Neurodegenerative Disease and Oxidative Stress: Insights from an Animal Model of Parkinsonism

  • Teresa G. Hastings
  • Michael J. Zigmond
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)


Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) are severe neurological diseases which collectively affect one of every five individuals. At first glance these disorders seem to have little in common. However, we will briefly review some of the reasons to believe that the diseases are interrelated and, thus, that insights from one can lead to a better understanding of the others. We then will explore a particular hypothesis regarding the mechanisms underlying the neuropathology of the disorders — that they involve an excess of reactive metabolites, including free radicals, which promote specific patterns of degeneration in different groups of individuals. Our discussion will focus on data that we have collected in our attempt to understand the basis of the selective vulnerability of dopamine (DA)-containing neurons in PD.


Reactive Oxygen Species Amyotrophic Lateral Sclerosis Neurodegenerative Disease Reactive Metabolite Sporadic Amyotrophic Lateral Sclerosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.M. Garruto and Y. Yase, Neurodegenerative disorders of the western Pacific: The search for mechanisms of pathogenesis, Trends in Neurosci. 9:368–374 (1986).CrossRefGoogle Scholar
  2. 2.
    D.E. Lilienfeld, D.P. Perl, and C.W. Olanow, Guam neurodegeneration, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  3. 3.
    R.G. Brown, CD. Marsden, How common is dementia in Parkinson’s disease? Lancet 1:1262–1265 (1984).CrossRefGoogle Scholar
  4. 4.
    P.K. Molsa, R.J. Marttila, V.K. Rinne, Extrapyramidal signs in Alzheimer’s disease, Neurology 34:1114-1116,(1984).Google Scholar
  5. 5.
    L.P. Rowland, Natural history and clinical features of amyotrophic lateral sclerosis and related motor neuron diseases, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  6. 6.
    M. Ruberg, A. Ploska, F. Javoy-Agid, and Y. Agid, Muscarinic binding and choline acetyltransferase activity in Parkinsonian subjects with reference to dementia, Brain Res. 232:129–139 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    J.M. Candy, R.H. Perry, E.K. Perry, D. Irving, G. Blessed, A.F. Fairbairn, and B.E. Tomlinson, Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s Diseases, J. Neurol. Sci. 54:277–289 (1983).CrossRefGoogle Scholar
  8. 8.
    M. Tabaton, A. Schenone, P. Romagnoli, and G.L. Mancardi, A quantitative and ultrastructural study of substantia nigra and nucleus centralis superior in Alzheimer’s disease, Acta Neuropathol. 68:218–223 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Uchihara, H. Kondo, K. Kosaka, and H. Tsukagoshi, Selective loss of nigral neurons in Alzheimer’s disease: A morphometric study, Acta Neuropathol. 83:271–276 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Kato, M. Oda, and H. Tanabe, Diminution of dopaminergic neurons in the substantia nigra of sporadic amyotrophic lateral sclerosis, Neuropathol App. Neurolog. 19:300–304 (1993).CrossRefGoogle Scholar
  11. 11.
    K. Iqbal and I. Grundke-Iqbal, Neurofibrillary tangles, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  12. 12.
    S.H. Appel, A unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkinsonism, and Alzheimer disease, Ann. Neurol. 10:499–505 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    R.M. Lindsay, C.A. Altar, J.M. Cedarbaum, C. Hyman, and S.J. Wiegand, The therapeutic potential of neurotrophic factors in the treatment of Parkinson’s disease, Exp. Neurol. 124:103–118 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    F. Hefti, Growth factors and neurodegeneration, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  15. 15.
    D.B. Calne, E. McGeer, A. Eisen, P. Spencer, Alzheimer’s disease, Parkinson’s disease, and motoneurone disease: Abiotrophic interaction between ageing and environment? Lancet 2:1067 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Reichmann and P. Riederer, Mitochondrial disturbances in neurodegeneration, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  17. 17.
    R. Horowski, H. Wachtel, L. Turski, and P.-A. Löschmann, Glutamate excitotoxicity as a possible pathogenetic mechanism in chronic neurodegeneration, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  18. 18.
    B. Halliwell, and J.M.C. Gutteridge, Oxygen radicals and the nervous system, Trends Neurosci. 8:22–26 (1985).CrossRefGoogle Scholar
  19. 19.
    J.T. Coyle and P. Puttfarcken, Oxidative stress, glutamate, and neurodegenerative disorders, Science 262:689–694 (1993).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Jenner, Oxidative damage in neurodegenerative disease, Lancet 344:796–798 (1994).PubMedCrossRefGoogle Scholar
  21. 21.
    D. Harman, The aging process, Proc. Natl. Acad. Sci 78:7124–7128 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    D.M.A. Mann, Vulnerability of specific neurons to aging, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  23. 23.
    G. Cohen and P. Werner, Free radicals, oxidative stress, and neurodegeneration, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  24. 24.
    P. Jenner, D.T. Dexter, J. Sian, A.H.V. Schapira, and C.D. Marsden, Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease, Ann. Neurol. 32:S82–S87 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    C.W. Olanow, An introduction to the free radical hypothesis in Parkinson’s disease, Ann. Neurol. 32:S2–S9 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    E.C. Hirsch, Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson’s disease? Ann. Neurol. 32:S88–S93 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    M.B.H. Youdim, Inorganic neurotoxins in neurodegenerative disorders without primary dementia, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  28. 28.
    E. Hirsch, A.M. Graybiel, and Y.A. Agid, Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease, Nature 334:345–348 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Kastner, E.C. Hirsch, O. Lejeune, F. Javoy-Agid, and Y. Agid, Is the vulnerability of neurons in substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J. Neurochem. 59:1080–1089 (1992).PubMedCrossRefGoogle Scholar
  30. 30.
    T.L. Perry, D.V. Godin, and S. Hansen, Parkinson’s disease: A disorder due to nigral glutathione deficiency? Neurosci. Lett. 33:305–310 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    S.J. Kish, C. Morito, and O. Hornykiewicz, Glutathione peroxidase activity in Parkinson’s disease brain, Neurosci. Lett. 58:343–346 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    K.M. Earle, Studies on Parkinson’s disease including x-ray fluorescent spectroscopy of formalin fixed brain tissue, J Neuropathol. Exp. Neurol. 27:1–14 (1968).PubMedCrossRefGoogle Scholar
  33. 33.
    E. Sofic, W. Paulus, K. Jellinger, P. Riederer, and M.B.H. Youdim, Selective increase of iron in substantia nigra zona compacta of Parkinsonian brains, J. Neuropathol. 56:978–982 (1991).Google Scholar
  34. 34.
    D.T. Dexter, F.R. Wells, F. Agid, Y. Agid, A.J. Lees, P. Jenner, and C.D. Marsden, Increased nigral iron content in postmortem parkinsonian brain, Lancet 2:1219–1220 (1987).PubMedCrossRefGoogle Scholar
  35. 35.
    D.T. Dexter, A. Carayon, M. Vidailhet, M. Ruberg, F. Agid, Y. Agid, A.J. Lees, F.R. Wells, P. Jenner, and C.D. Marsden, Decreased ferritin level in brain in Parkinson’s disease, J. Neuropathol. 55:16–20 (1990).Google Scholar
  36. 36.
    K. Jellinger, W. Paulus, I. Grundke-Iqbal, P. Riederer, and M.B. Youdim, Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J. Neural Trans. 2:327–340 (1990).CrossRefGoogle Scholar
  37. 37.
    P. Riederer, E. Sofic, W.-D. Rausch, B. Schmidt, G.P. Reynolds, K. Jellinger, and M.B.H. Youdim, Transition metals, ferritin, glutathione and ascorbic acid in parkinsonian brain. J. Neurochem. 52:515–520 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    R.J. Marttila, H. Lorentz, and U.K. Rinne, Oxygen toxicity protecting enzymes in Parkinson’s disease: increase of Superoxide dismutase-like activity in the substantia nigra and basal nucleus, J. Neurol. Sci. 86:321–331 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    D. Dexter, C. Carter, F. Agid, Y. Agid, A.J. Lees, P. Jenner, CD. Marsden, Lipid peroxidation as cause of nigral cell death in Parkinson’s disease, Lancet 2:639–640 (1986).PubMedCrossRefGoogle Scholar
  40. 40.
    S. Whyte, K. Beyreuther, and C.L., Masters, Rational therapeutic strategies for alzheimer’s disease, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  41. 41.
    T. Dyrks, E. Dyrks, T. Hartmann, C.L. Masters, K. Beyreuther, Amyloidogenicity of βA4 and βA4-bearing APP fragments by metal catalysed oxidation, J. Biol. Chem. 267:18210–18217 (1992).PubMedGoogle Scholar
  42. 42.
    K. Hensley, J.M. Carney, M.P. Mattson, M. Aksenova, M. Harris, J.F. Wu, R.A. Floyd, and D.A. Butterfield, A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer’s disease, Proc. Natl. Acad. Sci. 91:3270–3274 (1994).PubMedCrossRefGoogle Scholar
  43. 43.
    P.F. Good, D.P. Perl, L.M. Bierer, and J. Schmeidler, Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: A laser microprobe (LAMMA) study, Ann. Neurol. 31:286–292 (1992).PubMedCrossRefGoogle Scholar
  44. 44.
    R.N. Martins, C.G. Harper, G.B. Stokes, C.L. Masters, Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer’s disease may reflect oxidative stress, J. Neuropathol. 46:1042–1045 (1986).Google Scholar
  45. 45.
    J.S. Richardson, K.V. Subbarao, and L.C. Ang, Autopsy of Alzheimer’s brains show increased peroxidation to an in vitro iron challenge, in: “Alzheimer’s Disease: Basic mechanisms, Diagnosis and Therapeutic Strategies”, K. Iqbal, ed., Wiley, New York (1991).Google Scholar
  46. 46.
    C.D. Smith, J.M. Carney, P.E. Starke-Reed, C.N. Oliver, E.R. Stadtman, R.A. Floyd, and W.R. Markesbery, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer diseases, Proc. Natl. Acad. Sci. 88:10540–10543 (1991).PubMedCrossRefGoogle Scholar
  47. 47.
    D. Rosen, T. Siddique, D. Patterson, Mutations in Cu/Zn Superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362:59–62 (1993).PubMedCrossRefGoogle Scholar
  48. 48.
    A.C. Bowling, J.B. Schulz, R. H. Brown, M.F. Beal, Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis, J. Neuropathol. 61:2322–2325 (1993).Google Scholar
  49. 49.
    S.U. Kim, Tissue culture models of neurodegeneration, in: “Neurodegenerative Diseases”, D.B. Calne, W.B. Saunders, Philadelphia (1994).Google Scholar
  50. 50.
    M.J. Zigmond, and E.M. Strieker, Animal models of parkinsonism using selective neurotoxins: clinical and basic implications, Int. Rev. Neurobiol. 31:1–79 (1989).PubMedCrossRefGoogle Scholar
  51. 51.
    M.J. Zigmond, T.G. Hastings, and E.D. Abercrombie, Neurochemical responses to 6-hydroxydopamine and L-DOPA therapy: implications for Parkinson’s disease, Ann. N.Y. Acad. Sci. 648:71–86 (1992).PubMedCrossRefGoogle Scholar
  52. 52.
    M.K. Stachowiak, R.W. Keller Jr, E.M. Strieker, and M.J. Zigmond, Increased dopamine efflux from striatal slices during development and after nigrostriatal bundle damage, J. Neurosci. 7:1648–1654 (1987).PubMedGoogle Scholar
  53. 53.
    G.L. Snyder, R.W. Keller, and M.J. Zigmond, Dopamine efflux from striatal slices after intracerebral 6-hydroxydopamine: evidence for compensatory hyperactivity of residual terminals, J. Pharmacol. Ther. 253:867–876 (1990).Google Scholar
  54. 54.
    L.P. Liang, and M.J. Zigmond, Dopamine synthesis in neostriatal slices after intraventricular 6-hydroxydopamine, Soc. Neurosci. Abstr. 19:401 (1993).Google Scholar
  55. 55.
    T.E. Robinson, and I.Q. Wishaw, Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6-OHDA lesion of the substantia nigra: a microdialysis study in freely moving rats, Brain Res. 450:209–224 (1988).PubMedCrossRefGoogle Scholar
  56. 56.
    W.Q. Zhang, H.A. Tilson, K.P. Nanry, P.M. Hudson, J.S Hong, and M.K. Stachowiak, Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage, Brain Res. 461:335–342 (1988).PubMedCrossRefGoogle Scholar
  57. 57.
    E.D. Abercrombie, A.E. Bonatz, and M.J. Zigmond, Effects of L-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats, Brain. Res. 525:36–44 (1990).PubMedCrossRefGoogle Scholar
  58. 58.
    R.W. Keller Jr., W.G. Kuhr, R.M. Wightman, and M.J. Zigmond, The effect of L-dopa on in vivo dopamine release from nigrostriatal bundle neurons, Brain Res. 447:191–194 (1988).PubMedCrossRefGoogle Scholar
  59. 59.
    G.L. Snyder, and M.J. Zigmond, The effects of L-DOPA on in vitro dopamine release from striatum, Brain Res. 508:181–187 (1990).PubMedCrossRefGoogle Scholar
  60. 60.
    D.G. Graham, Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones, Mol. Pharmacol. 14:633–643 (1978).PubMedGoogle Scholar
  61. 61.
    M.B. Grisham, V.J. Perez, and J. Everse, Neuromelanogenic and cytotoxic properties of canine brainstem peroxidase, J. Neuropathol. 48:876–882 (1987).Google Scholar
  62. 62.
    T.G. Hastings, Enzymatic oxidation of dopamine: The role of prostaglandin H synthase, J. Neuropathol. 64:919–924 (1995).Google Scholar
  63. 63.
    G. Cohen, The pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence, J. Neural Trans. 19:89–103 (1983).Google Scholar
  64. 64.
    C.J. Schmidt, J.K. Ritter, P.K. Sonsalla, G.R. Hanson, and J.W. Gibb, Role of dopamine in the neurotoxic effects of methamphetamine, J. Pharmacol. Exp. Ther. 233:539–544 (1985).PubMedGoogle Scholar
  65. 65.
    M. Johnson, D.M. Stone, G.R. Hanson, and J.W. Gibb, Role of the dopaminergic nigrostriatal pathway in methamphetamine-induced depression of the neostriatal serotonergic system, Eur. J. Pharm. 135:231–234 (1987).CrossRefGoogle Scholar
  66. 66.
    A.G. Chapman, N. Durmuller, G.J. Lees, and B.S. Meldrum, Excitoxicity of NMDA and kainic acid is modulated by nigrostriatal dopaminergic fibers, Neurosci. Letts. 107:256–260 (1989).CrossRefGoogle Scholar
  67. 67.
    J. Weinberger, J. Nieves-Rosa, and G. Cohen, Nerve terminal damage in cerebral ischemia: protective effect of alpha-methyl-para-tyrosine, Stroke 16:864–870 (1985).PubMedCrossRefGoogle Scholar
  68. 68.
    P.A. Rosenberg, Catecholamine toxicity in cerebral cortex in dissociated cell culture J. Neurosci. 8:2887–2894 (1988).PubMedGoogle Scholar
  69. 69.
    P.P. Michel, and F. Hefti, Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture, J. Neurosci. Res. 26:428–435 (1990).PubMedCrossRefGoogle Scholar
  70. 70.
    D.G. Graham, S.M. Tiffany, W.R. Bell Jr., and W.R. Gutknecht, Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine 6-hydroxydopamine and related compounds toward C1300 neuroblastoma cells in vitro, Mol. Pharmacol. 14:644–653 (1978).Google Scholar
  71. 71.
    B. Fornstedt, E. Rosengren, and A. Carlsson, Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine dopa and dopac in the brains of eight mammalian species, Neuropharmacol. 25:451–454 (1986).CrossRefGoogle Scholar
  72. 72.
    B. Fornstedt, A. Brun, E. Rosengren, and A. Carlsson, The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra, J. Neural Trans. 1:279–295 (1989).CrossRefGoogle Scholar
  73. 73.
    B. Fornstedt, and A. Carlsson, Vitamin C deficiency facilitates 5-S-cysteinyldopamine formation in guinea pig striatum, J. Neuropathol. 56:407–414 (1991).Google Scholar
  74. 74.
    T.G. Hastings, and M.J. Zigmond, Identification of catechol-protein conjugates in neostriatal slices incubated with 3H-dopamine: impact of ascorbic acid and glutathione, J. Neuropathol. 63: 1126–1132 (1994).Google Scholar
  75. 75.
    T.G. Hastings, D.A. Lewis, and M.J. Zigmond, Intrastriatally administered dopamine: evidence of selective neurotoxicity associated with dopamine oxidation, Soc. Neurosci. Abst. 20:413 (1994).Google Scholar
  76. 76.
    F. Filloux, and J.J. Townsend, Pre-and post-synaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection, Exp. Neurol. 119:79–88 (1993).PubMedCrossRefGoogle Scholar
  77. 77.
    H. Bernheimer, W. Birkmayer, O. Hornykiewicz, K. Jellinger, and F. Seitelbeger, Brain dopamine and the syndromes of Parkinson and Huntington: clinical morphological and neurochemical correlations, J. Neurol. Sci. 20:415–455 (1973).PubMedCrossRefGoogle Scholar
  78. 78.
    J. Blin, A.-M. Bonnet, and Y. Agid, Does levodopa aggravate Parkinson’s disease? Neurology 38:1410–1416 (1988).PubMedCrossRefGoogle Scholar
  79. 79.
    I.J. Reynolds, and T.G. Hastings, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J. Neurosci. 15:3318–3327 (1995).PubMedGoogle Scholar
  80. 80.
    J.B. Schulz, D.R. Henshaw, D. Siwek, B.G. Jenkins, R.J. Ferrante, P.B. Cipolloni, N.W. Kowall, B.R. Rosen, and M.F. Beal, Invovlement of free radicals in excitotoxicity in vivo, J. Neuropathol. 64:2239–2247 (1995).Google Scholar
  81. 81.
    Z. Pan, and R. Perez-Polo, Role of nerve growth factor in oxidant homeostasis: glutathione metabolism, J. Neuropathol. 61:1713–1721 (1993).Google Scholar
  82. 82.
    M. Mayer, and M. Noble, N-Acetyl-L-cysteine is a pluripotent protector against cell death and enhancer of trophic factor-mediated cell survival in vitro, Proc. Natl. Acad. Sci. 91:7496–7500 (1994).PubMedCrossRefGoogle Scholar
  83. 83.
    Parkinson Sutdy Group, DATATOP: Effects of tocopherol and deprenyl on the profression of disability in early Parkinson’s disease. N. Eng. J. Med. 328:176–183.Google Scholar
  84. 84.
    S. Fahn, A pilot trial of high-dose alpha-tocopherol and ascorbate in early Parkinson’s disease, Ann. Neurol. 32:S128–S132 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Teresa G. Hastings
    • 1
  • Michael J. Zigmond
    • 2
  1. 1.Department of NeurologyUniversity of PittsburghPittsburghUSA
  2. 2.Department of NeuroscienceUniversity of PittsburghPittsburghUSA

Personalised recommendations