Skip to main content
  • 188 Accesses

Abstract

That a molecule has a shape has been a central idea in theoretical chemistry since about 1874. It has become so deeply embedded in chemical thinking that students take it for granted from their earliest years and regard it as a completely uncontroversial idea. Before examining the idea further, we explain how the word “shape” is going to be interpreted in the context of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.A. Coulson, J. Chem. Soc. 2069 (1955).

    Google Scholar 

  2. E. von Meyer, “A History of Chemistry from Earliest Times to the Present Day,” (transi. G. McGowan) Macmillan, London (1898).

    Google Scholar 

  3. Mary Jo Nye, ed., “The Question of the Atom,” Tomash Publishers, Los Angeles (1984).

    Google Scholar 

  4. C.A. Russell, “The History of Valency,” Leicester University Press, Leicester (1971).

    Google Scholar 

  5. A. Cayley, Philos. Mag. 67:444 (1874).

    Google Scholar 

  6. J J. Sylvester, American Journal of Mathematics 1:64 (1878).

    Article  Google Scholar 

  7. I.M. Klotz, “Diamond Dealers and Feather Merchants. Tales from the Sciences,” Birkhauser, Boston (1986).

    Google Scholar 

  8. E.W. Frankland, American Journal of Mathematics 1:345 (1878).

    Article  Google Scholar 

  9. R. Hoffmann and P. Laszlo, Angew. Chem. Int. Ed. Eng. 30:1 (1991).

    Article  Google Scholar 

  10. B.T. Sutcliffe, Physics Bull. 360 (1977).

    Google Scholar 

  11. B.T. Sutcliffe, J. Molec. Struct. (Theochem) 259:29 (1992).

    Article  Google Scholar 

  12. B.T. Sutcliffe, Int. J. Quant. Chem., to appear (1995).

    Google Scholar 

  13. N. Bjerrum in:, “Nernst-Festschrift,” 90, Verlag von Knapp, Berlin (1912).

    Google Scholar 

  14. N. Bjerrum, Verhandl. deut. physik. Ges. 16:737 (1914).

    Google Scholar 

  15. G.N. Lewis, “Valence and the Structure of Atoms and Molecules,” Chemical Catalog Co., New York (1923).

    Google Scholar 

  16. N.V. Sidgwick, “The Electronic Theory of Valency,” Oxford University Press, Oxford (1927).

    Google Scholar 

  17. R.G. Woolley, Adv. Phys. 25:27 (1976).

    Article  CAS  Google Scholar 

  18. S.C. Wang, Phys. Rev. 31:579 (1928).

    Article  CAS  Google Scholar 

  19. M. Born and J.R. Oppenheimer, Ann. der Phys. 84:457 (1927).

    Article  CAS  Google Scholar 

  20. E.B. Davies, J. Phys. A. Math. and Gen. 28:4025 (1995).

    Article  CAS  Google Scholar 

  21. M. Born and K. Huang, “Dynamical Theory of Crystal Lattices,” Oxford University Press, Oxford (1955).

    Google Scholar 

  22. M. Reed and B. Simon, “Methods of Modern Mathematical Physics, IV, Analysis of Operators,” Academic Press, New York (1978).

    Google Scholar 

  23. W. Thirring, “A Course in Mathematical Physics, 3, Quantum Mechanics of Atoms and Molecules,” transi. by E.M. Harrell, Springer-Verlag, New York (1981).

    Google Scholar 

  24. G.M. Zhislin, Trudy Most Mat. Obšč. 9:82 (1960).

    Google Scholar 

  25. J. Uchiyama, Pub. Res. Inst. Math. Sci. Kyoto A 2:117 (1966).

    Article  Google Scholar 

  26. B. Simon, “Quantum Mechanics for Hamiltonians Defined as Quadratic Forms,” Princeton University Press, Princeton (1971).

    Google Scholar 

  27. G.M. Zhislin, Theor. Math. Phys. 7:571 (1971).

    Article  Google Scholar 

  28. M.B. Ruskai and J.P. Solovej in:, “Schrödinger Operators,” Lecture Notes in Physics 403, 153, E. Balslev, ed., Springer-Verlag, Berlin (1992).

    Google Scholar 

  29. M.B. Ruskai, Ann. Inst. Henri Poincaré 52:397 (1990).

    Google Scholar 

  30. M.B. Ruskai, Commun. Math. Phys. 137:553 (1991).

    Article  Google Scholar 

  31. B. Simon, Helv. Phys. Acta 43:607 (1970).

    CAS  Google Scholar 

  32. S.A. Vugal’ter and G.M. Zhislin, Theor. Math. Phys. 32:602 (1977).

    Article  Google Scholar 

  33. W.D. Evans, R.T. Lewis and Y. Saito, Phil. Trans. Roy. Soc. Lond. A 338:113 (1992).

    Google Scholar 

  34. J.-M. Richard, J. Fröhlich, G.-M. Graf and M. Seifert, Phys. Rev. Lett. 71:1332 (1993).

    Article  CAS  Google Scholar 

  35. B.T. Sutcliffe, J. Chem. Soc., Faraday Transactions 89:2321 (1993).

    Article  CAS  Google Scholar 

  36. B.T. Sutcliffe in:, “Conceptual Trends in Quantum Chemistry,” E.S. Kryachko and J.L. Calais, eds., 53, Kluwer Academic, Dordrecht (1994).

    Google Scholar 

  37. F.T. Smith Phys. Rev. Letts. 45:1157 (1980).

    Article  CAS  Google Scholar 

  38. B.T. Sutcliffe in:, “Methods of Computational Chemistry 4,” S. Wilson, ed., 33, Plenum Press, New York and London (1991).

    Google Scholar 

  39. D.M. Brink and G.R. Satchler, “Angular Momentum,” 2nd ed., Clarendon Press, Oxford (1968).

    Google Scholar 

  40. L.C. Biedenharn and J.C. Louck, “Angular Momentum in Quantum Physics,” Addison-Wesley, Reading, Mass. (1982).

    Google Scholar 

  41. J.M. Brown and B J. Howard, Mol. Phys. 31:1517 (1976).

    Article  CAS  Google Scholar 

  42. R.N. Zare, “Angular Momentum,” Chap. 3.4, Wiley, New York (1988).

    Google Scholar 

  43. G. Ezra, “Symmetry Properties of Molecules,” Lecture Notes in Chemistry 28, Springer-Verlag, Berlin (1982).

    Book  Google Scholar 

  44. J.C. Louck, J. Mol. Spec. 61:107 (1976).

    Article  CAS  Google Scholar 

  45. C. Eckart, Phys. Rev. 47:552 (1935).

    Article  CAS  Google Scholar 

  46. B. Schutz, “Geometrical Methods of Mathematical Physics,” Cambridge University Press, Cambridge (1980).

    Google Scholar 

  47. B.T. Sutcliffe in:, “Theoretical Models of Chemical Bonding,” Part 1, Z. Maksić, ed., 1, Springer-Verlag Berlin (1990).

    Google Scholar 

  48. J.K.G. Watson, Mol. Phys. 15:479 (1968).

    Article  CAS  Google Scholar 

  49. G. Hunter, Int. J. Quant. Chem. 9:237 (1975).

    Article  CAS  Google Scholar 

  50. J. Czub and L. Wolniewicz, Mol. Phys. 36:1301 (1978).

    Article  CAS  Google Scholar 

  51. A. Schmelzer and J.N. Murrell, Int. J. Quant. Chem. 28:288 (1985).

    Article  Google Scholar 

  52. M.A. Collins and D.F. Parsons, J. Chem. Phys. 99:6756 (1993).

    Article  CAS  Google Scholar 

  53. C. Eckart, Phys. Rev. 46:487 (1934).

    Article  Google Scholar 

  54. J.O. Hirschfelder and E. Wigner, Proc. Nat. Acad. Sci. 21:113 (1935).

    Article  CAS  Google Scholar 

  55. B. Buck, L.C. Biedenharn and R.Y. Cusson, Nucl. Phys. A 317:215 (1979).

    Google Scholar 

  56. J.D. Louck and H.W. Galbraith, Rev. Mod. Phys. 48:69 (1976).

    Article  Google Scholar 

  57. R.S. Berry, Rev. Mod. Phys. 32:447 (1960).

    Article  CAS  Google Scholar 

  58. M.S. Reeves and E.R. Davidson, J. Chem. Phys. 95:6651 (1991).

    Article  Google Scholar 

  59. H.C. Longuet-Higgins, Molec. Phys. 6:445 (1963).

    Article  CAS  Google Scholar 

  60. P.R. Bunker, “Molecular Symmetry and Spectroscopy,” Academic Press, London (1979).

    Google Scholar 

  61. I.G. Kaplan, “Symmetry of Many-Electron Systems,” Academic Press, London (1975).

    Google Scholar 

  62. J. Maruani and J. Serre, eds., “Symmetries and Properties of Non-Rigid Molecules,” Elsevier, Amsterdam (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sutcliffe, B.T. (1996). Molecular Shape. In: Gans, W., Amann, A., Boeyens, J.C.A. (eds) Fundamental Principles of Molecular Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0212-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0212-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0214-6

  • Online ISBN: 978-1-4899-0212-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics