Advertisement

Platelets as Peripheral Model of Glutamate-Related Excitotoxicity in Parkinson’s Disease

  • Carlo Ferrarese
  • Graziella Bianchi
  • Marianna Bugiani
  • Tiziana Cogliati
  • Maura Frigo
  • Davide Passoni
  • Nicoletta Pecora
  • Roberto Piolti
  • Clara Pozzi
  • Rachele Tortorella
  • Lodovico Frattola
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)

Abstract

Over-stimulation of glutamate receptors and oxidative stress are two possible mechanisms that cooperate to selective degeneration of dopaminergic cells in Parkinson’s Disease (PD)1,2,3. Defects in mitochondrial enzymes, which make dopaminergic cells more susceptible to oxidative stress, have been found not only in substantia nigra of PD patients4, but also in their peripheral tissues5and blood platelets6,7,8,9. Recent studies also indicated that impaired mitochondrial function in platelets of PD patients is a characteristic of the disease and is not a consequence of pharmacological treatment10.

Keywords

Glutamate Uptake Glutamate Level Dopaminergic Cell Impaired Mitochondrial Function Platelet Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.F. Beal, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?, Ann Neurol. 31:119 (1992).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Fahn and G. Cohen, The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it, Ann Neurol 32:804 (1992).PubMedCrossRefGoogle Scholar
  3. 3.
    J.T. Coyle and P. Puttfarcken, Oxidative stress, glutamate, and neurodegenerative disorders, Science. 262:689 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    N. Hattori, M. Tanaka, T. Ozawa and Y. Mizuno, Immunohistochemical studies on Complexes I, II, III and IV of mithocondria in Parkinson’s disease, Ann Neurol. 30:563 (1991).PubMedCrossRefGoogle Scholar
  5. 5.
    J.M. Shoffner, R.L. Watts, J.L. Juncos, A. Torroni and D.C. Wallace, Mitochondrial oxidative phosphorylation defects in Parkinson’s disease, Neurology. 41 suppl 1:152 (1991).CrossRefGoogle Scholar
  6. 6.
    W.D. Parker, S.J. Boyson and J.K. Parks, Abnormalities of the electron transport chain in idiopathic Parkinson’s disease, Ann Neurol. 26:719 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Krige, M.T. Carroll, J.M. Cooper, C.D. Marsden and A.H.V. Schapira, Platelet mithocondrial function in Parkinson’s disease, Ann Neurol. 32:782 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Yoshino, Y Nakagawa-Hattori, T Kondo and Y Mizuno, Mitochondrial complex I and II activities and platelets in Parkinson’s disease, J Neural Transm. 4:27 (1992).CrossRefGoogle Scholar
  9. 9.
    R. Benecke, P. Strumper and H Weiss, Electron transfer complexes I and IV of platelets are abnormal in Parkinson’s disease but normal in Parkinson-plus syndromes, Brain. 116:1451 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    C.W. Shults, F. Nasirian, D.M. Ward, K. Nakano, M. Pay, L.R. Hill and R.H. Haas, Carbidopa/levodopa and selegiline do not affect platelet mitochondrial function in early parkinsonism, Neurology. 45:344 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Barbeau, G. Campanella, R.F. Butterworth and K. Yamada, Uptake and efflux of 14C-dopamine in platelets: evidence for a generalized defect in Parkinsons’s disease, Neurology. 25:1 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    J. M. Rabey, H. Shabtai, E. Graff and Z. Oberman, [3H] dopamine uptake by platelet transport chain in idiopathic Parkinson’s disease, Life Sci. 3:1753 (1993).CrossRefGoogle Scholar
  13. 13.
    R.M. Mangano and R. Schwarcz, The human platelet as a model for the glutamatergic neuron: platelet uptake of L-glutamate, J Neuropathol. 36:1067 (1981).Google Scholar
  14. 14.
    M.M. Hoehn and M.D. Yahr, Parkinsonism: onset, progression and mortality, Neurology. 17:427 (1967).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Fahn, R.L. Elton and The Members of the UPDRS development committee, Unified Parkinson’s disease rating scale, in: “Recent Develpments in Parkinson’s disease,” S. Fhan, D. Marsden and D. Calne ed., MacMillan, London (1987).Google Scholar
  16. 16.
    M.F. Folstein, S.E. Folstein and P.R. McHugh, “Mini-Mental State”: a pratical method for grading the cognitive state of patients for the clinician, J Psychiatr Res. 12:189 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    C. Ferrarese, N. Pecora, M. Frigo, I. Appollonio and L. Frattola, Assessment of reliability and biological significance of glutamate levels in cerebrospinal fluid, Ann Neurol 33:316 (1993).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Joseph, C. Tsering, S. Grunfeld, and K.M.A. Welch, Platelet secretory products may contribute to neuronal injury, Stroke. 22:1448 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Murphy, S. Munoz, M. Parry-Billings, and E. Newsholme, Amino acid metabolism during platelet storage for transfusion, Br J Stroke. 81:585 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Carlo Ferrarese
    • 1
  • Graziella Bianchi
    • 1
  • Marianna Bugiani
    • 1
  • Tiziana Cogliati
    • 1
  • Maura Frigo
    • 1
  • Davide Passoni
    • 1
  • Nicoletta Pecora
    • 1
  • Roberto Piolti
    • 1
  • Clara Pozzi
    • 1
  • Rachele Tortorella
    • 1
  • Lodovico Frattola
    • 1
  1. 1.Department of NeurologyUniversity of Milan — Ospedale San GerardoMonzaItaly

Personalised recommendations