Packing Molecules and Ions into Crystals

  • Leslie Glasser


It is a matter of great interest and significance to be able to predict the packing of molecules, especially of flexible molecules, and of ions into crystals. Packing may affect physical properties such as rate of solution, hardness, crystal shape, and so forth; these properties may be of crucial consequence in chemical reactivity and pharmacological activity.

The first attempts at packing predictions (due to Kitaigorodskii) relied on general considerations regarding the overall shapes and volumes of the molecules to be packed. Presently, work is proceeding by using force fields to describe the details of species interactions, and minimizing the resultant energy. Sophisticated minimization procedures are needed to overcome the “multiple minimum” problem. Procedures for these packing calculations will be described, and successes and failures thereof noted.


Force Field Molecular Crystal Local Energy Minimum Flexible Molecule Potential Energy Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.H. Haüy, “Essai d’une Théorie sur la Structure de Crystaux”, Paris (1784); see C. Bunn, “Crystals”, Academic Press, New York (1964), p. 7.Google Scholar
  2. 2.
    N. Max, Nature 355:115 (1992).CrossRefGoogle Scholar
  3. I. Stewart, New Scientist 131:29 (8 July, 1991).Google Scholar
  4. 3.
    A. Holden, “The Nature of Solids”, Columbia Univ. Press, New York (1965), Fig. 10, p. 108.Google Scholar
  5. 4.
    A.I. Kitaigorodskii, “Organic Chemical Crystallography”, Consultants Bureau, New York (1961).Google Scholar
  6. 5.
    C.H. MacGillivray, “Symmetry Aspects of M.C. Escher’s Periodic Drawings”, A. Oosthoek, Utrecht (1965).Google Scholar
  7. 6.
    H.A. Scheraga, Polish J. Chem. 68:889 (1994).Google Scholar
  8. 7.
    G. Brink and L. Glasser, J. Phys. Chem. 94:981 (1990).CrossRefGoogle Scholar
  9. 8.
    A.T. Hagler and L. Leiserowitz, J. Amer. Chem. Soc. 100:5879 (1978).CrossRefGoogle Scholar
  10. 9.
    L. Glasser and H.A. Scheraga, J. Mol. Biol. 199:513 (1988).CrossRefGoogle Scholar
  11. 10.
    G. Vanderkooi, J. Phys. Chem. 94:4366 (1990).CrossRefGoogle Scholar
  12. 11.
    C.J. Camacho and D. Thirumalai, Proteins: Structure, Function, Genetics 22:27 (1995).CrossRefGoogle Scholar
  13. 12.
    J. Perlstein, J. Amer. Chem. Soc. 116:455 and 11420 (1994).CrossRefGoogle Scholar
  14. 13.
    A. Gavezotti. J. Amer. Chem. Soc. 113:4622 (1991). Program PROMET, Mark I, Milan (1993). Applications are described by D. Braga, F. Grepioni, E. Tedesco and A.G. Orpen, J. Chem. Soc., Dalton Trans. 1215 (1995).Google Scholar
  15. 14.
    K.D. Gibson and H.A. Scheraga, J. Phys. Chem. 99:3752 and 3765 (1995). Program LMIN, QCPE 664, Quantum Chemistry Program Exchange, Bloomington IN (1995).CrossRefGoogle Scholar
  16. 15.
    H.R. Karfunkel and R.J. Gdanitz, J. Comp. Chem. 13:1171 (1992).CrossRefGoogle Scholar
  17. 16.
    C.M. Freeman and C.R.A. Catlow, J. Chem. Soc., Chem. Commun. 89 (1992).Google Scholar
  18. 17.
    T.S. Bush, C.R.A. Catlow and P.D. Battle, J. Mater. Chem. 5:1269 (1995).CrossRefGoogle Scholar
  19. 18.
    J. Pillardy and L. Piela, J. Phys. Chem. 99:11805 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Leslie Glasser
    • 1
  1. 1.Centre for Molecular Design, Department of ChemistryUniversity of WitwatersrandJohannesburgSouth Africa

Personalised recommendations