Advertisement

Can Quantum Mechanics Account for Chemical Structures?

  • Anton Amann

Abstract

In quantum mechanics, there is no fundamental understanding of chemical structure: though chemical structures can be imposed on quantum-chemical calculations, there are many “strange” quantum states which do not fit at all into the world of chemical structure formulas. Such “strange” quantum states are usually notated as superpositions of states having chemical structure, e. g., as superpositions of two different isomers.

Most molecular species can be expected to possess a nuclear structure, whereas for some, e. g. ammonia or monodeuteroanlinine, the issue is not so obvious. The ammonia-MASER transition, for example, is thought to be a transition between “strange” molecular (pure) states not admitting a nuclear structure. Since one cannot sharply distinguish between molecular species “admitting strange (pure) states” and such which do not, it is plausible that all molecules can in principle be prepared in such strange (pure) states, but that the latter do not play an important role for most molecular species (with exceptions such as ammonia, for example). This suggests that chemical classical concepts-e. g. chirality, knot type and nuclear structure of molecules-are not strictly classical in the sense that superpositions between different structures are strictly forbidden. Such superpositions may still arise but are unstable under external perturbations and therefore usually not observed. Instability of “strange” states is thought to increase with increasing nuclear masses or with decreasing level splitting between the low lying eigenstates of the molecular hamiltonian, as, for example, in the sequence of species {monodeuteroaniline → ammonia → naphthazarin → ... → sugar/amino acid}. In other words: chemical classical structures are fuzzy, because “strange” superpositions-not compatible with classicality-are still admitted. But the fuzzyness of such classical structures decreases with increasing nuclear masses (because strange states “die out”).

It is quite hard to substantiate these heuristic ideas by rigorous conceptual and mathematical reasoning. The most important conceptual problem in this respect is that a density operator (non-pure state) cannot uniquely be decomposed into pure states. Hence in traditional statistical quantum mechanics different decompositions of, say, a thermal density operator D β are considered as being equivalent. Nevertheless different decompositions of a given thermal density operator can refer to entirely different physical situations, as, for example, to molecules with or without nuclear structure.

This implies that there is no fundamental understanding of chemical classical concepts. In particular, the fascinating idea of a chemical molecular structure, invented in traditional chemistry and taken over in the Born-Oppenheimer scheme of quantum chemistry, is not fully understood.

Here an attempt is made to adapt the quantum-mechanical formalism for these problems: A canonical decomposition of thermal density operators-stable under external perturbations-is introduced opening a way
  • to understand the concept of chemical structure,

  • to derive and study deviations from chemical structures in the sense that “strange” quantum-mechanical superpositions of different chemical structures appear for certain molecules like ammonia,

  • to get a deeper understanding of the Born-Oppenheimer approximation,

  • to make first steps towards a fully quantum-mechanical explanation of the stochastic aspects in single-molecule spectroscopy.

It is enormously interesting to understand the traditional chemical concepts in the light of quantum mechanics. Such an understanding inevitably leads to studying the “fuzzy” quantum deviations from classical chemical behavior. These quantum deviations are described here by large-deviation techniques and by stochastic dynamics on the set of pure states of a quantum system. A relatively simple example for such a stochastic dynamics is discussed in detail. Furthermore a large-deviations entropy is presented, describing the quantum fluctuations of a Curie-Weiss magnet around classical behavior. For molecules it is not yet possible to calculate large-deviation entropies describing quantum fluctuations around the classical behavior (the latter arising in the limit of infinite nuclear masses), but the Curie-Weiss example discussed here gives a good idea about the similar conceptual problems with molecules.

Keywords

Thermal State Pure State Density Operator Stochastic Dynamic Chiral Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilli, P., Ferretti, V. and Gilli, G., Hydrogen bonding models: their relevance to molecular modeling, in: present volume (1996).Google Scholar
  2. 2.
    Quack, M., Molecular quantum dynamics from high resolution spectroscopy and laser chemistry, J. Mol. Struct. 292: 171 (1993).CrossRefGoogle Scholar
  3. 3.
    Quack, M., On the measurement of CP-violating energy differences in matter-antimatter enantiomers, Chem. Phys. Lett. 231: 421 (1994).CrossRefGoogle Scholar
  4. 4.
    Stasiak, A. and Koller, T., Analysis of DNA knots and catenanes allows to deduce the mechanism of action of enzymes which cut and join DNA strands, in: “Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics.” Proceedings of the NATO ASI, “New Theoretical Concepts in Physical Chemistry”, October 1987, Maratea (Italy), NATO ASI Series C: Vol. 235,” A. A mann, L. Cederbaum and W. Gans, ed., Kluwer, Dordrecht (1988).Google Scholar
  5. 5.
    Sumners, D. W., Using knot theory to analyze DNA experiments, in: “Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics.” Proceedings of the NATO ASI, “New Theoretical Concepts in Physical Chemistry”, October 1987, Maratea (Italy), NATO ASI Series C: Vol. 235,” A. Amann, L. Cederbaum and W. Gans, ed., Kluwer, Dordrecht (1988).Google Scholar
  6. 6.
    Papousek, D. and Spirko, V., A new theoretical look at the inversion problem in molecules, in:, “Topics in Current Chemistry Vol. 68,” ed., Springer, Berlin (1976).Google Scholar
  7. 7.
    Herbstein, F. H., Kapon, M., Reisner, G. M., Lehman, M. S., Kress, R. B., Wilson, R. B., Shiau, W.-L, Duesler, E. N., Paul, I. C. and Curtin, D. Y., Polymorphism of naphthazarin and its relation to solid-state proton transfer. Neutron and X-ray diffraction studies on naphthazarin C, Proc. R. Soc. Lond. A 399: 295 (1985).CrossRefGoogle Scholar
  8. 8.
    Rentzepis, P. M. and Bondybey, V. E., Large molecule relaxation: spectroscopy, structure, and vibrational energy redistribution, J. Chem. Phys. 80: 4727 (1984).CrossRefGoogle Scholar
  9. 9.
    Vega, J. R. d. 1., Busch, J. H., Schauble, J. H., Kunze, K. L. and Haggert, B. E., Symmetry and tunneling in the intramolecular proton exchange in naphthazarin, methylnaphthazarin, and dimethylnaphthazarins, J. Am. Chem. Soc. 104: 3295 (1982).CrossRefGoogle Scholar
  10. 10.
    Mislow, K., Axelrod, M., Rayner, D. R., Gotthardt, H., Coyne, L. M. and Hammond, G. S., J. Am. Chem. Soc. 87: 4958 (1965).CrossRefGoogle Scholar
  11. 11.
    Hammond, G. S., Gotthardt, H., Coyne, L. M., Axelrod, M., Rayner, D. R. and Mislow, K., J. Am. Chem. Soc. 87: 4959 (1965).CrossRefGoogle Scholar
  12. 12.
    Reed, M. and Simon, B., “Methods of Modem Mathematical Physics. Volume IV: Analysis of Operators,” Academic Press, New York (1978).Google Scholar
  13. 13.
    Pfeifer, P., “Chiral Molecules — a Superselection Rule Induced by the Radiation Field,” Thesis ETH-Zürich No. 6551, ok Gotthard S+D AG, Zürich (1980).Google Scholar
  14. 14.
    Quack, M., Structure and dynamics of chiral molecules, Angew. Chem. Int. Ed. Engl. 28: 571 (1989).CrossRefGoogle Scholar
  15. 15.
    Quack, M., On the measurement of the parity violating energy difference between enantiomers, Chem. Phys. Lett. 132: 147 (1986).CrossRefGoogle Scholar
  16. 16.
    Cina, J. A. and Harris, R. A., On the preparation and measurement of superpositions of chiral amplitudes, J. Chem. Phys. 100: 2531 (1994).CrossRefGoogle Scholar
  17. 17.
    Cina, J. A. and Harris, R. A., Superpositions of handed wave functions, Science 267: 832 (1995).CrossRefGoogle Scholar
  18. 18.
    Spohn, H., Ground state(s) of the spin-boson hamiltonian, Commun. Math. Phys. 123: 277 (1989).CrossRefGoogle Scholar
  19. 19.
    Spohn, H. and Diimcke, R., Quantum tunneling with dissipation and the Ising model over R, J. Stat. Phys. 41:389(1985).CrossRefGoogle Scholar
  20. 20.
    Amann, A., Molecules coupled to their environment, in: “Large-Scale Molecular Systems: Quantum and Stochastic Aspects — Beyond the Simple Molecular Picture”, NATO ASI Series B 258, W. Gans, A. Blumen and A. Amann, ed., Plenum, London (1991).Google Scholar
  21. 21.
    Amann, A., Theories of molecular chirality: A short review, in:, “Large-Scale Molecular Systems: Quantum and Stochastic Aspects — Beyond the Simple Molecular Picture,” NATO ASI Series B 258, W. Gans, A. Blumen and A. Amann, ed., Plenum, London (1991).Google Scholar
  22. 22.
    Amann, A., Ground states of a spin-boson model, Ann. Phys. 208: 414 (1991).CrossRefGoogle Scholar
  23. 23.
    Amann, A., Applying the variational principle to a spin-boson hamiltonian, J. Chem. Phys. 96: 1317 (1992).CrossRefGoogle Scholar
  24. 24.
    Amann, A., Must a molecule have a shape?, South African J. Chem. 45: 29 (1992).Google Scholar
  25. 25.
    Amann, A., The Gestalt problem in quantum theory: generation of molecular shape by the environment, Synthese 97: 125(1993).CrossRefGoogle Scholar
  26. 26.
    Quack, M., Die Symmetrie von Zeit und Raum und ihre Verletzung in molekularen Prozessen, Jahrbuch der Akademie der Wissenschaften zu Berlin 1990–1992 (1993).Google Scholar
  27. 27.
    Claverie, P. and Diner, S., The concept of molecular structure in quantum theory: interpretation problems, Israeli. Chem. 19: 54(1980).Google Scholar
  28. 28.
    Claverie, P. and Jona-Lasinio, G., Instability of tunneling and the concept of molecular structure in quantum mechanics: The case of pyramidal molecules and the enantiomer problem, Phys. Rev. A 33: 2245 (1986).CrossRefGoogle Scholar
  29. 29.
    Sutcliffe, B. T., The concept of molecular structure, in:, “Theoretical Models of Chemical Bonding, Part 1: Atomic Hypothesis and the Concept of Molecular Structure,” Z. B. Maksiç, ed., Springer, Berlin (1990).Google Scholar
  30. 30.
    Sutcliffe, B. T., The chemical bond and molecular structure, J. Mol. Struct. (Theochem) 259: 29 (1992).CrossRefGoogle Scholar
  31. 31.
    Davies, E. B., Nonlinear Schrödinger operators and molecular structure, J. Phys. A 28: 4025 (1995).CrossRefGoogle Scholar
  32. 32.
    Davies, E. B., Symmetry breaking for molecular open systems, Ann. Inst. Henri Poincaré 35: 149 (1981).Google Scholar
  33. 33.
    Woolley, R. G., Quantum theory and molecular structure, Advanc. Phys. 25: 27 (1976).CrossRefGoogle Scholar
  34. 34.
    Woolley, R. G., Must a molecule have a shape?, J. Amer. Chem. Soc. 100: 1073 (1978).CrossRefGoogle Scholar
  35. 35.
    Woolley, R. G., Natural optical activity and the molecular hypothesis, in:, “Structures versus Special Properties,” ed., Springer, Berlin Heidelberg (1982).Google Scholar
  36. 36.
    Woolley, R. G., Molecular shapes and molecular structures, Chem. Phys. Lett. 125: 200 (1986).CrossRefGoogle Scholar
  37. 37.
    Woolley, R. G., Must a molecule have a shape?, New Scientist 22 October 1988: 53 (1988).Google Scholar
  38. 38.
    Woolley, R. G., Quantum theory and the molecular hypothesis, in:, “Molecules in Physics, Chemistry and Biology. Vol. 1,” J. Maruani, ed., Kluwer, Dordrecht (1988).Google Scholar
  39. 39.
    Woolley, R. G., Quantum chemistry beyond the Born-Oppenheimer approximation, J. Mol. Struct. (Theochem) 230: 17(1991).CrossRefGoogle Scholar
  40. 40.
    Primas, H., “Chemistry, Quantum Mechanics, and Reductionism. Perspectives in Theoretical Chemistry,” Springer, Berlin (1983).CrossRefGoogle Scholar
  41. 41.
    Primas, H., Kann die Chemie auf die Physik reduziert werden?, Chemie in unserer Zeit 19: 109 (1985).CrossRefGoogle Scholar
  42. 42.
    Espagnat, B. d., An elementary note about “mixtures”, in:, “Preludes in Theoretical Physics,” A. De-Shalit, H. Feshbach and L. v. Hove, ed., North-Holland, Amsterdam (1966).Google Scholar
  43. 43.
    Amann, A. and Primas, H., What is the referent of a non-pure quantum state?, to appear in:, “Experimental Metaphysics-Quantum Mechanical Studies in Honor of Abner Shimony,” R. S. Cohen and J. Stachel, ed., (1996).Google Scholar
  44. 44.
    Beltrametti, E. and Bugajski, S., A classical extension of quantum mechanics, J. Phys. A 28: 3329 (1995).CrossRefGoogle Scholar
  45. 45.
    Misra, B., On a new definition of quantal states, in:, “Physical Reality and Mathematical Description,” C. P. Enz and J. Mehra, ed., Reidel, Dordrecht (1974).Google Scholar
  46. 46.
    Amann, A., The quantum-mechanical measurement process in the thermodynamic formalism, in:, “Symposium on the Foundations of Modern Physics 1993 — Quantum Measurement, Irreversibility, and the Physics of Information,” P. Busch, P. Lahti and P. Mittelstaedt, ed., ed. World Scientific, Singapore (1994).Google Scholar
  47. 47.
    Amann, A., An individual interpretation of quantum mechanics, in: to appear in: Proceedings of the “Fourth Winter School on Measure Theory”, Liptovsky Jan, Slovakia, Jan. 29–Feb. 3,1995,(1995).Google Scholar
  48. 48.
    Aharonov, Y., Anandan, J. and Vaidman, L., Meaning of the wave function, Phys. Rev. A 47: 4616 (1993).CrossRefGoogle Scholar
  49. 49.
    Bratteli, O. and Robinson, D. W., “Operator Algebras and Quantum Statistical Mechanics Vol. 2,” Springer, New York (1981).CrossRefGoogle Scholar
  50. 50.
    Sewell, G. L., “Quantum Theory of Collective Phenomena,” Clarendon Press, Oxford (1986).Google Scholar
  51. 51.
    Strocchi, F., “Elements of Quantum Mechanics of Infinite Systems,” World Scientific Publishing Co., Singapore (1985).CrossRefGoogle Scholar
  52. 52.
    Bratteli, O. and Robinson, D. W, “Operator Algebras and Quantum Statistical Mechanics Vol. 1,” Springer, 2nd revised edition, New York (1987).Google Scholar
  53. 53.
    Werner, R. F., Large deviations and mean-field quantum systems, in:, “Quantum Probability and Related Topics Vol. VII,” L. Accardi, ed., World Scientific, Singapore (1992).Google Scholar
  54. 54.
    Bóna, P., The dynamics of a class of quantum mean-field theories, J. Math. Phys. 29: 2223 (1988).CrossRefGoogle Scholar
  55. 55.
    Bóna, P., Equilibrium states of a class of quantum mean-field theories, J. Math. Phys. 30: 2994 (1989).CrossRefGoogle Scholar
  56. 56.
    Atmanspacher, H., Wiedenmann, G. and Amann, A., The endo-exo-distinction and its relevance for the study of complex systems, to appear in Complexity (1995).Google Scholar
  57. 57.
    Primas, H., Induced nonlinear time evolution of open quantum objects, in:, “Sixty-two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics,” A. I. Miller, ed., Plenum Press, New York (1990).Google Scholar
  58. 58.
    Primas, H., The measurement process in the individual interpretation of quantum mechanics, in:, “Quantum Theory without Reduction,” M. Cini and J.-M. Lévy-Leblond, ed., IOP Publishing Ltd., Bristol (1990).Google Scholar
  59. 59.
    Ghirardi, G. C., Rimini, A. and Weber, T., Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34: 479 (1986).CrossRefGoogle Scholar
  60. 60.
    Ghirardi, G. C, Pearle, P. and Weber, T., Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles, Phys. Rev. A 42: 78 (1990).CrossRefGoogle Scholar
  61. 61.
    Gisin, N., Quantum measurements and stochastic processes, Phys. Rev. Lett. 52: 1657 (1984).CrossRefGoogle Scholar
  62. 62.
    Pearle, P., Reduction of the state vector by a nonlinear Schrödinger equation, Phys. Rev. D 13: 857 (1976).CrossRefGoogle Scholar
  63. 63.
    Fermi, E., “Notes on Quantum Mechanics,” The University of Chicago Press, Chicago (1961).Google Scholar
  64. 64.
    Ambrose, W. P. and Moerner, W. E., Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal, Nature 349: 225 (1991).CrossRefGoogle Scholar
  65. 65.
    Moerner, W. E. and Basché, T., Optical spectroscopy of single impurity molecules in solids, Angew. Chem. Int. Ed. 32: 457 (1993).CrossRefGoogle Scholar
  66. 66.
    Moerner, W. E., Examining nanoenvironments in solids on the scale of a single, isolated impurity molecule, Science 265: 46 (1994).CrossRefGoogle Scholar
  67. 67.
    Orrit, M., Bernard, J. and Personov, R. L., High-resolution spectroscopy of organic molecules in solids: from fluorescence line narrowing and hole burning to single molecule spectroscopy, J. Phys. Chem. 97: 10256 (1993).CrossRefGoogle Scholar
  68. 68.
    Croci, M., Müschenborn, H.-J., Güttier, F., Renn, A. and Wild, U. P., Single molecule spectroscopy: pressure effect on pentacene in p-terphenyl, Chem. Phys. Lett. 212: 71 (1993).CrossRefGoogle Scholar
  69. 69.
    Pirotta, M., Güttier, F., Gygax, H.-R., Renn, A., Sepiol, J. and Wild, U. P., Single molecule spectroscopy. Fluorescence-lifetime measurements of pentacene in p-terphenyl, Chem. Phys. Lett. 208: 379 (1993).CrossRefGoogle Scholar
  70. 70.
    Güttier, F., Sepiol, J., Plakhotnik, T., Mitterdorfer, A., Renn, A. and Wild, U. P., Single molecule spectroscopy: fluorescence excitation spectra with polarized light, J. Luminescence 56: 29 (1993).CrossRefGoogle Scholar
  71. 71.
    Güttier, F., Irgnartinger, T., Plakhotnik, T., Renn, A. and Wild, U. P., Fluorescence microscopy of single molecules, Chem. Phys. lett. 217: 393 (1994).CrossRefGoogle Scholar
  72. 72.
    Moerner, W. E., Plakhotnik, T., Irngartinger, T, Wild, U. P., Pohl, D. W. and Hecht, B., Near-field optical spectroscopy of individual molecules in solids, Phys. Rev. Lett. 73: 2764 (1994).CrossRefGoogle Scholar
  73. 73.
    Moerner, W. E., Plakhotnik, T., Irngartinger, T., Croci, M., Palm, V. and Wild, U. P., Optical probing of single molecules of terrylene in a Shpol’skii matrix: a two-state single-molecule switch, J. Phys. Chem. 98: 7382 (1994).CrossRefGoogle Scholar
  74. 74.
    Wild, U. P., Güttier, F., Pirotta, M. and Renn, A., Single molecule spectroscopy: Stark effect of pentacene in p-terphenyl, Chem. Phys. Lett. 193: 451 (1992).CrossRefGoogle Scholar
  75. 75.
    Wild, U. P., Croci, M., Güttier, F., Pirotta, M. and Renn, A., Single molecule spectroscopy: Stark-, pressure-, polarization-effects and fluorescence lifetime measurements, J. Luminescence 60 & 61: 1003 (1994).CrossRefGoogle Scholar
  76. 76.
    Plakhotnik, T., Moerner, W. E., Palm, V. and Wild, U. P., Single molecule spectroscopy: maximum emission rate and saturation intensity, Opt. Comm. 114: 83 (1995).CrossRefGoogle Scholar
  77. 77.
    Wrachtrup, J., “Magnetische Resonanz an einzelnen Molekülen und kohärente ODMR-Spektroskopie an molekularen Aggregaten in Festkörpern,” Thesis FU Berlin, Berlin (1994).Google Scholar
  78. 78.
    Amann, A., Modeling the quantum mechanical measurement process, Int. J. Theor. Phys. 34: 1187 (1995).CrossRefGoogle Scholar
  79. 79.
    Stroock, D. W. and Varadhan, S. R. S., “Multidimensional diffusion processes,” Springer, Berlin (1979).Google Scholar
  80. 80.
    Arnold, L., “Stochastic Differential Equations: Theory and Applications,” Interscience, New York (1974).Google Scholar
  81. 81.
    Jaynes, E. T., Information theory and statistical mechanics, Phys. Rev. 106: 620 (1957).CrossRefGoogle Scholar
  82. 82.
    Kobayashi, S. and Nomizu, K., “Foundations of Differential Geometry. Vol. I,” Wiley, New York (1963).Google Scholar
  83. 83.
    Petz, D. and Sudár, C, Geometries of quantum states, preprint (1995).Google Scholar
  84. 84.
    Amann, A., Structure, Dynamics and Spectroscopy of Single Molecules: A Challenge to Quantum Mechanics, to appear in J. Math. Chem. (1996).Google Scholar
  85. 85.
    Ellis, R. S., “Entropy, Large Deviations, and Statistical Mechanics,” Springer, New York (1985).CrossRefGoogle Scholar
  86. 86.
    Deuschel, J.-D. and Stroock, D. W., “Large Deviations,” Academic Press, San Diego (1989).Google Scholar
  87. 87.
    Lanford, O. E., Entropy and equilibrium states in classical statistical mechanics, in:, “Statistical Mechanics and Mathematical Problems,” A. Lenard, ed., Springer, Berlin (1973).Google Scholar
  88. 88.
    Peinke, J., Parisi, J., Rössler, O. E. and Stoop, R., “Encounter with Chaos. Self Organized Hierarchical Complexity in Semiconductor Experiments,” Springer, Berlin (1992).Google Scholar
  89. 89.
    Cohn, D. L., “Measure Theory,” Birkhäuser, Boston (1980).Google Scholar
  90. 90.
    Emery, M., “Stochastic Calculus in Manifolds,” Springer, Berlin (1989).CrossRefGoogle Scholar
  91. 91.
    Dellacherie, C. and Meyer, P. A., “Probabilités et Potentiels B,” Hermann, Paris (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Anton Amann
    • 1
  1. 1.Laboratorium für Physikalische ChemieETH ZentrumZürichSwitzerland

Personalised recommendations