On the Isostructurality of Supramolecules: Packing Similarities Governed by Molecular Complementarity

  • Alajos Kálmán


In general, the term molecular association is used whenever two or more molecules via co-crystallization build crystal lattice together and the asymmetric unit of the new lattice gives room for, at least, one molecule of each component. The “watershed” is that there cannot be covalent bonding between the two compounds, while ionic and dipole-dipole interactions are allowed. When in the new phases the properties of at least two individual components are basically preserved then they are called “binary adducts.” Mutatis mutandis, the principles governing binary adducts can be carried over without much change to ternary and higher adducts. In the opposite direction, crystal structures with more than one molecule in their asymmetric unit which differ only in their conformations can be termed as quasi-heteromolecular associates1. The further (final) step is when the homomolecular associates forming crystals are regarded as zero order supramolecules. In principle, this idea originates from Kitaigorodskii2 who in 1955 wrote the following: “Another aspect of organic structures neglected by many workers appears to me to deserve equal attention. Organic substances are built from molecules; many properties of a material depend but slightly on the structure of the molecule and the intramolecular forces, but decisively on the molecular structure of the crystal—that is on the intermolecular forces .... These reasons alone compel us to regard the molecular basis of organic crystal structures as an important branch of sciences”. By this statement he was the first who outlined the concept of supramolecular chemistry, however, this term was introduced only later by, but widely used now after Lehn. According to Lehn3 supramolecular chemistry “is the study of the structures and functions of the supermolecules that result from binding substrates to molecular receptors .... Beyond molecular chemistry based on the covalent bonds lies supramolecular chemistry based on molecular interactions ...”


Guest Molecule Asymmetric Unit Inclusion Compound Acta Cryst Host Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.M. Zorky, A.E. Razumaeva and V.K. Belskii, Acta Cryst. A33:1001 (1977).Google Scholar
  2. 2.
    A.J. Kitaigorodskii, “Organic Chemical Crystallography,” pp 222–231, 222-231 Consultants Bureau, New York (1961).Google Scholar
  3. 3.
    J.-M. Lehn, Science 227:849–856 (1985).CrossRefGoogle Scholar
  4. 4.
    E.P. Kyba, H.C. Helgeson, K. Madan, G.W. Gokel, T.L. Tarnowski, S.S. Moore, D. J. Cram, J. Am. Chem. Soc. 99:2564 (1977).CrossRefGoogle Scholar
  5. 5.
    E. Weber, M. Czugler, Topics in Current Chemistry 149:45, Springer Verlag, Berlin-Heidelberg (1988).Google Scholar
  6. 6.
    F. H. Herbstein, Acta Chim. Hung. 130:377 (1993).Google Scholar
  7. 7.
    C. Pratt Brock and J. D. Dunitz, Chem. Mater. 6:1118 (1994).CrossRefGoogle Scholar
  8. 8.
    A. Kálmán, L. Párkányi, and Gy. Argay, Acta Cryst. B49:1039 (1993).Google Scholar
  9. 9.
    A. Kálmán, L. Párkányi, and Gy. Argay, Acta Chim. Hung. 130:279 (1993).Google Scholar
  10. 10.
    J. K. Haleblian, J. Pharm. Sci. 64:1269–1288 (1975).CrossRefGoogle Scholar
  11. 11.
    I. Bar and J. Bernstein, Tetrahedron 43:1299–1305 (1987).CrossRefGoogle Scholar
  12. 12.
    A.F. Wells, “Structural Inorganic Chemistry,” pp 182–186; Clarendon Press, Oxford (1962)Google Scholar
  13. 13.
    F.D. Bloss, “Crystallography and Crystal Chemistry,” pp 249–250; 249-250 Holt, Rinehart and Winston, Inc., New York (1971).Google Scholar
  14. 14.
    J. Lima-de-Faria, E. Heller, F. Liebau, E. Makovicky and E. Parthé, Acta Cryst. A46:1 (1990).Google Scholar
  15. 15.
    A. Kálmán, Gy. Argay, D. Scharfenberg-Pfeiffer, E. Höhne, B. Ribár, Acta Cryst. B47:68 (1991)Google Scholar
  16. 16.
    A. Kálmán, Gy. Argay, D. Zivanov-Stakić, S. Vladimirov, B. Ribár, Acta Cryst. B48:812 (1992)Google Scholar
  17. 17.
    L. Párkányi, A. Kálmán, S. Sharma, D. M. Nolen and K.H. Pannell, Inorg. Chem. 33:180 (1994).CrossRefGoogle Scholar
  18. 18.
    J.P. Glusker, M. Lewis and M. Rossi, “Crystal Structure Analysis for Chemists and Biologists,” p. 284, 284VCH Publ., Inc., New York (1994).Google Scholar
  19. 19.
    T.A. Olszak, O.M. Peeters, N.M. Blaton and C.J. de Ranter, Acta Cryst. C50:761 (1994).Google Scholar
  20. 20.
    S. Kashino and M. Haisa, Bull. Chem. Soc. Jpn. 46:1094 (1973).CrossRefGoogle Scholar
  21. 21.
    L. Párkányi, A. Kálmán, K.H. Pannell, F. Carvantes-Lee, and R.N. Kapoor, Inorg. Chem., submitted for publication (1994).Google Scholar
  22. 22.
    A. Robbins, G.A. Jeffrey, J.P. Chesick, J. Donohue, F.A. Cotton, B.A. Frenz and C. A. Murillo, Acta Cryst. B31:2395 (1975).Google Scholar
  23. 23.
    V. Gruhnert, A. Kirfel, G. Will, F. Wallrafen and Recker, Z. Krist. 163:53 (1983).CrossRefGoogle Scholar
  24. 24.
    A. Karipides and D.A. Haller, Acta. Cryst. B28:2889 (1972).Google Scholar
  25. 25.
    V.K. Belsky, A.A. Simonenko, V.O. Reikhsfeld, and I.E. Saratov, J. Organomet. Chem. 244:125 (1983).CrossRefGoogle Scholar
  26. 26.
    V. Busetti, M. Mammi, A. Signor, and A. Del Pra, Inorg. Chim. Acta 1:424 (1967).CrossRefGoogle Scholar
  27. 27.
    M.S.K. Dhurjati, J.A.R.P. Sarma and G.R. Desiraju, J Chem. Soc. Chem. Commun. 1702 (1991).Google Scholar
  28. 28.
    N. Hayashi, Y. Mazaki and K. Kobayashi, J. Chem. Soc. Chem. Commun. 2351 (1994).Google Scholar
  29. 29.
    J.S. Rutherford, On comparing lattice parameters among isostructural molecular crystals, to be published.Google Scholar
  30. 30.
    R. Gopal, B.E. Robertson and J.S. Rutherford, Acta. Cryst. C45:257 (1989).Google Scholar
  31. 31.
    E. Weber, I. Csöregh, B. Stensland and M. Czugler, J. Am. Chem. Soc. 106:3297 (1984).CrossRefGoogle Scholar
  32. 32.
    M. Czugler and P. Bombicz, J. Chem. Soc. Chem. Commun., submitted for publication (1995).Google Scholar
  33. 33.
    G. Speier and L. Párkányi, J. Org. Chem. 51:218 (1986).CrossRefGoogle Scholar
  34. 34.
    M.R. Caira and R. Mohamed, Supramolec. Chem. 2:201 (1993).CrossRefGoogle Scholar
  35. 35.
    G. Giuseppetti, C. Tadini, G.P. Bettinetti and F Giordano, Cryst. Struct. Commun. 6:263 (1977).Google Scholar
  36. 36.
    M.R. Caira, J. Chem. Cryst. 24:695 (1994).CrossRefGoogle Scholar
  37. 37.
    A.T. Ung, R. Bishop, D.C. Craig, I.G. Dance and M.L. Scudder, Chem. Mater. 6:1269 (1994).CrossRefGoogle Scholar
  38. 38.
    D-D. Wu and T.C.W. Mak, J. Chem. Cryst. 24:689 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Alajos Kálmán
    • 1
  1. 1.Central Research Institute for ChemistryHungarian Academy of SciencesBudapest 114Hungary

Personalised recommendations