Advertisement

Excitable Membrane-Derived Lipid Mediators: Glutamate Release and Regulation of Gene Expression

  • Nicolas G. Bazan
  • Miriam Kolko
  • Geoffrey Allan
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)

Abstract

Ischemia and seizures lead to the accumulation of free arachidonic (AA) and docosahexaenoic acids (DHA); diacylglycerol, due to activation of phospholipase A2; and phospholipase C. The platelet-activating factor (PAF) precursor, 1-alkyl-2-acyl-sn-glycerophosphocholine, is enriched in polyunsaturated fatty acids such as the 2-acyl group. Under resting conditions PAF is undetectable in brain, but it accumulates after injury. The PAF antagonist BN 52021 elicits neuroprotection during brain ischemia-reperfusion and inhibits AA accumulation and inositol lipid degradation. This work led to the discovery of presynaptic PAF binding sites upon which the neuroprotective BN 52021 acts. PAF plays at least two major roles in the nervous system: as a modulator of synapse function and as a mediator of inflammation/injury. Depending upon the degree of neuronal activity, there appear to be roles, on the one hand, for PAF as a retrograde messenger in long-term potentiation, and, on the other hand, for PAF acting on neural responses to injury. PAF activates immediate-early gene expression through an intracellular PAF binding site. An early increase in inducible prostaglandin G/H synthase (TIS-10, COX-2) expression takes place after brain injury. The intracellular PAF antagonist BN 50730 inhibits this effect, as does dexamethasone. These PAF-mediated synaptic and gene expression events may represent intracellular pathways of signal transduction in repair, neuronal plasticity, and cell death. Moreover, these events may be involved in epileptogenesis and the remodeling of synaptic circuitry. Thus, excitable membrane-derived lipid mediators as new targets may be explored for pharmacological intervention in stroke and other cerebrovascular diseases, epileptic damage, neurotrauma, and neurodegenerative diseases.

Keywords

Arachidonic Acid Excitable Membrane Inhibitory Avoidance Task Gerbil Brain Retrograde Messenger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.I. Aveldaño and N.G. Bazan, Rapid production of diacylglycerols enriched in arachindonate and stearate during early brain ischemia, J. Neurochem. 25: 919–920 (1975b).PubMedCrossRefGoogle Scholar
  2. 2.
    N.G. Bazan and T.S. Reddy, Arachidonic acid, stearic acid and diacylglycerol accumulation correlates with the loss of phosphatidylinositol 4,5-bisphosphate in cerebrum 2 seconds after electroconvulsive shock. Complete reversion of changes 5 minutes after stimulation, J. Neurosci. Res. 18:449–455 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    Y. Nishizuka, M.S. Shearman, T. Oda, N. Berry, T. Shinomura, Y. Asaoka, K Ogita, H. Koide, U. Kikkawa, A. Kishimoto, Protein kinase C family and nervous function. Prog Brain Res 89:125–41 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Pasinelli, G.M. Ramakers, I. J. Urban, J.J. Hens, A.B. Oestreicher, P.N. de Graan, W. H. Gispen, Long-term potentiation and synaptic protein phosphorylation, Behav Brain Res 66:53–9 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    T. Suzuki, Protein kinases involved in the expression of long-term potentiation, Int J Biochem 26:735–44 (1995).Google Scholar
  6. 6.
    J.D. Clark, L.L. Lin, R.W. Kriz, C.S. Ramesha, L.A. Sultzman, A.Y. Lin, N. Milona, J.L. Knopf, A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP, Cell 65: 1043–51 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Braquet, L. Touqui, T.Y. Shen, and B.B. Vargaftig, Perspectives in platelet-activating factor research, Pharmacol Rev. 39: 97–145 (1987).PubMedGoogle Scholar
  8. 8.
    S.M. Prescott, G.A. Zimmerman, T.M. Mclntyre, Platelet-activating factor, J Biol Chem. 265:17381–4 (1990).PubMedGoogle Scholar
  9. 9.
    R. Kumar, S. Harvey, N. Kester, D. Hanahan, M. Olson, Production and effects of platelet-activating factor in the rat brain, Biochim Biophys Acta. 963:375–83 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    P.J. Lindsberg, K. Freirichs, J.M. Hallenbeck, and G.Z. Feuerstein, Evidence for platelet-activating factor as a novel mediator in experimental stroke in rabbits. Stroke 21:1452–1457 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    B. Kunievsky, E. Yavin, Production and metabolism of platelet-activating factor in the normal and ischemic fetal rat brain, J. Neurochem. 63:2144–51 (1991).CrossRefGoogle Scholar
  12. 12.
    V.L. Marcheselli, M. Rossowska, M.T. Domingo, P. Braquet, N.G. Bazan, Distinct platelet-activating binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex, J Biol Chem. 265:9140–5 (1990).PubMedGoogle Scholar
  13. 13.
    V.L. Marcheselli, N.G. Bazan, Platelet-activating factor is a messenger in the electroconvulsive shock-induced transcriptional activation c-fos and zif-268 in hippocampus, J Neurosci Res. 37:54–61 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    Z. Honda, M. Nakamura, I. Miki, M. Minami, T. Wantabe, Y. Seyama, H. Okado, H. Toh, K. Ito, T. Miyamoto, and T. Shimizu, Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung, Nature 394:342–346 (1991).CrossRefGoogle Scholar
  15. 15.
    D. Kunz, N.P. Gerard, C. Gerard, The human leukocyte PAF receptor. cDNA cloning, cell surface expression and construction of a novel epitopr-bearing analog, J. Biol. Chem. 267:9101–6 (1992).PubMedGoogle Scholar
  16. 16.
    T. Sugimoto, H. Tsuchimochi, C.G. McGregor, H. Mutoh, T. Shimizu, Y. Kurachi, Molecular cloning and characterization of the platelet-activating factor receptor from human heart, Biochem. Biophys. Res. Commun. 189:617–24 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Panetta, V.L. Marcheselli, P. Braquet, B. Spinnewyn, N.G. Bazan, Effects of diacylglycerols, polyphosphoinositides and blood flow in the gerbil brain: Inhibition of ischemia-reperfusion induced cerebral injury, Biochem. Biophys. Res. Comm. 149:580–7 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    D.L. Birkle, P. Kurian, P. Braquet, N.G. Bazan, Platelet-activating factor antagonist BN 52021 decreases accumulation of free polyunsaturated fatty acid in mouse brain during ischemia and electroconvulsive shock, J. Neurochem. 51:1900–5 (1990).CrossRefGoogle Scholar
  19. 19.
    D.D. Gilboe, D. Kintner, J.H. Fitzpatrick, S.E. Emoto, A. Esanu, P.G. Braquet, and N.G. Bazan, Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet activating factor, J. Neurochem. 56: 311–319 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    R.J. Gaudet, J. Alam, and L. Levine, Accumulation of cyclooxygenation products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid atrtery occlusion, J. Neurochem. 35:653–658 (1990).CrossRefGoogle Scholar
  21. 21.
    M.A. Moskowitz, K.J. Kiwak, K. Hekiman, and L. Levine, Synthesis of compounds with the properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion, Science 224:886 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    A.-L. Siren, R.M. McCarron, Y. Liu et al., Perivascular macrophage signaling of endothelium via cytokines: Mechanism by which stroke risk factors operate to increase stroke likelihood, in: “Pharmacology of Cerebral Ischemia,” J. Krieglstein and H. Oberpichler-Schwenk H, eds., Wissenschaftliche Verlagsgesellschaft, Stuggart (1992).Google Scholar
  23. 23.
    D. Giulian, K. Vaca, Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system, Stroke 24 (Suppl):84–90 (1993).CrossRefGoogle Scholar
  24. 24.
    W.M. Armstead, R. Mirro, D.W. Busija, and C.W. Leffler, Postischemic generation of Superoxide anion by newborn pig brain, Am J. Physiol. 255:401–403 (1988).Google Scholar
  25. 25.
    E.L. Cerchiari, T.M. Hoel, P. Safar, and R.J. Schlabassi, Protective effects of combined Superoxide dismutase and deferoxamine on recovery of cerebral blood flow after cardiac arrest in dogs, Stroke 18:869–878 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    B.C. White, J.F. Hildenbrandt, A.T. Evans, I. Aronson, R.J. Indrieri, T. Hoehner, L. Fox, R. Huang, and D. Johns, Prolonged cardiac arrest in resuscitation in dogs: brain mitochondrial function with different artificial perfusion methods, Ann. Emerg, Med. 14: 383–388 (1985).CrossRefGoogle Scholar
  27. 27.
    B. Halliwell and J.M. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals, and disease, Biochem J. 219:1–14 (1984).PubMedGoogle Scholar
  28. 28.
    S. Yoshida, R. Busto, M. Santiso, and M.D. Ginsberg, Brain lipid peroxidation induced by postischemic reoxygenation in vitro: effect of Vitamin E, J. Cereb. Blood Flow Metab. 4:466–469 (1980).CrossRefGoogle Scholar
  29. 29.
    E.P. Wei, C.W. Christman, H.A. Kontos, and J.T. Povlishock, Effects of oxygen radicals on cerebral arterioles, Am. J. Physiol. 248:H157–H162 (1985).PubMedGoogle Scholar
  30. 30.
    C.W. Nelson, E.P. Wei, J.T. Povlishok, H.A. Kontos, and M.A. Moskowitz, Oxygen radicals in cerebral ischemia, Am. J. Physiol. 248 H1356–H1362 (1992).Google Scholar
  31. 31.
    A. Shukla, R. Shukla, M. Dikshit, and R.C. Srimal R.C, Alterations in free radical scavenging mechanisms following blood-brain barrier disruption, Free Radic.Biol. Med. 15:97–100 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    G.D. Clark, L.T. Happel, C.F. Zorumski, N.G. Bazan, Enhancement of hippocampal excitatory synaptic transmission by platelet-activation factor, Neuron. 9:1211–1216 (1992).PubMedCrossRefGoogle Scholar
  33. 33.
    K. Kato, G.D. Clark, N.G. Bazan, C.F. Zorumski, Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation, Nature 367:175–179 (1994).PubMedCrossRefGoogle Scholar
  34. 34.
    I. Izquierdo, C. Fin, P.K. Schmitz, R.C. Da Silva, O. Jerusalinsky, J.A. Quillfeldt, M.B. Ferreira, J.H. Medina, and N.G. Bazan, Memory enhancement by intrahippocampal, intraamygdala, or intraentorhinal infusion of platelet-activating factor measured in an inhibitory avoidance task, Proc. Natl Acad. Sci. USA 92:5047–51 (1995).PubMedCrossRefGoogle Scholar
  35. 35.
    L. Teather, M.G. Packard, and N.G. Bazan, Effects of intra-caudate nucleus injections of platelet-activating factor and BN52021 on memory (abstract), Soc. Neurosci. 21: 1230 (1995).Google Scholar
  36. 36.
    J.H. Williams, ML. Errington, M.A. Lynch, and T.V.P. Bliss, Arachidonic acid induces long-term activity-dependent enhancement of synaptic transmission in the hippocampus, Nature 341: 739–42 (1989).PubMedCrossRefGoogle Scholar
  37. 37.
    T.J. O’Dell, R.D. Hawkins, E.R. Kandel, O. Arancio, Tests of the roles of two diffusible substances in long term potentiation: evidence for nitric oxide as a possible early retrograde messenger, Proc. Natl Acad. Sci. USA 88: 11285–9 (1991).PubMedCrossRefGoogle Scholar
  38. 38.
    K. Kato, K. Uruno, K. Saito, H. Kato, Both arachidonic acid and l-oleoyl-2-acetyl glycerol in low magnesium solution induce long-term potentiation in hippocampal CA1 neurons in vitro, Brain Res 563 (1–2): 94–100 (1991).PubMedCrossRefGoogle Scholar
  39. 39.
    A. Wieraszko, G. Li, E. Kornecki, M.V. Hogan, and Y.H. Ehrlich, Long-term potentiation in the hippocampus induced by platelet-activating factor, Neuron 10: 553–557 (1993).PubMedCrossRefGoogle Scholar
  40. 40.
    B. Miller, M. Sarantis, S.F. Traynelis, D. Attwell, Potentiation of NMDA receptor currents by arachidonic acid, Nature 355:722–5 (1992).PubMedCrossRefGoogle Scholar
  41. 41.
    B. Kunievsky, E. Yavin, Platelet-activating factor stimulates arachidonic acid release and enhances thromboxane B2 production in intact fetal rat brain ex vivo, J Pharmacol Exp Ther 263:562–8 (1992).PubMedGoogle Scholar
  42. 42.
    S.P. Squinto, A.L. Block, P. Braquet, and N.G. Bazan, Platelet-activating factor stimulates a Fos/Jun/AP-1 transcriptional signaling system in human neuroblastoma cells, J Neurosci Res 24:558–66 (1981).CrossRefGoogle Scholar
  43. 43.
    Z. Pan, V.V. Kravchenko, and R.D. Ye, Platelet activating factor stimulates transcription of the heparin-binding epidermal growth factor-like growth factor in monocytes. Correlation with an increased kappa B binding activity, J. Biol. Chem. 270: 7787–7790 (1995).PubMedCrossRefGoogle Scholar
  44. 44.
    B. Mazer, J. Domenico, H. Sawami, and E.W. Gelfand, Platelet-activating factor induces an increase in intracellular calcium and expression of regularity genes in human B lymphoblastoma cells, J Immunol. 146:1914–20 (1991).PubMedGoogle Scholar
  45. 45.
    C.S. Smith, and W.T. Shearer, Activation of NF-kappa B and immunoglobulin expression in response to platelet-activating factor in a human B cell line, Cell. Immunol. 155:292–303 (1994).PubMedCrossRefGoogle Scholar
  46. 46.
    P. Dell’ Albani, D.F. Condorelli, G. Mudo, C. Amico, M. Bindoni, and N. Belluardo, Platelet-activating factor and its methoxy analogue ET-18-OCH3 simullate immediateearly gene expression in rat astroglial cultures, Neurochem. Int. 22: 567–74 (1993).CrossRefGoogle Scholar
  47. 47.
    Y. Tripathy, J. Kandala, R. Guntaka, R. Lim, and S. Shukla, Platelet-activating factor induces expression of early response genes c-fos and Tis-1 in human epidermoid carcinoma A-431 cells, Life Sci. 49:1761–7 (1991).CrossRefGoogle Scholar
  48. 48.
    H. Mutoh, S. Ishii, T. Izumi, S. Kato, and T. Shimizu, Platelet activating factor (PAF) positively auto-regulates the expression of human PAF receptor transcript 1 (leukocyte type) through NF-kappa B, Biochem. Biophys. Res. Commun. 205:1137–1142 (1994).PubMedCrossRefGoogle Scholar
  49. 49.
    H. Shirasaki, I. M. Adcock, O.J. Kwon, M. Nishikawa, J.C. Mak, and P.J. Barnes, Agonist-induced up-regulation of platelet-activating factor receptor messenger RNA, Eur. J. Pharmacol. 268:263–266 (1994).PubMedCrossRefGoogle Scholar
  50. 50.
    D.A. Kujubu, B.S. Fletcher, B.C. Varnum, R.W. Lim, and H.R. Herschman, TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue, J. Biol. Chem. 266:12866–12872 (1991).PubMedGoogle Scholar
  51. 51.
    M.K. O’Banion, H.B. Sadowski, V. Winn, and D.A. Young, A serum-and glucocorticoid-regulated 4-kilobase mRNA encodes a cycooxygenase-related protein, J. Biol. Chem. 266:23261–23267 (1991).PubMedGoogle Scholar
  52. 52.
    H.R. Herschman, Regulation of prostaglandin synthase-1 and prostaglandin synthase-2, Cancer Metastasis Rev. 13:241–56 (1994).PubMedCrossRefGoogle Scholar
  53. 53.
    E.J. Goetzl, W.L. An S. Smith, Specificity of expression of eicosanoid mediators in normal physiology and human disease, FASEB J. 9:1051–58 (1995).PubMedGoogle Scholar
  54. 54.
    K. Yamagata, K.I. Andeasson, W.E. Kaufmann, CA. Barnes, P.F. Worley, Expression of a mitogen-inducible cyclooxygenase in brain neurons: Regulation by synaptic activity and glucocorticoids, Neuron 11:371–86 (1993).PubMedCrossRefGoogle Scholar
  55. 55.
    N.G. Bazan, B.S. Fletcher, H.R. Herschman, P.K. Mukherjee, Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene, Proc. Natl Acad Sci USA 91:5252–6 (1993).CrossRefGoogle Scholar
  56. 56.
    N.G. Bazan, C.F. Zorumski, G.D. Clark, The activation of phospholipase A2 and release of arachidonic acid and other lipid mediators at the synapse: The role of platelet-activating factor, J Lipid Med 6:421–7 (1993).Google Scholar
  57. 57.
    E. Kornecki and Y.H. Ehrlich, Neuroregulatory and neuropathological actions of the ether phospholipid platelet-activating factor, Science 240:1792–4 (1988).PubMedCrossRefGoogle Scholar
  58. 58.
    N.G. Bazan, S.P. Squinto, P. Braquet, T. Panetta, V.L. Marcheselli, Platelet-activation factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: Intracellular PAF-binding sites and activation of a Fos/Jun/Ap-1 transcriptional signaling system, Lipids 26:1236–42 (1991).PubMedCrossRefGoogle Scholar
  59. 59.
    H. Bito, M. Nakamura, A. Honda, et al, Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons, Neuron. 9:1–10 (1992).CrossRefGoogle Scholar
  60. 60.
    N.G. Bazan, Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain, Biochim BiophysActa 218:1–10 (1970).CrossRefGoogle Scholar
  61. 61.
    N.G. Bazan, Arachidonic acid (AA) in the modulation of excitable membrane function and at the onset of brain damage, Ann N Y Acad Sci 559:1–16 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Nicolas G. Bazan
    • 1
  • Miriam Kolko
    • 1
  • Geoffrey Allan
    • 1
  1. 1.Neuroscience Center of Excellence and Department of OpthamologyLouisiana State University Medical Center, School of MedicineNew OrleansUSA

Personalised recommendations