Mechanisms of Selective Neuronal Vulnerability to 1-Methyl-4-Phenylpyridinium (MPP+) Toxicity

  • Patricia A. Trimmer
  • Jeremy B. Tuttle
  • Jason P. Sheehan
  • James P. BennettJr.
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)


A common feature of neurodegenerative diseases such as Parkinson’s disease is the selective, inappropriate death of specific populations of central neurons. In Parkinson’s disease, dopaminergic neurons are lost in the zona compacta of the substantia nigra.1 This selective neuronal death gives rise to a progressive movement disorder whose cause is unknown and for which there is no known cure.


Tyrosine Hydroxylase Neuroblastoma Cell Apoptotic Neuron Mesencephalic Neuron Selective Neuronal Vulnerability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Forno, Pathology of Parkinson’s disease, in: “Movement Disorders,” C. D. Marsden and S. Fahn, eds., Butterworths, London (1982). p25.Google Scholar
  2. 2.
    P. A. Ballard, J. W. Tetrud, and J.W. Langston, Permanent human parkinsonism due to 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP): seven cases, Neurol. 35:949 (1985).CrossRefGoogle Scholar
  3. 3.
    R. S. Burns, Subclinical damage to the nigrostriatal dopamine system by MPTP as a model of preclinical Parkinson’s disease: A review, Acta Neurol Scand. Suppl. 136:29 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    J. N. Johannessen, A model of chronic neurotoxicity: Long-term retention of the neurotoxin l-methyl-4-phenyl pyridinium (MPP+) within catecholaminergic neurons, Neurotoxicology 12:285 (1991).PubMedGoogle Scholar
  5. 5.
    B. R. Ransom, D. M. Kunis, I. Irwin and J. W. Langston, Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+, Neurosci. Lett. 75:323 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    R. R. Ramsey, J. Dadgar, A. Trevor and T.P. Singer, Energy-driven uptake of N-methyl-4-phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP, Life Sci. 39:581 (1986).CrossRefGoogle Scholar
  7. 7.
    K. F. Tipton and T. P. Singer, Advances in our understanding of the mechansims of the neurotoxicity of MPTP and related compounds, J. Neurochem. 61:1191 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Mizuuno, K. Suzuki, N. Sone and T. Saitoh, Inhibition of ATP synthesis by l-methyl-4-phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains, Neurosci. Lett. 81:204 (1987).CrossRefGoogle Scholar
  9. 9.
    G. E. N. Kass, J. M. Wright, P. Nicoreta and S. Orrenius, The mechanism of MPTP toxicity: Role of intracellular calcium, Arch. Biochem. Biophys. 260:789 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Hasegawa, K. Takeshige, T. Oishe, Y. Murai, and S. Nimakami, l-methyl-4-phenyl pyridinium (MPP+) induces NADH dependent Superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles, Biochem. Biophys. Res. Commun. 170:1049 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    A. H. Wyllie, Cell death: a new classification separating apoptosis from necrosis, in: “Cell Death in Biology and Pathology,” I. D. Bowen and R. A. Lockshen, eds., Chapman and Hall, London (1981), p.9.CrossRefGoogle Scholar
  12. 12.
    M. J. Arends, R. G. Morris and A. H. Wyllie, Apoptosis. The role of endonuclease, Am. J. Pathol. 136:593 (1990).PubMedGoogle Scholar
  13. 13.
    M. K. L. Collins and A. L. Rivas, The control of apoptosis in mammalian cells, TIBS 18:307 (1993).PubMedGoogle Scholar
  14. 14.
    C. Portera-Cailliau, J. C. Hedreen, D. L. Price and V.E. Koliatsos, Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models, J. Neurosci 15:3775 (1995).PubMedGoogle Scholar
  15. 15.
    J. Searle, J. F. R. Kerr and C. J. Bishop, Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance, Pathol. Annu. 17 (pt2):229 (1982).PubMedGoogle Scholar
  16. 16.
    Y. Gavrieli, Y. Sherman and S. A. Ben-Sasson, Identification of programed cell death in situ via specific labeling of nuclear DNA fragmentation, J. Cell Biol. 119:493 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    R. Gold, M. Schmied, G. Gregerich, H. Breitschopf, H. P. Hartung, K. V. Yoyka and H. Lassmann, Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques, Lab. Invest. 71:219 (1994).PubMedGoogle Scholar
  18. 18.
    W. P. Bartlett, and G. A. Banker, An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture I. J. Neurosci. 4:1944 (1984).PubMedGoogle Scholar
  19. 19.
    P. A. Trimmer, L. L. Phillips and O. Steward, Combination of in situ hybridization and immunocytochemistry to detect messenger RNAs in identified CNS neurons and glia in tissue culture, J. Histochem. Cytochem. 39:891 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Lee, J. B. Turtle, L. Rebhun, D. W. Cleveland and A. Frankfurter, The expression and post-translational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis, Cell Motil. & Cytoskel. 17:118 (1990).CrossRefGoogle Scholar
  21. 21.
    J. M. Willets, D. G. Lambert and H. R. Griffiths, Suitability of B65 and SH-SY5Y neuroblastoma cells as models for ‘in vitro’ neurotoxicity testing, Biochem. Soc. Trans. 22:452S (1993).Google Scholar
  22. 22.
    S. Pahlman, A. I. Ruusala, L. Abrahamsson, M. E. K. Mattson and T. Esscher, Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbol ester-induced differentiation, Cell Differ. 14:135 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    B. Dipasquale, A. M. Marini, and R. J. Youle, Apoptosis and DNA degradation induced by l-methyl-4-phenylpyridinium in neurons, Biochem. Biophys. Res. Commun. 181:1442 (1991).PubMedCrossRefGoogle Scholar
  24. 24.
    A.M. Marini, J. P. Schwartz and I. J. Kopin, The neurotoxicity of l-methyl-4-phenylpyridinium in cultured cerebellar granule cells, J. Neurosci. 9:3665 (1989).PubMedGoogle Scholar
  25. 25.
    K. Nishi, H. Mochizuki, Y. Furukawa, Y. Mizuno and M. Yoshida, Neurotoxic effects of l-methyl-4-phenylpyridinium (MPP+) and tetrahydroisoquinoline derivatives on dopaminergic neurons in ventral mesencephalic-striatal co-culture, Neurodegeneration 3:33 (1994).Google Scholar
  26. 26.
    Mytilineou, G. Cohen and R. E. Heikkila, l-methyl-4-phenylpyridine (MPP+) is toxic to mesencephalic dopamine neurons in culture, Neurosci. Lett 57:19 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Mochizuki, N. Nakamura, K. Nishi and Y. Mizuno, Apoptosis is induced by l-methyl-4-phenylpyridinium ion (MPP+) in ventral mesencephalic-striatal co-culture in rat, Neurosci Lett. 170:191 9194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Patricia A. Trimmer
    • 1
  • Jeremy B. Tuttle
    • 2
  • Jason P. Sheehan
    • 3
  • James P. BennettJr.
    • 4
  1. 1.Departments of Neurology and NeuroscienceUniversity of VirginiaCharlottesvilleUSA
  2. 2.Departments of Urology and NeuroscienceUniversity of VirginiaCharlottesvilleUSA
  3. 3.Department of NeurosurgeryUniversity of VirginiaCharlottesvilleUSA
  4. 4.Department of NeurologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations