewit, C.J., Inorg. Chem. 32:3438 (1993).Google Scholar
  17. 5a.
    Comba, P., Hambley, T.W., and Okon, N., “MOMEC, a molecular modeling package for inorganic compounds”, Altenhoff & Schmitz, Dortmund (1995).Google Scholar
  18. 5b.
    Bernhardt, P.V., and Comba, P., Inorg. Chem. 31:2638 (1992).CrossRefGoogle Scholar
  19. 6a.
    Charles, R., Coanly-Cummingham, M., Warren, R., and Zimmer, M., J. Mol. Struc. 265:385 (1992).CrossRefGoogle Scholar
  20. 6b.
    Tueting, J.L., Spence, K.L., and Zimmer, M., J. Chem. Soc. Dalton Trans. 551 (1994).Google Scholar
  21. 6c.
    Munro, O.Q., Bradley, J.C., Hancock, R.D., Marques, H.M., Marsicano, F., and Wade, P.W, J. Am. Chem. Soc. 114:7218 (1992).CrossRefGoogle Scholar
  22. 6d.
    Marques, H.M., Munro, O.Q., Grimmer, N.E., Levendis, D.C., Marsicano, F., Pattrick, G., Markoulides, T., J. Chem. Soc, Faraday Trans. 1741 (1995).Google Scholar
  23. 6e.
    Marques, H.M., Brown, K.L., Inorg. Chem. 34:3733 (1995).CrossRefGoogle Scholar
  24. 7a.
    Kepert, D.L., Prog. Inorg. Chem. 23:1 (1977).CrossRefGoogle Scholar
  25. 7b.
    Kepert, D.L., “Inorganic Chemistry Concepts” Springer, Berlin Vol. 6 (1980).Google Scholar
  26. 8a.
    Hambley, T.W., Hawkins, C.J., Palmer, J.A., and Snow, M.R. Aust. J. Chem. 34:45 (1981).CrossRefGoogle Scholar
  27. 8b.
    Comba, P., Inorg. Chem. 28:426(1989).CrossRefGoogle Scholar
  28. 9.
    Comba, P., and Zimmer, M., J. Chem. Educ. in press.Google Scholar
  29. 10.
    Comba, P., Hambley, T.W, and Ströhle, M., Helv. Chim. Acta. in press.Google Scholar
  30. 11.
    Comba, P., Lienke, A., and Okon, N., work in progress.Google Scholar
  31. 12.
    Comba, P., and Zimmer, M., Inorg. Chem. 33:5368 (1994).CrossRefGoogle Scholar
  32. 13.
    Root, D.M., Landis, C.R., and Cleveland, T., J. Am. Chem. Soc. 115:4201 (1993).CrossRefGoogle Scholar
  33. 14a.
    Burton, V.J., Deeth, R.J., J. Chem. Soc, Chem. Commun. 573 (1995).Google Scholar
  34. 14b.
    Burton, V.J., Deeth, R.J., Kemp, C.M., Gilbert, P.J., J. Am. Chem. Soc. 117:8407 (1995).CrossRefGoogle Scholar
  35. 15.
    Wüthrich, K., “NMR of proteins and nucleic acids” Wiley, New York (1986).Google Scholar
  36. 16.
    _Wüthrich, K., Acc. Chem. Res. 22:36 (1989).CrossRefGoogle Scholar
  37. 17.
    Comba, P., and Sickmüller, A., in preparation.Google Scholar
  38. 18.
    Comba, P., and Jakob, H., work in progress.Google Scholar
  39. 19a.
    Lever, A.B.P., Inorg. Chem. 29:1271 (1990).CrossRefGoogle Scholar
  40. 19b.
    Lever, A.B.P., Inorg. Chem. 30:1980 (1991).CrossRefGoogle Scholar
  41. 19c.
    Masui, H., Lever, A.B.P., Inorg. Chem. 32:2199 (1993).CrossRefGoogle Scholar
  42. 19d.
    Dodsworth, E.S., Vlcek, A.A., Lever, A.B.P., Inorg. Chem. 33:1045 (1994).CrossRefGoogle Scholar
  43. 20.
    Pilbrow, J.R., and Smith, T.D., Coord. Chem. Rev. 13:173 (1974).CrossRefGoogle Scholar
  44. 21a.
    Bernhardt, P.V., Comba, P., Hambley, T.W., Massoud, S.S., and Stebler, S., Inorg. Chem. 31:2644 (1992).CrossRefGoogle Scholar
  45. 21b.
    Comba, P., Hilfenhaus, P., J. Chem. Soc., Dalton Trans. 3269 (1995).Google Scholar
  46. 21c.
    Comba, P., Hambley, T.W., Hilfenhaus, P., Richens, D.T., J. Chem. Soc., Dalton Trans, in press.Google Scholar
  47. 22a.
    Comba, P., Inorg. Chem. 33:4577 (1994).CrossRefGoogle Scholar
  48. 22b.
    Bernhardt, P.V., and Comba, P., Inorg. Chem. 32:2798 (1993).CrossRefGoogle Scholar
  49. 22c.
    Comba, P., Hambley, T.W., Hitchman, M.A., Stratemeier, H., Inorg. Chem. 34:3903 (1995).CrossRefGoogle Scholar
  50. 23.
    Golub, G., Cohen, H., Paoletti, P., Bencini, A., Messori, L., Bertini, L, Meyerstein, D., J. Am. Chem. Soc. 117: 8353 (1995).CrossRefGoogle Scholar
  51. 24a.
    Hambley, T.W., Inorg. Chem. 27:2496(1988).CrossRefGoogle Scholar
  52. 24b.
    Ventur, D., Wieghardt, K., Nuber, B., Weiss, J., Z. Anorg. Allg. Chemie 551:33 (1987).CrossRefGoogle Scholar
  53. 24c.
    Bond, A.M., Lawrance, G.A., Lay, P.A., Sargeson, A.M., Inorg. Chem. 22:2010 (1983).CrossRefGoogle Scholar
  54. 24d.
    Hendry, P., Ludi, A., Adv. Inorg. Chem. (Sykes, A.G., Ed.) 35:117 (1990).CrossRefGoogle Scholar
  55. 25.
    Sargeson, A.M., unpublished observations.Google Scholar
  56. 26a.
    Bernhardt, P.V., Comba, P., Helv. Chim. Ada. 74:1834 (1991).CrossRefGoogle Scholar
  57. Bernhardt, P.V., Comba, P., Helv. Chim. Ada. 75:645 (1992).CrossRefGoogle Scholar
  58. 26b.
    Bernhardt, P.V., Comba, P., Hambley, T.W., Inorg. Chem. 32:2804 (1993).CrossRefGoogle Scholar
  59. 27a.
    Hendry, P., Ludi, A., J. Chem. Soc., Chem Commun. 891 (1987).Google Scholar
  60. 27b.
    Hendry, P., Ludi, A., Helv. Chim. Acta 71:1966 (1988).CrossRefGoogle Scholar
  61. 28.
    Comba, P., Nuber, B., and Sickmüller, A., in preparation.Google Scholar
  62. 29a.
    Bond, A.M., and Oldham, K.B., J.Phys. Chem. 87:2492 (1983).CrossRefGoogle Scholar
  63. 29b.
    Bond, A.M., and Oldham, K.B., J.Phys. Chem. 89:3739 (1985).CrossRefGoogle Scholar
  64. 29c.
    Bond, A.M., Hambley, T.W., and Snow, M.R., Inorg. Chem. 24:1920 (1985).CrossRefGoogle Scholar
  65. 29d.
    Bond, A.M., Hambley, T.W., Mann, D.R., and Snow, M.R., Inorg. Chem. 26:2257 (1987).CrossRefGoogle Scholar
  66. 30.
    Comba, P., and Sickmiiller, A., unpublished observations.Google Scholar
  67. 31.
    Rosozha, S.V., Lampeka, Y.D., and Maloshtan, I.M., J. Chem. Soc. Dalton Trans. 631 (1993).Google Scholar
  68. 32.
    Menif, R., Martell, A.E., Squattrito, P.J., Clearfield, A., Inorg. Chem. 29:4723 (1993).CrossRefGoogle Scholar
  69. 33.
    Magnus, K.A., Ton-That, H., Carpenter, J.E., Chem. Rev. 94:727 (1994).CrossRefGoogle Scholar
  70. 34a.
    Bernhardt, P.V., Comba, P., Hambley, T.W., and Lawrance, G.A., Inorg. Chem. 30:942 (1991).CrossRefGoogle Scholar
  71. 34b.
    Bernhardt, P.V., Hambley, T.W., and Lawrance., G.A., J. Chem. Soc. Chem. Commun. 553 (1989).Google Scholar
  72. 35.
    Stratemeier, H., Hitchman, M.A., Comba, P., Bernhardt, P.V., and Riley, M., Inorg. Chem. 30:4088 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Peter Comba
    • 1
  1. 1.Anorganisch-Chemisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations