βAPP Metabolites, Radicals, Calcium, and Neurodegeneration: Novel Neuroprotective Strategies

  • Mark P. Mattson
  • Steven W. Barger
  • Katsutoshi Furukawa
  • Robert J. Mark
  • Virginia L. Smith-Swintosky
  • L. Creed Pettigrew
  • Annadora J. Bruce
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)

Abstract

Many biochemical and molecular alterations in the brains of victims of Alzheimer’s disease (AD) and other age-associated neurodegenerative disorders have been described. Unfortunately, it remains unclear which of the alterations contribute to the neuronal damage, which represent compensatory and cytoprotective responses to ongoing cell injury, and which are mere remnants of damaged cells in general. The present article describes studies that have been performed in our laboratories to help define roles for two major metabolites of the β-amyloid precursor protein (βAPP) in the pathogenesis of AD. In addition, we discuss findings concerning age-related alterations in brain metabolism (e.g., reduced glucose availability), and cellular signaling systems regulating neuronal plasticity and survival (e.g., neurotrophic factors), that are likely to impact on the biological activities of βAPP metabolites. Cellular systems regulating metabolism of calcium and reactive oxygen species (ROS) appear to be critical targets of both neurodegenerative and neuroprotective pathways. We therefore highlight the variety of both natural and synthetic compounds that can stabilize calcium homeostasis and ROS metabolism, and which may thus prove effective in reducing neuronal injury in a variety of neurodegenerative disorders. We emphasize βAPP in this chapter, not because it is the only determinant of AD, but rather because increasing data suggest it plays a pivotal role in many cases. This article is not intended to be a comprehensive review of the literature, and we refer the reader to review articles that provide more in-depth analyses of our current understanding of the molecular and cellular pathophysiology of AD1–4.

Keywords

Neurotrophic Factor Hippocampal Neuron Glucose Deprivation Propyl Gallate Actin Depolymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Mullan, and F. Crawford, Genetic and molecular advances in Alzheimer’s disease, Trends Neurosci. 16:398–403 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    D. J. Selkoe, Physiological production of the β-amyloid protein and the mechanism of Alzheimer’s disease, Trends Neurosci. 16: 403–409 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    K. Iqbal, D.R.C. McLachlan, B. Winblad, and H. M. Wisniewski (eds). “Alzheimer’s Disease: Basic Mechanisms, Diagnosis and Therapeutic Strategies,” Wiley, New York (1991).Google Scholar
  4. 4.
    M. P. Mattson, Calcium and neuronal injury in Alzheimer’s disease, Ann. N.Y. Acad. Sci. 747:50–76 (1995).CrossRefGoogle Scholar
  5. 5.
    D. Burdick, B. Soreghan, M. Kwon, J. Kosmoski, M. Knauer, A. Henschen, J. Yates, C. Cotman and C. Glabe, Assembly and aggregation properties of synthetic Alzheimer’s A4/β amyloid peptide analogs, J. Bid. Chem. 267: 546–554 (1992).Google Scholar
  6. 6.
    A. I. Bush, W. H. Pettingell, G. Multhaup, M. d Paradis, J. P. Vonsattel, J. F. Gusella, K. Beyreuther, C. L. Masters and R. E. Tanzi, Rapid induction of Alzheimer A β amyloid formation by zinc, Science 265: 1464–1467 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Dyrks, E. Dyrks, T. Hartmann, C. Masters and K. Beyreuther, Amyloidogenicity of β A4 and β A4-bearing amyloid protein precursor fragments by metalcatalyzed oxidation, J. Biol Chem. 267: 18210–18217 (1992).PubMedGoogle Scholar
  8. 8.
    T. Wisniewski, J. Ghiso, and B. Frangione, Alzheimer’s disease and soluble Aβ. Neurobiol. Aging 15:143–152 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    M. P. Mattson, K. Tomaselli and R. E. Rydel, Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF, Brain Res. 621:35–49 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    C. J. Pike, A. J. Walencewicz-Wasserman, J. Kosmoski, D. H. Glabe and C. W. Cotman, Structure-activity analyses of β-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity, J. Neuropathol. 64: 253–265 (1995).Google Scholar
  11. 11.
    J. Busciglio, A. Lorenzo, and B. A. Yankner, Methodological variables in the assessment of beta amyloid neurotoxicity, Neurobiol. Aging 13:609–612 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Goodman, and M. P. Mattson, Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury, Exp.Neurol. 128:1–12 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    Y. Goodman, M. R. Steiner, S. M. Steiner, and M. P. Mattson, Nordihydroguaiaretic acid protects hippocampal neurons against amyloid β-peptide toxicity, and attenuates free radical and calcium accumulation, Brain Res. 654:171–176 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Hensley, J. M. Carney, M. P. Mattson, M. Aksenova, M. Harris, J. F. Wu, R. Floyd, and D. A. Butterfield, A model for ß-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 91:3270–3274 (1994).PubMedCrossRefGoogle Scholar
  15. 15.
    D. A. Butterfield, K. Hensley, M. Harris, M. P. Mattson, and J. Carney, β-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease, Biochem. Biophys. Res. Commun. 200: 710–715 (1994).PubMedCrossRefGoogle Scholar
  16. 16.
    C. Behl, J. B. Davis, R. Lesley, and D. Schubert, Hydrogen peroxide mediates amyloid ß protein toxicity, Cell 77:817–827 (1994).PubMedCrossRefGoogle Scholar
  17. 17.
    M. E. Harris, K. Hensley, D. A. Butterfield, R. A. Leedle, and J. M. Carney, Direct evidence of oxidative injury produced by the Alzheimer’s β-amyloid peptide (1–40) in cultured hippocampal neurons, Exp.Neurol. 131:193–202 (1995).PubMedCrossRefGoogle Scholar
  18. 18.
    R. J. Mark, K. Hensley, D. A. Butterfield, and M. P. Mattson, Mechanism of amyloid β-peptide neurotoxicity involves impairment of Na+/K+-ATPase activity. Submitted (1995).Google Scholar
  19. 19.
    M. P. Mattson, B. Cheng, D. Davis, K. Bryant, I. Lieberburg, and R. E. Rydel, β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12:376–389 (1992).PubMedGoogle Scholar
  20. 20.
    K. Furukawa, V. L. Smith-Swintosky, and M. P. Mattson, Evidence that actin depolymerization protects hippocampal neurons against excitotoxicity by stabilizing [Ca2+]i, Exp.Neurol. In press. (1995).Google Scholar
  21. 21.
    K. Furukawa, and M. P. Mattson, Cytochalasins protect hippocampal neurons against amyloid β-peptide toxicity: evidence that actin depolymerization suppresses Ca2+ influx, J. Neurochem. In press. (1995).Google Scholar
  22. 22.
    J. H. Weiss, C. J. Pike, and C. W. Cotman, Ca2+ channel blockers attenuate β-amyloid peptide toxicity to cortical neurons in culture, J. Neuropathol. 62:372–375 (1994).Google Scholar
  23. 23.
    J. S. Whitson, M. P. Mims, W. J. Strittmatter, T. Yamaki, J. D. Morrisett and S. H. Appel, Attenuation of the neurotoxic effect of Aß amyloid peptide by apolipoprotein E, Biochem. Biophys. Res. Commun. 199: 163–170 (1994).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Fahn and G. Cohen, The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it, Ann. Neurol. 32: 804–812 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    J. D. Rothstein, L. A. Bristol, B. Hosier, R. H. Brown Jr. and R. W. Kuncl, Chronic inhibition of Superoxide dismutase produces apoptotic death of spinal neurons, Proc. Natl. Acad. Sci. U. S. A. 91:4155–4159 (1994).PubMedCrossRefGoogle Scholar
  26. 26.
    M. K. Sutherland, M. J. Somerville, L. K. Yoong, C. Bergeron, M. R. Haussler and D. R. McLachlan, Reduction of vitamin D hormone receptor mRNA levels in Alzheimer as compared to Huntington hippocampus: correlation with calbindin-28k mRNA levels, Mol. Brain Res. 13: 239–250 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    P. G. May, L. N. Boggs, and K. S. Fuson, Neurotoxicity of human amylin in rat primary hippocampal cultures: similarity to Alzheimer’s disease amyloid-β neurotoxicity, J. Neuropathol. 61: 2330–2333 (1993).Google Scholar
  28. 28.
    G. Forloni, Angeretti, N., Chiesa, R., Monzani, E., Salmona, O., Bugiani, O. and Tagliavini, F., Neurotoxicity of a prion protein fragment, Nature 362: 543–546 (1993).PubMedCrossRefGoogle Scholar
  29. 29.
    M. P. Mattson, and Y. Goodman, Different amyloidogenic peptides share a common mechanism of neurotoxicity involving reactive oxygen species and calcium, Brain Res. 676:219–224 (1995).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Hoyer, K. Oesterreich, and O. Wagner, Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J.Neurol. 235: 143–148 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    R. N. Kalaria, and S. I. Harik, Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer’s disease, J. Neurochem. 53:1083–1088 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    B. Cheng, and M. P. Mattson, Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampal neurons: Prevention by NGF and bFGF, Exp. Neurol. 117:114–123 (1992).PubMedCrossRefGoogle Scholar
  33. 33.
    J.-Y. Koh, L. L. Yang, and C. W. Cotman, β-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage, Brain Res. 533:315–320 (1990).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Copani, J.-Y. Koh, and C. W. Cotman, β-amyloid increases neuronal susceptibility to injury by glucose deprivation, NeuroReport 2: 763–765 (1991).PubMedCrossRefGoogle Scholar
  35. 35.
    B. S. Greenwald, A. A. Mathe, R. C. Mohs, M. I. Levy, C. A. Johns, and K. L. Davis, Cortisol and Alzheimer’s disease II: dexamethasone suppression, dementia severity, and affective symptoms, Am. J. Psychiatry 143:442–446 (1986).PubMedGoogle Scholar
  36. 36.
    R. M. Sapolsky, A mechanism for glucocorticoid toxicity in the hippocampus: increased vulnerability to metabolic insults, J. Neurosci. 5:1228–1232 (1985).PubMedGoogle Scholar
  37. 37.
    C. Virgin, T. Ha, D. Packan, G. Tombaugh, S. Yang, H. Homer, and R. Sapolsky, Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid toxicity, J. Neuropathol. 57:1422–1428 (1991).Google Scholar
  38. 38.
    E. Elliott, M. P. Mattson, P. Vanderklish, G. Lynch, I. Chang, and R. M. Sapolsky Corticosterone exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysis in vivo, J. Neurochem. 61: 57–67 (1993).PubMedCrossRefGoogle Scholar
  39. 39.
    B. Stein-Behrens, M. P. Mattson, I. Chang, M. Yeh and R. M. Sapolsky, Stress excacerbates neuron loss and cytoskeletal pathology in the hippocampus, J. Neurosci. 14:5373–5380 (1994).PubMedGoogle Scholar
  40. 40.
    V. L. Smith-Swintosky, L. C. Pettigrew, R. M. Sapolsky, C. Phares, S. D. Craddock, S. M. Brooke, and M. P. Mattson, Metyrapone, and inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures, J. Cerebral Blood Flow Metab. Submitted (1995).Google Scholar
  41. 41.
    C. D. Smith, J. M. Carney, P. E. Starke-Reed, C. N. Oliver, E. R. Stadtman, R. A. Floyd, and W. R. Markesbery, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 88: 10540–10543 (1991).PubMedCrossRefGoogle Scholar
  42. 42.
    M. A. Smith, P. L. Richey, S. Taneda, R. K. Kutty, L. M. Sayre, V. M. Monnier, and G. Perry, Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease, Ann. N. Y. Acad. Sci. 738: 447–54 (1994).CrossRefGoogle Scholar
  43. 43.
    M. F. Beal, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31:119–130 (1992).PubMedCrossRefGoogle Scholar
  44. 44.
    P. L. McGeer, J. Rogers, and E. G. McGeer, Neuroimmune mechanisms in Alzheimer disease pathogenesis, Alzheimer Dis. Assoc. Disord. 8: 149–158 (1994).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Rogers, L. C. Kirby, S. R. Hempelman, D. L. Berry, P. L. McGeer, A. W. Kaszniak, J. Zalinski, M. Cofield, L. Mansukhani, and P. Wilson, Clinical trial of indomethacin in Alzheimer’s disease, Neurology 43:1609–1611 (1993).PubMedCrossRefGoogle Scholar
  46. 46.
    P. L. McGeer, J. Rogers, and E. G. McGeer, Neuroimmune mechanisms in Alzheimer disease pathogenesis, Alzheimer Dis. Assoc. Disord. 8:149–158 (1994).PubMedCrossRefGoogle Scholar
  47. 47.
    M. P. Mattson, B. Cheng, and V. L. Smith-Swintosky, Growth factor-mediated protection from excitotoxicity and disturbances in calcium and free radical metabolism, Seminars Neurosci. 5:295–307 (1993).CrossRefGoogle Scholar
  48. 48.
    M. P. Mattson, and S. W. Scheff, Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapies, J. Neurotrauma 11:3–33 (1994).PubMedCrossRefGoogle Scholar
  49. 49.
    M. P. Mattson, M. Murrain, P. B. Guthrie, and S. B. Kater, Fibroblast growth factor and glutamate: Opposing actions in the generation and degeneration of hippocampal neuroarchitecture, J. Neurosci. 9:3728–3740 (1989).PubMedGoogle Scholar
  50. 50.
    M. P. Mattson, K. Kumar, B. Cheng, H. Wang and E. K. Michaelis, Basic FGF regulates the expression of a functional 71 KDa NMDA receptor protein that mediates calcium influx and neurotoxicity in cultured hippocampal neurons, J. Neurosci. 13:4575–4588 (1993).PubMedGoogle Scholar
  51. 51.
    B. Cheng, and M. P. Mattson, NGF and bFGF protect rat and human central neurons against hypoglycemic damage by stabilizing calcium homeostasis, Neuron 7:1031–1041 (1991).PubMedCrossRefGoogle Scholar
  52. 52.
    Y. Zhang, T. Tatsuno, J. Carney, and M. P. Mattson, Basic FGF, NGF, and IGFs protect hippocampal neurons against iron-induced degeneration, J. Cerebral Blood Flow Metab. 13:378–388 (1993).CrossRefGoogle Scholar
  53. 53.
    M. P. Mattson, Y. Zhang and S. Bose, Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose, Exp. Neurol. 121: 1–13 (1993).PubMedCrossRefGoogle Scholar
  54. 54.
    K. Nozaki, S. P. Finklestein, and M. F. Beal, Basic fibroblast growth factor protects against hypoxia/ischemia and NMDA neurotoxicity in neonatal rats, J. Cereb. Blood Flow Metab., 13:221–228 (1993).PubMedCrossRefGoogle Scholar
  55. 55.
    T. Shigeno, T. Mima, K. Takakura, D. I. Graham, G. Kato, Y. Hashimoto, and S. Furukawa, Amelioration of delayed neuronal death in the hippocampus by nerve growth factor, J. Neurosci. 11:2914–2919 (1991).PubMedGoogle Scholar
  56. 56.
    B. Cheng, and M. P. Mattson, IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage, J. Neurosci. 12:1558–1566 (1992).PubMedGoogle Scholar
  57. 57.
    B. Cheng, and M. P. Mattson, NT-3 and BDNF protect hippocampal, septal, and cortical neurons against metabolic compromise, Brain Res. 640:56–67 (1994).PubMedCrossRefGoogle Scholar
  58. 58.
    B. Cheng, Y. Goodman, J. G. Begley and M. P. Mattson, Neurotrophin 4/5 protects hippocampal and cortical neurons against energy deprivation-and excitatory amino acid-induced injury, Brain Res. 650:331–335 (1994).PubMedCrossRefGoogle Scholar
  59. 59.
    M. P. Mattson, M. A. Lovell, K. Furukawa and W. R. Markesbery, Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of [Ca2+]i and neurotoxicity, and increase antioxidant enzyme activities in hippocampal neurons, J. Neurochem., In press (1995).Google Scholar
  60. 60.
    D. Collazo, H. Takahashi and R. D. McKay, Cellular targets and trophic functions of neurotrophin-3 in the developing rat hippocampus, Neuron 9:643–656 (1992).PubMedCrossRefGoogle Scholar
  61. 61.
    M. B. Spina, S. P. Squinto, J. Miller, R. M. Lindsay and C. Hyman, Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system, J. Neuropathol. 59:99–106 (1992).Google Scholar
  62. 62.
    S. W. Barger, D. Horster, K. Furukawa, Y. Goodman, J. Krieglstein, and M. P. Mattson, TNFs protect hippocampal neurons against amyloid β-peptide toxicity: involvement of NFΚB and attenuation of peroxide and calcium accumulation, Proc. Natl Acad. Sci. U.S.A. In press (1995).Google Scholar
  63. 63.
    B. Cheng, S. W. Barger, and M. P. Mattson, Staurosporine, K-252a and K-252b stabilize calcium homeostasis and promote survival of CNS neurons in the absence of glucose, J.Neuropathol. 62:1319–1329 (1994).Google Scholar
  64. 64.
    Y. Goodman, and M. P. Mattson, Staurosporine and K-252 compounds protect hippocampal neurons against amyloid β-peptide toxicity and oxidative injury, Brain Res. 650: 170–174 (1994).PubMedCrossRefGoogle Scholar
  65. 65.
    M. A. Glicksman, J. E. Prantner, S. L. Meyer, M. E. Forbes, M. Dasgupta, M. E. Lewis and N. Neff, K-252a and staurosporine promote choline acetyltransferase activity in rat spinal cord cultures, J. Neurochem. 61: 210–221 (1993).PubMedCrossRefGoogle Scholar
  66. 66.
    L. Mucke, E. Masliah, W. B. Johnson, M. D. Ruppe, M. Alford, E. M. Rockenstein, S. Forss-Petter, M. Pietropaolo, M. Mallory, and C. R. Abraham, Synaptotrophic effects of human amyloid β protein precursors in the cortex of transgenic mice, Brain Res. 666:151–167 (1994).PubMedCrossRefGoogle Scholar
  67. 66.
    M. P. Mattson, S. W. Barger, B. Cheng, I. Lieberburg, V. L. Smith-Swintosky, and R. E. Rydel, β-amyloid precursor protein metabolites and loss of neuronal calcium homeostasis in Alzheimer’s disease, Trends Neurosci. 16:409–415 (1993).PubMedCrossRefGoogle Scholar
  68. 67.
    L. Luo, T. Tully, and K. White, Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene, Neuron 9:595–605 (1992).PubMedCrossRefGoogle Scholar
  69. 68.
    W. E. Van Nostrand, S. L. Wagner, W. R. Shankle, J. S. Farrow, M. Dick, J. M. Rozemuller, M. A. Kuiper, E. C. Wolters, J. Zimmerman, and C. W. Cotman, Decreased levels of soluble amyloid β-protein precursor in cerebrospinal fluid of live Alzheimer disease patients, Proc. Natl. Acad. Sci. U.S.A. 89:2551–255 (1992).PubMedCrossRefGoogle Scholar
  70. 69.
    M. Farlow, B. Ghetti, M. D. Benson, J. S. Farrow, W. E. van Nostrand and S. L. Wagner, Low cerebrospinal-fluid concentrations of soluble amyloid β-protein precursor in hereditary Alzheimer’s disease. Lancet 340:453–454 (1992).PubMedCrossRefGoogle Scholar
  71. 70.
    N. Nukina, K. Hashimoto, I. Kanazawa and H. Mizusawa, Soluble amyloid precursor protein in familial Alzheimer’s brain (APP717 Val-Ile mutation), Soc. Neurosci. Abstr. 20:607 (1994).Google Scholar
  72. 71.
    M. P. Mattson, B. Cheng, A. Culwell, F. Esch, I. Lieberburg, and R. E. Rydel, Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of β-amyloid precursor protein, Neuron 10:243–254 (1993).PubMedCrossRefGoogle Scholar
  73. 72.
    M. P. Mattson, Secreted forms of β-amyloid precursor protein modulate dendrite outgrowth and calcium responses to glutamate in cultured embryonic hippocampal neurons, J. Neurobiol. 25:439–450 (1994).PubMedCrossRefGoogle Scholar
  74. 73.
    V. L. Smith-Swintosky, L. C. Pettigrew, S. D. Craddock, A. R. Culwell, R. E. Rydel, and M. P. Mattson, Secreted forms of β-amyloid precursor protein protect against ischemic brain injury, J. Neurochem., 63: 781–784 (1994).PubMedCrossRefGoogle Scholar
  75. 74.
    J. M. Roch, E. Masliah, A. C. Roch-Levecq, M. P. Sundsmo, D. A. Otero, I. Veinbergs and T. Saitoh, Increase of synaptic density and memory retention by a peptide representing the trophic domain of the amyloid β/A4 protein precursor. Proc. Natl Acad. Sci U.SA. 91: 7450–7454 (1994).CrossRefGoogle Scholar
  76. 75.
    M. P. Mattson, R. E. Lee, M. E. Adams, P. B. Guthrie and S. B. Kater, Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1:865–876 (1988).PubMedCrossRefGoogle Scholar
  77. 76.
    K. Furukawa, S. W. Barger, E. M. Blalock, and M. P. Mattson, Secreted βAPPs modulate neuronal excitability by activating K+ channels, through a cGMP pathway, Soc. Neurosci. Abstr. 21, In press (1995).Google Scholar
  78. 77.
    E. H. Koo, S. S. Sisodia, D. R. Archer, L. J. Martin, A. Weidemann, K. Beyreuther, P. Fischer, C. L. Masters and D. L. Price, Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport, Proc. Natl. Acad. Sci. USA 87:1561–1565 (1990).PubMedCrossRefGoogle Scholar
  79. 78.
    K. L. Moya, L. I. Benowitz, G. E. Schneider and B. Allinquant, The amyloid precursor protein is developmentally regulated and correlated with synaptogenesis, Dev. Biol. 161:597–603 (1994).PubMedCrossRefGoogle Scholar
  80. 79.
    M. Shimokawa, K. Yanagisawa, H. Nishiye and T. Miyatake, Identification of amyloid precursor protein in synaptic plasma membrane, Biochem. Biophys. Res. Commun. 196:240–244 (1993).PubMedCrossRefGoogle Scholar
  81. 80.
    M. R. Nitsch, A. S. Farber, H. J. Growdon and J. R. Wurtman, Release of amyloid βprotein precursor derivatives by electrical depolarization of rat hippocampal slices, Proc. Natl. Acad. Sci. 90:5191–5193 (1993).PubMedCrossRefGoogle Scholar
  82. 81.
    H. Ninomiya, J.-M. Roch, M. P. Sundsmo, D. A. Otero, and T. Saitoh, Amino acid sequence RERMS represents the active domain of amyloid β/A4 protein precursor that promotes fibroblast growth, J. Cell Biol. 121:879–886 (1993).PubMedCrossRefGoogle Scholar
  83. 82.
    S. W. Barger, R. R. Fiscus, P. Ruth, F. Hofmann, and M. P. Mattson, Role of cyclic GMP in the regulation of neuronal calcium and survival by secreted forms of β amyloid precursor, J. Neuropathol. 64: 2087–2096 (1994).Google Scholar
  84. 83.
    S. W. Barger and M. P. Mattson, Involvement of NF-KB in neuroprotective genetic programs, Söc. Neurosci. Abstr. 20:687 (1994).Google Scholar
  85. 84.
    S. W. Barger and M. P. Mattson, Participation of gene expression in the protection against amyloid β-peptide toxicity by the β-amyloid precursor protein, Ann. N.Y. Acad. Sci. in press (1995).Google Scholar
  86. 85.
    B. Cheng, S. Christakos, and M. P. Mattson, Tumor necrosis factors protect neurons against excitotoxic/metabolic insults and promote maintenance of calcium homeostasis, Neuron 12: 139–153 (1994).PubMedCrossRefGoogle Scholar
  87. 86.
    R. Schreck, K. Albermann and P. A. Baeuerle, Nuclear factor KB: an oxidative stressresponsive transcription factor of eukaryotic cells (a review), Free Radic. Res. Commun. 17:221–237 (1992).PubMedCrossRefGoogle Scholar
  88. 87.
    A. Logan and M. Berry, Transforming growth factor-βl and basic fibroblast growth factor in the injured CNS, Trends Pharmacol. Sci. 14:337–342 (1993).PubMedCrossRefGoogle Scholar
  89. 88.
    E. A. van der Wal, F. Gomez-Pinilla, and C. W. Cotman, Transforming growth factor-βl is in plaques in Alzheimer and Down pathologies fleuroreport 4:69–72 (1993).Google Scholar
  90. 89.
    C. E. Finch, N. J. Laping, T. E. Morgan, N. R. Nichols and G. M. Pasinetti, TGF-bl is an organizer of responses to neurodegeneration, J. Cell. Biochem. 53:314–322 (1993).PubMedCrossRefGoogle Scholar
  91. 90.
    J. H. Prehn, B. Peruche, K. Unsicker, and J. Kriegelstein, Isoform-specific effects of transforming growth factors-β on degeneration of primary neuronal cultures induced by cytotoxic hypoxia or glutamate, J. Neuropathol. 60:1665–1672 (1993).Google Scholar
  92. 91.
    M. F. Galindo, J. H. M. Prehn, V. P. Bindokas, and R. J. Miller, Potential role of TGF-βl in Alzheimer’s disease: regulation of APP expression and inhibition of βAP neurotoxicity, Soc. Neurosci. Abstr. 20:1248 (1994).Google Scholar
  93. 92.
    D. D. Cunningham, L. Pulliam, and P. J. Vaughan, Protease nexin-1 and thrombin: injury related processes in the brain, Thromb. Haemost. 70:168–171 (1993).PubMedGoogle Scholar
  94. 93.
    J. W. Fenton II, F. A. Ofosu, D. V. Brezniak, and H. I. Hassouna, Understanding thrombin and hemostasis, Hematol. Oncol. Clin. North Am. 7:1107–1119 (1993).PubMedGoogle Scholar
  95. 94.
    S. R. Coughlin, Molecular mechanisms of thrombin signaling, Semin. Hematol. 31: 270–277 (1994).PubMedGoogle Scholar
  96. 95.
    M. Suzuki, O. Motohashi, A. Nishino, V. Shiina, K. Mizoi, T. Oshimoto, M. Kameyama, and T. Onuma, Diphasic increase in thrombin-antithrombin III complex in blood from the internal jugular vein following severe head injury. Thromb Haemost 71:155 (1994).PubMedGoogle Scholar
  97. 96.
    H. Akiyama, K. Skeda, H. Kondo, and P.L. McGreer, Thrombin accumulation in brains of patients with Alzheimer’s disease, Neurosci Lett 146:152 (1992).PubMedCrossRefGoogle Scholar
  98. 97.
    K. Igarashi, H. Murai, and J-I. Asaka, Proteolytic processing of amyloid β protein precursor (APP) by thrombin. Biochem Biophys Res Commun 185:1000 (1992).PubMedCrossRefGoogle Scholar
  99. 98.
    J. Davis-Salinas, S.M. Saporito-Irwin, F.M. Donovan, D.D. Cunningham, and W.E. Van Nostrand, Thrombin receptor activation induces secretion and nonamyloidogenic processing of amyloid beta-protein precursor, J Biol Chem 269:22623 (1994).PubMedGoogle Scholar
  100. 99.
    J. R. Weinstein, S. J. Gold, D. D. Cunningham and C. M. Gall, Cellular localization of thrombin receptor mRNA in rat brain: expression by mesencephalic dopaminergic neurons and codistribution with prothrombin mRNA, J. Neurosci. 15: 2906–2919 (1995).PubMedGoogle Scholar
  101. 100.
    M. Dihanich, M. Kaser, E. Reinhard, D.D. Cunningham, and D. Monard, Prothrombin mRNA is expressed by cells of the nervous system. Neuron 6:575 (1991).PubMedCrossRefGoogle Scholar
  102. 101.
    V.L. Smith-Swintosky, S. Zimmer, J.W. Fenton II, and M.P. Mattson, Protease nexin-1 and thrombin modulate neuronal Ca2+ homeostasis and sensitivity to glucose deprivation-induced injury. J. Neurosci. in press (1995).Google Scholar
  103. 102.
    V. L. Smith-Swintosky, S. Zimmer, J. W. Fenton 2nd, and M. P. Mattson, Opposing actions of thrombin and protease nexin-1 on amyloid β-peptide toxicity, and on accumulation of peroxides and calcium in hippocampal neurons, J. Neurochem. Submitted.Google Scholar
  104. 103.
    E. Reinhard, H. S. Suidan, A. Pavlik, and D. Monard, Glia-derived nexin/protease nexin-1 is expressed by a subset of neurons in the rat brain, J. Neurosci. Res. 37:256–270 (1994).PubMedCrossRefGoogle Scholar
  105. 104.
    B.W. Festoff, J.S. Rao, and M. Chen, Protease nexin I, thrombin-and urokinase-inhibiting serpin, concentrated in normal human cerebrospinal fluid, Neurology 42:1361 (1992).PubMedCrossRefGoogle Scholar
  106. 105.
    K. Furukawa, V. L. Smith-Swintosky, and M. P. Mattson, Evidence that actin depolymerization protects hippocampal neurons against excitotoxicity by stabilizing [Ca2+]i, Exp.Neurol. In press (1995).Google Scholar
  107. 106.
    C. Rosenmund, and G. L. Westbrook, Calcium-induced actin depolymerization reduces NMDA channel activity, Neuron 10:805–814 (1993).PubMedCrossRefGoogle Scholar
  108. 107.
    K. Furukawa, and M. P. Mattson, Cytochalasins protect hippocampal neurons against amyloid β-peptide toxicity: evidence that actin depolymerization suppresses Ca2+influx. J. Neurochem. In press (1995).Google Scholar
  109. 108.
    K. Furukawa, and M. P. Mattson, Taxol stabilizes [Ca2+]i and protects hippocampal neurons against excitotoxicity, Brain Res. In press (1995).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Mark P. Mattson
    • 1
    • 2
  • Steven W. Barger
    • 1
  • Katsutoshi Furukawa
    • 1
  • Robert J. Mark
    • 1
    • 2
  • Virginia L. Smith-Swintosky
    • 1
  • L. Creed Pettigrew
    • 3
  • Annadora J. Bruce
    • 1
  1. 1.Sanders-Brown Research Center on AgingUniversity of KentuckyLexingtonUSA
  2. 2.Departments of Anatomy & NeurobiologyUniversity of KentuckyLexingtonUSA
  3. 3.Department of NeurologyUniversity of KentuckyLexingtonUSA

Personalised recommendations