The Phenomenon of Conglomerate Crystallization. Part 44. Counterion Control of Crystallization Pathway Selection. Part VI. The Crystallization Behavior of [Co(abap)(NO2)2]Cl (I), [Co(abap)(NO2)2]ClO4 (II), [Co(abap)(NO2)2]PF6·H2O (III) and [Co(abap)(NO2)2]I·H2O (IV)

  • Ivan Bernal
  • Xubin Xia
  • Fernando Somoza

Abstract

Coordination compounds of Co(III) and the dissymmetric tripodal ligand [N-(2-aminoethyl)-N, N’-bis(3-aminopropyl)-amine] produces a series of anionic derivatives of the cation [Co(abap)(NO2)2]+ whose single crystal structures have been determined here in order to document the crystallization pathway selected by these species and to further explore the effect the counter ion has in the selection of the crystallization pathway of racemic solutions.

[Co(abap)(NO2)2]Cl and [Co(abap)(NO2)2]ClO4·H2O crystallize as conglomerates in space group P21 and P212121, respectively, while [Co(abap)(NO2)2]PF6·H2O and [Co(abap)(NO2)2]I·H2O crystallize as racemates. The conformations of the two six-membered rings in these complexes are chairs which are the expected, stable conformations. In the chloride and perchlorate complexes there are strong hydrogen bonds between anions and hydrogens of terminal nitrogens and also between the the -NO2 oxygens and those hydrogens, interactions which lock the cations into a specific dissymmetric conformation. Moreover, inter-cationic hydrogen bonds lead to the formation of spiral strings, adjacent strings being of the same helicity in the case of the conglomerates. Such strong hydrogen bonds and helical strings are noticeably absent in the case of the racemic crystals of [Co(abap)(NO2)2]PF6·H2O and [Co(abap)(NO2)2]I·H2O.

Keywords

Torsional Angle Short Hydrogen Bond Amine Hydrogen Deionized Water Solution Twist Boat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. 1.
    I. Bernal, Inorg. Chim. Acta 96:99 (1985).CrossRefGoogle Scholar
  2. 2.
    I. Bernal, Inorg. Chim. Acta 101:175 (1985).CrossRefGoogle Scholar
  3. 3.
    I. Bernal, E.O. Schlemper and C.K. Fair, Inorg. Chim. Acta 115:25 (1985).CrossRefGoogle Scholar
  4. 4.
    I. Bernal and J. Cetrullo, Inorg. Chim. Acta 120:109 (1986).CrossRefGoogle Scholar
  5. 5.
    I. Bernal, Inorg. Chim. Acta 121:1 (1986).CrossRefGoogle Scholar
  6. 6.
    I. Bernal and J. Cetrullo, Inorg. Chim. Acta 122:213 (1986).CrossRefGoogle Scholar
  7. 7.
    I. Bernal, J. Coord. Chem. 15, 337 (1987).CrossRefGoogle Scholar
  8. 8.
    I. Bernal, Inorg. Chim. Acta 131:53 (1987).CrossRefGoogle Scholar
  9. 9.
    I. Bernal and J. Cetrullo, Inorg. Chim. Acta 131:201 (1987).CrossRefGoogle Scholar
  10. 10.
    I. Bernal and J. Cetrullo, Inorg. Chim. Acta 134:105 (1987).CrossRefGoogle Scholar
  11. 11.
    I. Bernal and J. Cetrullo, Inorg. Chim. Acta 144:227 (1988).CrossRefGoogle Scholar
  12. 12.
    I. Bernal, Inorg. Chim. Acta 142:21 (1988).CrossRefGoogle Scholar
  13. 13.
    I. Bernal and J. Cetrullo, Inorg. Chim. Acta 150:75 (1988).CrossRefGoogle Scholar
  14. 14.
    I. Bernal and J. Cetrullo, J. Coord. Chem. 20:247 (1989).CrossRefGoogle Scholar
  15. 15.
    I. Bernal and J. Cetrullo, J. Coord. Chem. 20:259 (1989).CrossRefGoogle Scholar
  16. 16.
    I. Bernal and J. Cetrullo, J. Coord. Chem. 20:237 (1989).CrossRefGoogle Scholar
  17. 17.
    I. Bernal and J. Cetrullo, Struct. Chem. 1:227 (1990).CrossRefGoogle Scholar
  18. 18.
    I. Bernal and J. Cetrullo, Struct. Chem. 1:235 (1990).CrossRefGoogle Scholar
  19. 19.
    I. Bernal, J. Cetrullo and S. Berhane, Struct. Chem. 1:361 (1990).CrossRefGoogle Scholar
  20. 20.
    I. Bernal, J. Myrczek and J. Cai, Polyhedron 12:1149 (1993).CrossRefGoogle Scholar
  21. 21.
    I. Bernal and J. Cetrullo, Inorg. Chim. Acta 142:235 (1988).CrossRefGoogle Scholar
  22. 22.
    I. Bernal, J. Cai, S.S. Massoud, S.F. Watkins and F.R. Fronczek, J. Coord. Chem. in press (1995).Google Scholar
  23. 23.
    I. Bernal, J. Cetrullo and J. Myrczek, Mater. Chem. and Phys. 35:290 (1993).CrossRefGoogle Scholar
  24. 24.
    I. Bernal, J. Cai and J. Myrczek, Inorg. Chem., accepted (1995).Google Scholar
  25. 25.
    J. Chin, M. Drouin and A.G. Michel, Acta Cryst. 46:1022 (1995).Google Scholar
  26. 26.
    M. Laing, S. Baines and P. Sornmerville, Inorg. Chem. 10:1057 (1971).CrossRefGoogle Scholar
  27. 27.
    B. Nubert, H. Siebert, K. Wiedenheimmer, Weiss and M.I. Ziegler, Acta. Crystallogr. B75:1020 (1979)Google Scholar
  28. 28.
    R.L. Fanshawe and A.G. Blackman, Inorg. Chem. 34, 421 (1995).CrossRefGoogle Scholar
  29. 29.
    P.D. Streater, Taylor, R.C. Hider, and J. Porter, J. Med. Chem. 33:1749 (1990).CrossRefGoogle Scholar
  30. 30.
    TEXRAY-230 is a modification of the SDP-Plus31 set of X-ray crystallographic programs distributed by Molecular Structure Corporation, 3200 Research Forest Dr., The Woodlands, TX 77386, for use with their automation of the CAD-4 diffractometer. Version of 1985.Google Scholar
  31. 31.
    SDP-Plus is the Enraf-Nonius Corporation X-ray diffraction data processing programs distributed by B.A. Frenz & Associates, 209 University Dr. East, College Station, TX 77840. Version of 1985.Google Scholar
  32. 32.
    R.B. Roof, “A Theoretical Extension of the Reduced Cell Concept in Crystallography,” Report LA-4038, Los Alamos Scientific Laboratory (1969).Google Scholar
  33. 33.
    D.T. Cromer, J.P. Waber, “International Tables for X-ray Crystallography,” the Kynoch Press, Birmingham, England (1975); vol. IV, Tables 2.2.8 and 2.3.1, respectively, for the scattering factor curves and the anomalous dipersion values.Google Scholar
  34. 34.
    A.C. Larson, EL. Lee, Y. LePage, M. Webster, J.P. Charland and E. J. Gabe, “The NRCVAX Crystal Structure System” as adapted for PC use by Peter S. White, University of North Carolina, Chapel Hill, N.C., 27599-3290.Google Scholar
  35. 35.
    I. Bernal, J. Cai and S.S. Massoud, J. Coord. Chem. accepted (1995).Google Scholar
  36. 36.
    I. Bernal, J. Cai and J. Myrczek, Acta Chemica Hungarica — Models in Chemistry 132:451 (1995).Google Scholar
  37. 37.
    I. Bernal, J. Cai, J. Cetrullo, S. Massoud, S.F. Watkins and F.R. Fronczek, J. Coord. Chem., in press (1995).Google Scholar
  38. 38.
    I. Bernal, X. Xia and F. Somoza, unpublished data (1995).Google Scholar
  39. 39.
    (a) V.G. Albano, P. Bellon and M. Sansoni, J. Chem. Soc, D., 899 (1969).Google Scholar
  40. (b).
    V.G. Albano, G.M. Ricci and M. Sansoni, Inorg. Chem. 8:2109 (1969).CrossRefGoogle Scholar
  41. (c).
    V. G. Albano, P. Bellon and M. Sansoni, J. Chem. Soc. A 2420 (1971).Google Scholar
  42. 40.
    M. Hanack, “Conformation Theory,” p. 44, Academic Press, New York (1965).Google Scholar
  43. 41.
    (a) I. Bernal, J. Cetrullo, J. Myrczek and S.S. Massoud, J. Coord. Chem. 29:287 (1993).CrossRefGoogle Scholar
  44. (b).
    I. Bernal, J. Cetrullo, J. Myrczek and S.S. Massoud, J. Coord. Chem. 29:319 (1993).CrossRefGoogle Scholar
  45. 42.
    NX. Allinger and L.A. Freiberg, J. Am. Chem. Soc. 83:2393 (1960).CrossRefGoogle Scholar
  46. 43.
    I. Bernal, J. Cetrullo and W.G. Jackson, Struct. Chem. 4:235 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ivan Bernal
    • 1
  • Xubin Xia
    • 1
  • Fernando Somoza
    • 1
  1. 1.Department of ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations