Detection of Single and Double Strand DNA Breaks during Excitotoxic or Apoptotic Neuronal Cell Death

  • Michel Didier
  • Sherry Bursztajn
  • Stephen A. Berman
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)


Excitotoxins have been implicated in a number of neurodegenerative diseases.1,2 These excitatory amino acids can cause neuronal death by several mechanisms, but their effect on the genome is not well defined. Damage of the genomic as well as mitochondrial DNA may appear during chronic excitotoxicity leading to a gradual and progressive accumulation of long term macromolecular damage.3,4 Until now, two major categories of genomic DNA degradation have been distinguished in cells. Apoptotic DNA damage results from a specific molecular and biochemical program mediating a cellular death without the manifestations of cytoplasmic alterations such as swelling and lysosomal activation found in the more commonly described necrotic death.5–7 In most cases, apoptotic cell death involves a specific endonucleic cleavage of double stranded DNA and the cell nuclei adopt a characteristic morphology with fragmentation and perinuclear condensation of chromatin.5,6,8–10 Aside from apoptosis, less specific DNA strand breaks have many possible causes such as radiation,11,12 free radicals and other chemical agents.13–16 Defects in one or more DNA repair enzyme can also lead to the accumulation of DNA damage.17–19


Cerebellar Granule Cerebellar Granule Cell Nick Translation Glutamate Excitotoxicity Pyknotic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Flint Beal, “Mechanisms of excitotoxicity in neurologic diseases” FASEB J. 6: 3338 (1992).Google Scholar
  2. 2.
    J.T. Coyle and P. Puttfarcken, “Oxidative stress, glutamate, and neurodegenerative disorders” Science 262:689 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    M.E. Boerrigter, J.Y. Wei and J. Vijg, “DNA repair and Alzheimer’s disease” J. Gerontol 47: B177 (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    V.M. Mann, J.M. Cooper and A.H. Schapira, “Quantification of a mitochondrial DNA deletion in Parkinson’s disease” FEBS. Lett 299: 218 (1992).PubMedCrossRefGoogle Scholar
  5. 5.
    W. Bursh, F. Oberhammer and R. Schulte-Hermann, “Cell death by apoptosis and its protective role against disease” TIPS 13: 245 (1992).Google Scholar
  6. 6.
    M.K.L. Collins and A.L. Rivas, “The control of apoptosis in mammalian cells” TIBS 18: 307 (1993).PubMedGoogle Scholar
  7. 7.
    B. Meldrum and J. Garthwaite, “Excitatory amino acid neurotoxicity and neurodegenerative disease” TIPS 11:379 (1990).PubMedGoogle Scholar
  8. 8.
    Y.A. Lazebnick, S. Cole, C.A. Cooke, W. G. Nelson and W.C. Earnshaw, “Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis” J. Cell. Biol. 123: 7 (1993).CrossRefGoogle Scholar
  9. 9.
    D. Y. Sun, S. Jiang, L-M. Zheng, D.M. Ojcius and J. D-E. Young, “Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation” J. Exp. Med 179: 559 (1994).PubMedCrossRefGoogle Scholar
  10. 10.
    P.R. Walker, V. M. Weaver, B. Lach, J. LeBlanc and M. Sikorska, “Endonuclease activities associated with high molecular weight and internucleosomal DNA fragmentation in apoptosis” Exp. Cell Res. 213:100 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    N.J. Sargentini and K.C. Smith, “Involvement of RecB-mediated repair of double strand breaks in the gamma-radiation production of long deletions in Escherichia Coli” Mutation Res. 265: 83 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Maehara, H. Anai, T. Kusumoto, Y. Sakaguchi and K. Sakaguchi, “Nick translation detection in situ of cellular DNA strand break induced by radiation” Am. J. Pathol. 134: 7 (1989).PubMedGoogle Scholar
  13. 13.
    K. Nose and H. Okamoto, “Detection of carcinogen-induced DNA breaks by nick translation in permeable cells” Biochem. Biophys. Res. Com. 111: 383 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    T.M. Masuck, A.R. Taylor and J. Lough, “Arabinosylcytosine-induced accumulation of DNA nicks in myotube nuclei detected by in situ nick translation” J. Cell. Physio. 144: 12 (1990).CrossRefGoogle Scholar
  15. 15.
    T. Nguyen, D. Branson, C.L. Crespi, B.W. Penman, J.S. Wishnok and S.R. Tannenbaum, “DNA damage and mutation in human cells exposed to nitric oxide in vitroProc. Natl. Acad. Sci. USA 89: 3030 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    A.C. Povey, V.L. Wilson, J.L. Zweier, P. Kuppusamy, I.K. O’Neill and C.C. Harris, “Detection by 32P-postlabeling of DNA adduets induced by free radicals and unsaturated aldehydes formed during the aerobic decomposition of fecapentaene-12” Carcinogenesis 13: 3 95 (1992).CrossRefGoogle Scholar
  17. 17.
    S. Seki and T. Oda, “An exonuclease possibly involved in the initiation of repair of bleomycin-damaged DNA in mouse ascites sarcoma cells” Carcinogenesis 9: 2239 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    W.B. Mattes, “Lesion selectivity in blockage of lambda exonuclease by DNA damage” Nucleic Acid Res. 18: 3723 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    B.M. Hannigan, S.A. Richardson and P.G. McKenna, “DNA damage in mammalian cell lines with different antioxidant levels and DNA repair capacities” Exs 62: 247 (1992).PubMedGoogle Scholar
  20. 20.
    C. Cosi, H. Suzuki, D. Milani, L. Facci, M. Menegazzi, G. Vantini, Y. Kanai and S.D. Skaper, “Poly(ADP-ribose) polymerase: early involvement in glutamate-induced neurotoxicity in cultured cerebellar granule cells” J. Neurosci. Res. 39: 38 (1994).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Zhang, V.L. Dawson, T.M. Dawson and S.H. Snyder, “Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity” Science 263: 687 (1994).PubMedCrossRefGoogle Scholar
  22. 22.
    F. Dessi, C. Charriaut-Marlangue, M. Khrestchatisky and Y. Ben-Ari, “Glutamate-induced neuronal death is not a programmed cell death in cerebeilar culture” J. Neurochem. 60: 1953 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Heron, H. Pollard, F. Dessi, J. Moreau, F. Lasbennes, Y. Ben-Ari and C. Chaniaut-Marlangue, “Regional variability in DNA fragmentation after global ischemia evidenced by combined histological and gel electrophoresis observations in the rat brain” J. Neurochem. 61: 1973 (1993).PubMedCrossRefGoogle Scholar
  24. 24.
    J.P. MacManus, A.M. Buschan, I.E. Hill, I. Rasquinha and E. Preston, “Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain” Neurosci. Lett. 164: 89 (1993).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Tominaga, S. Kure, K. Narisawa and T. Yoshimoto, “Endonuclease activation following focal ischemic injury in the rat brain” Neurosci Lett. 608: 21 (1993).Google Scholar
  26. 26.
    S-I. Kihara, T. Shiraishi, S. Nakagawa, K. Toda and K. Tabuchi, “Visualization of DNA double strand breaks in the gerbil hippocampal CA1 following transient ischemia” Neurosci Lett. 175: 133 (1994).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Pollard, C. Charriaut-Marlangue, S. Cantagrel, A. Represa, O. Robain, J. Moreau and Y. Ben-Ari, “Kainate-induced apoptotic cell death in hippocampal neurons” Neurosci 63: 7 (1994).CrossRefGoogle Scholar
  28. 28.
    Y. Sei, D.K.J.E. Von Lubitz, A.S. Basile, M.M. Borner, R.C-S. Lin, P. Skolnick and L.H. Fossom, “Internucleosomal DNA fragmentation in gerbil hippocampus following forebrain ischemia” Neurosci Lett. 171: 179 (1994).PubMedCrossRefGoogle Scholar
  29. 29.
    M. J. Courtney, J.L. Lambert and D.G. Nicholls, “The interactions between plasma membrane depolarization and glutamate receptor activation in the regulation of cytoplasmic free calcium in cultured cerebeilar granule cells” J. Neurosci 10: 3873 (1990).PubMedGoogle Scholar
  30. 30.
    M. Didier, M. Heaulme, N. Gonalons, P. Soubrie and J-P. Pin, “35 mM K+-stimulated 45Ca2+-uptake in cerebeilar granule cell cultures mainly result from NMDA receptor activation” Eur. J. Pharmacol. 244: 57 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    M. Didier, J-M. Mienville, P. Soubrie, J. Bockaert, S. Berman, S. Bursztajn and J-P. Pin, “Plasticity of NMDA receptor expression during mouse cerebeilar granule cell development” Eur. J. Neurosci 6: 1536 (1994).PubMedCrossRefGoogle Scholar
  32. 32.
    B.J. Van-Vliet, M. Sebben, A. Dumuis, J. Gabrion, J. Bockaert, J-P. Pin, “Endogenous amino acid release from cultured cerebeilar neuronal cells: effect of tetanus toxin on glutamate release” J. Neurochem. 52: 1229 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Manev, M. Favaron, A. Guidotti and E. Costa, “Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death” Mol. Pharmacol. 36: 106 (1989).PubMedGoogle Scholar
  34. 34.
    M. Didier, M. Heaulme, P. Soubrie, J. Bockaert and J-P. Pin, “Rapid, sensitive and simple method for the quantification of both neurotoxic and neurotrophic effects of NMDA on cultured cerebeilar granule cells” J. Neurosci Res. 27: 25 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    M.B. Robinson, M. Hunter-Ensor and J. Sinor, “Pharmacologically distinct sodium-dependent L-[3H]glutamate transport processes in rat brain” Brain Res. 544: 196 (1991).PubMedCrossRefGoogle Scholar
  36. 36.
    Y. Kanai, C.P. Smith and M. A. Hediger, “The elusive transporters with a high affinity for glutamate” TINS 16: 365 (1993).PubMedGoogle Scholar
  37. 37.
    S.R. D’Mello, C. Galli, T. Ciotti and P. Calissano, “Induction of apoptosis in cerebeilar granule neurons by low potassium: Inhibitionof death by insulin-like growth factor I and cAMP” Proc. Natl. Acad. Sci. USA 90: 10989 (1993).PubMedCrossRefGoogle Scholar
  38. 38.
    K.A. Wood, B. Dipasquale and R.J. Youle, “In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum” Neuron 11: 621 (1993).PubMedCrossRefGoogle Scholar
  39. 39.
    S. Iseki, “DNA strand breaks in rat tissues as detected by in situ nick translation” Exp. Cell Res. 167: 311 (1986).PubMedCrossRefGoogle Scholar
  40. 40.
    Y. Gavrieli, Y. Sherman and S.A. Ben-Sasson, “Identification of programed cell death in situ via specific labeling of nuclear DNA fragmentation” J. Cell. Biol. 119: 493 (1992).PubMedCrossRefGoogle Scholar
  41. 41.
    M. Didier, P. Roux, M. Piechaczyk, P. Mangeat, B. Verrier, G. Devilliers, J. Bockaert and J-P. Pin, “Long-term expression of c-fos protein during the in vitro maturation of cerebeilar granule cells induced by potassium or NMDA” Mol. Brain Res. 12: 249 (1992).PubMedCrossRefGoogle Scholar
  42. 42.
    S.H. Appel, “Excitotoxic neuronal cell death in amyotrophic lateral sclerosis” TINS 16: 3 (1993).PubMedGoogle Scholar
  43. 43.
    G.J. Lees, “Contributory mechanisms in the causation of neurodegenerative disorders” Neurosci. 54: 287 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michel Didier
    • 1
    • 3
  • Sherry Bursztajn
    • 1
    • 2
    • 3
  • Stephen A. Berman
    • 1
    • 2
    • 3
  1. 1.Department of PsychiatryHarvard Medical SchoolUSA
  2. 2.Program in NeuroscienceHarvard Medical SchoolUSA
  3. 3.Laboratories for Molecular NeuroscienceMcLean HospitalBelmontUSA

Personalised recommendations