Skip to main content

Bcl-2 Protection of Mitochondrial Function Following Chemical Hypoxia/Aglycemia

  • Chapter
Neurodegenerative Diseases

Abstract

Neuronal death following cardiac arrest or stroke is a primary cause of delayed morbidity and mortality. In cardiac arrest, neurologic compromise is primarily the result of delayed neuronal death which develops over 24 to 72 h following resuscitation. In the case of stroke, the cells at the core of the lesion die acutely. However, the cells at the penumbra are at risk in subsequent days, and it is their fate that can determine survival or the degree of debilitation of the victim. The mechanisms underlying delayed neuronal death following cerebral ischemia and reperfusion are not fully understood. Amelioration of in vivo damage through the administration of excitatory amino acid antagonists of the NMDA and especially non-NMDA type have met with success. As well, inhibitors of free-radical induced damage such as antioxidants or heavy metal chelators have been found to inhibit delayed neuronal death. However, no treatment has been found to completely prevent the deleterious effects of ischemia/reperfusion, due either to a complex interplay of multiple degradative mechanisms1, or to a lack of appreciation of the sequence and relative importance of events in the death pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siesjö, B.K., Pathophysiology and treatment of focal cerebral ischemia. J. Neurosurg. 77:337–354 (1992).

    Article  PubMed  Google Scholar 

  2. Heron, A., Pollard, H., Dessi, F., Moreau, J., Lasbennes, Ben-Ari, Y., and Charriaut-Marlangue, C, Regional variability in DNA fragmentation after global ischemia evidenced by combined histological and gel electrophoresis observations in the rat brain. J. Neurochem. 61:1973–1976 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. Linnik, M.D., Zobrist, R.H., and Hatfield, M.D., Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 24:2002–2009 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. Okamoto, M., Matsumoto, M., Ohtsuki, T., Taguchi, A., Mikoshiba, K., Yanagihara, T., and Kamada, T., Internucleosomal DNA cleavage involved in ischemia-induced neuronal death. Biochem. Biophys. Res. Commun. 196:1356–1362 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. Sci Y., Von Lubitz D.K.J.E., Basile A.S., Borner M.M., Lin R.C.-S., Skolnick P., and Fossom L.H., Internucleosomal DNA fragmentation in gerbil hippocampus following forebrain ischemia. Neurosci. Lett. 171, 179–182 (1994).

    Article  Google Scholar 

  6. Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shibanai, K., Kominami, E., and Uchiyama, Y., Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J. Neurosci. 15:1001–1011 (1995).

    PubMed  CAS  Google Scholar 

  7. MacManus, J.P., Hill, I.E., Preston, E., Rasquinha, I., Walker, T., and Buchan, A.M., Differences in DNA fragmentation following transient cerebral or decapitation ischemia in rats. J. Cereb. Blood Flow Metab. 15:728–737 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. Kihara S., Shiraishi T., Nakagawa S., Toda K., and Tabuchi K., Visualization of DNA double strand breaks in the gerbil hippocampal CA1 following transient ischemia. Neurosci. Lett. 175, 133–136 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. Deshpande, J., Bergstedt, K., Linden, T., Kalimo, H., and Wieloch, T., Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death. Exp. Brain Res. 88:91–105 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. Lennon, S.V., Martin, S.J., and Cotter, T.G., Dose-dependent induction of apoptosisin human tumour cell lines by widely diverging stimuli. Cell Prolif. 24:203–214 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. Buttke, T.M., and Sandstrom, P.A., Oxidative stress as a mediator of apoptosis. Immun. Today 15:7–10 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. Reed, J.C., Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124:1–6 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. Hockenbery, D.M., Nunez, G., Milliman, C, Schreiber, R.D., and Korsmeyer, S.J., Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. Hockenbery, D.M., Oltvai, Z.N., Yin, X.-M., Milliman, C.L., and Korsmeyer, S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. Zhong, L.-T., Sarafian, T., Kane, D.J., Charles, A.C., Mah, S.P., Edwards, R.H., and Bredesen, D.E., bcl-2 inhibits death of central neural cells induced by multiple agents. Proc. Natl. Acad. Sci. USA, 90:4533–4537 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S., Örd, T., and Bredesen, D.E., Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species, Science 262:1274–1277 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. Mah, S.P., Zhong, L.T., Liu, Y., Roghani, A., Edwards, R.H., and Bredesen, D.E. The protooncogene bcl-2 inhibits apoptosis in PC12 cells. J. Neurochem. 60:1183–1186 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. Lam M., Dubyak G., Chen L., Nunez G., Miesfeld R.L., and Distelhorst C.W., Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc. Natl. Acad. Sci. USA. 91, 6569–6573 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. Dubois-Dauphin M., Frankowski H., Tsujimoto Y., Huarte J., and Martinou J.-C., Neonatal motoneurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death. Proc. Natl. Acad. Sci. USA 91, 3309–3313 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. Linnik M.D., Zahos P., Geschwind M.D., Federoff H.J., Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke 26, 1670–1675 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. Shimazaki, K., Ishida, A., and Kawai, N., Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neruonal death in the gerbil hippocampus. Neurosci. Res. 20:95–99 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. Chen, J., Graham, S.H., Chan, P.H., Lan, J., and Simon, R.P., Bcl-2 is expressed in neurons that survive focal ischemia in the rat. Neuroreport 6:394–398. (1995).

    Article  PubMed  CAS  Google Scholar 

  23. Krajewski, S., Mai, J.K., Krajewska, M, Sikorska, M., Mossakowski, M.J., and Reed, J.C., Upregulation of Bax protein levels in neurons following cerebral ischemia. J. Neurosci. 15:6364–6367 (1995).

    PubMed  CAS  Google Scholar 

  24. Jacobson M.D., and Raff M.C., Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374, 814–816 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. Shimizu S., Eguchi Y., Kosaka H., Kamiike W., Matsuda H., and Tsujimoto Y., Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 374, 811–813 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. Chen-Levy, Z., Nourse, J., and Cleary, M.L., The Bcl-2 candidate proto-oncogene product is a 24-kilodalton integral-membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14;18). Mol Cell. Biol. 9:701–710 (1989).

    PubMed  CAS  Google Scholar 

  27. Krajewski, S., Tanaka, S., Takayama, S., Schibier, M.J., Fenton, W., and Reed, J.C., Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53:4701–4714 (1993).

    PubMed  CAS  Google Scholar 

  28. Newmeyer, D.D., Farschon, D.M., and Reed, J.C., Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79, 353–364 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. Cross, A.R., and Jones, O.T.G., Enzymic mechanisms of Superoxide production. Biochim. Biophys. Acta 1057:281–298 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. Gunter, T.E., Gunter, K.K., Sheu, S.-S., and Gavin, C.E., Mitochondrial calcium transport: physiological and pathological relevance. Am. J. Physiol. 267:C313–C339 (1994).

    PubMed  CAS  Google Scholar 

  31. Gunter, T.E., and Pfeiffer, D.R., Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258:C755–C786 (1990).

    PubMed  CAS  Google Scholar 

  32. Sciammanna, M.A., Zinkel, J., Fabi, A.Y., Lee, C.P., Ischemic injury to rat forebrain mitochondria and cellular calcium homeostasis, Biochem Biophys. Acta. 1134:223–232, 1992.

    Article  Google Scholar 

  33. Sun D., and Gilboe D.D., Ischemia-induced changes in cerebral mitochondrial free fatty acids, phospholipids, and respiration in the rat. J. Neurochem. 62, 1921–1928 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. White, R.J., and Reynolds, I.J., Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J. Neurosci. 15:1318–1328 (1995).

    PubMed  CAS  Google Scholar 

  35. Reynolds, I.J., and Hastings, T.G., Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15:3318–3327 (1995).

    PubMed  CAS  Google Scholar 

  36. Dugan, L.L., Sensi, S.L., Canzoniero, L.M.T., Handran, S.D., Rothman, S.M., T.-S. Lin, Goldberg, M.P., and Choi, D.W., Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. J. Neurosci. 15:6377–6388 (1995).

    PubMed  CAS  Google Scholar 

  37. Myers, K.M., Fiskum, G., Liu, Y., Simmens, S.J., Bredesen, D.E., and Murphy, A.N., Bcl-2 protects neural cells from cyanide/aglycemia induced lipid oxidation, mitochondrial injury, and loss of viability, J. Neurochem. 22 555(1995, in press).

    Google Scholar 

  38. Nishijima, M.K., Koehler, R.C., Hum, P.D., Eleff, S.M., Norris, S., Jacobus, W.E., and Traystman, R.J., Postischemic recovery rate of cerebral ATP, phosphocreatine, pH, and evoked potentials. Am. J. Physiol. 257, H1860–H1870 (1989).

    PubMed  CAS  Google Scholar 

  39. Murphy, A.N., Bredesen, D.E., and Fiskum, G., Bcl-2 protects neural cell mitochondria from Ca2+ overload and Ca2+-induced respiratory inhibition. Soc. for Neurosci. Abst. 21 (3):1728 (1995).

    Google Scholar 

  40. Wang L., Miura M., Bergeron L., Zhu H., and Yuan J., Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78, 739–750 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murphy, A.N., Bredesen, D.E., Fiskum, G. (1996). Bcl-2 Protection of Mitochondrial Function Following Chemical Hypoxia/Aglycemia. In: Fiskum, G. (eds) Neurodegenerative Diseases. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0209-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0209-2_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0211-5

  • Online ISBN: 978-1-4899-0209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics