Skip to main content

βAPP Metabolites, Radicals, Calcium, and Neurodegeneration: Novel Neuroprotective Strategies

  • Chapter
Neurodegenerative Diseases

Abstract

Many biochemical and molecular alterations in the brains of victims of Alzheimer’s disease (AD) and other age-associated neurodegenerative disorders have been described. Unfortunately, it remains unclear which of the alterations contribute to the neuronal damage, which represent compensatory and cytoprotective responses to ongoing cell injury, and which are mere remnants of damaged cells in general. The present article describes studies that have been performed in our laboratories to help define roles for two major metabolites of the β-amyloid precursor protein (βAPP) in the pathogenesis of AD. In addition, we discuss findings concerning age-related alterations in brain metabolism (e.g., reduced glucose availability), and cellular signaling systems regulating neuronal plasticity and survival (e.g., neurotrophic factors), that are likely to impact on the biological activities of βAPP metabolites. Cellular systems regulating metabolism of calcium and reactive oxygen species (ROS) appear to be critical targets of both neurodegenerative and neuroprotective pathways. We therefore highlight the variety of both natural and synthetic compounds that can stabilize calcium homeostasis and ROS metabolism, and which may thus prove effective in reducing neuronal injury in a variety of neurodegenerative disorders. We emphasize βAPP in this chapter, not because it is the only determinant of AD, but rather because increasing data suggest it plays a pivotal role in many cases. This article is not intended to be a comprehensive review of the literature, and we refer the reader to review articles that provide more in-depth analyses of our current understanding of the molecular and cellular pathophysiology of AD1–4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Mullan, and F. Crawford, Genetic and molecular advances in Alzheimer’s disease, Trends Neurosci. 16:398–403 (1993).

    Article  PubMed  CAS  Google Scholar 

  2. D. J. Selkoe, Physiological production of the β-amyloid protein and the mechanism of Alzheimer’s disease, Trends Neurosci. 16: 403–409 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. K. Iqbal, D.R.C. McLachlan, B. Winblad, and H. M. Wisniewski (eds). “Alzheimer’s Disease: Basic Mechanisms, Diagnosis and Therapeutic Strategies,” Wiley, New York (1991).

    Google Scholar 

  4. M. P. Mattson, Calcium and neuronal injury in Alzheimer’s disease, Ann. N.Y. Acad. Sci. 747:50–76 (1995).

    Article  Google Scholar 

  5. D. Burdick, B. Soreghan, M. Kwon, J. Kosmoski, M. Knauer, A. Henschen, J. Yates, C. Cotman and C. Glabe, Assembly and aggregation properties of synthetic Alzheimer’s A4/β amyloid peptide analogs, J. Bid. Chem. 267: 546–554 (1992).

    CAS  Google Scholar 

  6. A. I. Bush, W. H. Pettingell, G. Multhaup, M. d Paradis, J. P. Vonsattel, J. F. Gusella, K. Beyreuther, C. L. Masters and R. E. Tanzi, Rapid induction of Alzheimer A β amyloid formation by zinc, Science 265: 1464–1467 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. T. Dyrks, E. Dyrks, T. Hartmann, C. Masters and K. Beyreuther, Amyloidogenicity of β A4 and β A4-bearing amyloid protein precursor fragments by metalcatalyzed oxidation, J. Biol Chem. 267: 18210–18217 (1992).

    PubMed  CAS  Google Scholar 

  8. T. Wisniewski, J. Ghiso, and B. Frangione, Alzheimer’s disease and soluble Aβ. Neurobiol. Aging 15:143–152 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. M. P. Mattson, K. Tomaselli and R. E. Rydel, Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF, Brain Res. 621:35–49 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. C. J. Pike, A. J. Walencewicz-Wasserman, J. Kosmoski, D. H. Glabe and C. W. Cotman, Structure-activity analyses of β-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity, J. Neuropathol. 64: 253–265 (1995).

    CAS  Google Scholar 

  11. J. Busciglio, A. Lorenzo, and B. A. Yankner, Methodological variables in the assessment of beta amyloid neurotoxicity, Neurobiol. Aging 13:609–612 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. Y. Goodman, and M. P. Mattson, Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury, Exp.Neurol. 128:1–12 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. Y. Goodman, M. R. Steiner, S. M. Steiner, and M. P. Mattson, Nordihydroguaiaretic acid protects hippocampal neurons against amyloid β-peptide toxicity, and attenuates free radical and calcium accumulation, Brain Res. 654:171–176 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. K. Hensley, J. M. Carney, M. P. Mattson, M. Aksenova, M. Harris, J. F. Wu, R. Floyd, and D. A. Butterfield, A model for ß-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 91:3270–3274 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. D. A. Butterfield, K. Hensley, M. Harris, M. P. Mattson, and J. Carney, β-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease, Biochem. Biophys. Res. Commun. 200: 710–715 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. C. Behl, J. B. Davis, R. Lesley, and D. Schubert, Hydrogen peroxide mediates amyloid ß protein toxicity, Cell 77:817–827 (1994).

    Article  PubMed  CAS  Google Scholar 

  17. M. E. Harris, K. Hensley, D. A. Butterfield, R. A. Leedle, and J. M. Carney, Direct evidence of oxidative injury produced by the Alzheimer’s β-amyloid peptide (1–40) in cultured hippocampal neurons, Exp.Neurol. 131:193–202 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. R. J. Mark, K. Hensley, D. A. Butterfield, and M. P. Mattson, Mechanism of amyloid β-peptide neurotoxicity involves impairment of Na+/K+-ATPase activity. Submitted (1995).

    Google Scholar 

  19. M. P. Mattson, B. Cheng, D. Davis, K. Bryant, I. Lieberburg, and R. E. Rydel, β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12:376–389 (1992).

    PubMed  CAS  Google Scholar 

  20. K. Furukawa, V. L. Smith-Swintosky, and M. P. Mattson, Evidence that actin depolymerization protects hippocampal neurons against excitotoxicity by stabilizing [Ca2+]i, Exp.Neurol. In press. (1995).

    Google Scholar 

  21. K. Furukawa, and M. P. Mattson, Cytochalasins protect hippocampal neurons against amyloid β-peptide toxicity: evidence that actin depolymerization suppresses Ca2+ influx, J. Neurochem. In press. (1995).

    Google Scholar 

  22. J. H. Weiss, C. J. Pike, and C. W. Cotman, Ca2+ channel blockers attenuate β-amyloid peptide toxicity to cortical neurons in culture, J. Neuropathol. 62:372–375 (1994).

    CAS  Google Scholar 

  23. J. S. Whitson, M. P. Mims, W. J. Strittmatter, T. Yamaki, J. D. Morrisett and S. H. Appel, Attenuation of the neurotoxic effect of Aß amyloid peptide by apolipoprotein E, Biochem. Biophys. Res. Commun. 199: 163–170 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. S. Fahn and G. Cohen, The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it, Ann. Neurol. 32: 804–812 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. J. D. Rothstein, L. A. Bristol, B. Hosier, R. H. Brown Jr. and R. W. Kuncl, Chronic inhibition of Superoxide dismutase produces apoptotic death of spinal neurons, Proc. Natl. Acad. Sci. U. S. A. 91:4155–4159 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. M. K. Sutherland, M. J. Somerville, L. K. Yoong, C. Bergeron, M. R. Haussler and D. R. McLachlan, Reduction of vitamin D hormone receptor mRNA levels in Alzheimer as compared to Huntington hippocampus: correlation with calbindin-28k mRNA levels, Mol. Brain Res. 13: 239–250 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. P. G. May, L. N. Boggs, and K. S. Fuson, Neurotoxicity of human amylin in rat primary hippocampal cultures: similarity to Alzheimer’s disease amyloid-β neurotoxicity, J. Neuropathol. 61: 2330–2333 (1993).

    CAS  Google Scholar 

  28. G. Forloni, Angeretti, N., Chiesa, R., Monzani, E., Salmona, O., Bugiani, O. and Tagliavini, F., Neurotoxicity of a prion protein fragment, Nature 362: 543–546 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. M. P. Mattson, and Y. Goodman, Different amyloidogenic peptides share a common mechanism of neurotoxicity involving reactive oxygen species and calcium, Brain Res. 676:219–224 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. S. Hoyer, K. Oesterreich, and O. Wagner, Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J.Neurol. 235: 143–148 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. R. N. Kalaria, and S. I. Harik, Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer’s disease, J. Neurochem. 53:1083–1088 (1989).

    Article  PubMed  CAS  Google Scholar 

  32. B. Cheng, and M. P. Mattson, Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampal neurons: Prevention by NGF and bFGF, Exp. Neurol. 117:114–123 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. J.-Y. Koh, L. L. Yang, and C. W. Cotman, β-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage, Brain Res. 533:315–320 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. A. Copani, J.-Y. Koh, and C. W. Cotman, β-amyloid increases neuronal susceptibility to injury by glucose deprivation, NeuroReport 2: 763–765 (1991).

    Article  PubMed  CAS  Google Scholar 

  35. B. S. Greenwald, A. A. Mathe, R. C. Mohs, M. I. Levy, C. A. Johns, and K. L. Davis, Cortisol and Alzheimer’s disease II: dexamethasone suppression, dementia severity, and affective symptoms, Am. J. Psychiatry 143:442–446 (1986).

    PubMed  CAS  Google Scholar 

  36. R. M. Sapolsky, A mechanism for glucocorticoid toxicity in the hippocampus: increased vulnerability to metabolic insults, J. Neurosci. 5:1228–1232 (1985).

    PubMed  CAS  Google Scholar 

  37. C. Virgin, T. Ha, D. Packan, G. Tombaugh, S. Yang, H. Homer, and R. Sapolsky, Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid toxicity, J. Neuropathol. 57:1422–1428 (1991).

    CAS  Google Scholar 

  38. E. Elliott, M. P. Mattson, P. Vanderklish, G. Lynch, I. Chang, and R. M. Sapolsky Corticosterone exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysis in vivo, J. Neurochem. 61: 57–67 (1993).

    Article  PubMed  CAS  Google Scholar 

  39. B. Stein-Behrens, M. P. Mattson, I. Chang, M. Yeh and R. M. Sapolsky, Stress excacerbates neuron loss and cytoskeletal pathology in the hippocampus, J. Neurosci. 14:5373–5380 (1994).

    PubMed  CAS  Google Scholar 

  40. V. L. Smith-Swintosky, L. C. Pettigrew, R. M. Sapolsky, C. Phares, S. D. Craddock, S. M. Brooke, and M. P. Mattson, Metyrapone, and inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures, J. Cerebral Blood Flow Metab. Submitted (1995).

    Google Scholar 

  41. C. D. Smith, J. M. Carney, P. E. Starke-Reed, C. N. Oliver, E. R. Stadtman, R. A. Floyd, and W. R. Markesbery, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 88: 10540–10543 (1991).

    Article  PubMed  CAS  Google Scholar 

  42. M. A. Smith, P. L. Richey, S. Taneda, R. K. Kutty, L. M. Sayre, V. M. Monnier, and G. Perry, Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease, Ann. N. Y. Acad. Sci. 738: 447–54 (1994).

    Article  CAS  Google Scholar 

  43. M. F. Beal, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31:119–130 (1992).

    Article  PubMed  CAS  Google Scholar 

  44. P. L. McGeer, J. Rogers, and E. G. McGeer, Neuroimmune mechanisms in Alzheimer disease pathogenesis, Alzheimer Dis. Assoc. Disord. 8: 149–158 (1994).

    Article  PubMed  CAS  Google Scholar 

  45. J. Rogers, L. C. Kirby, S. R. Hempelman, D. L. Berry, P. L. McGeer, A. W. Kaszniak, J. Zalinski, M. Cofield, L. Mansukhani, and P. Wilson, Clinical trial of indomethacin in Alzheimer’s disease, Neurology 43:1609–1611 (1993).

    Article  PubMed  CAS  Google Scholar 

  46. P. L. McGeer, J. Rogers, and E. G. McGeer, Neuroimmune mechanisms in Alzheimer disease pathogenesis, Alzheimer Dis. Assoc. Disord. 8:149–158 (1994).

    Article  PubMed  CAS  Google Scholar 

  47. M. P. Mattson, B. Cheng, and V. L. Smith-Swintosky, Growth factor-mediated protection from excitotoxicity and disturbances in calcium and free radical metabolism, Seminars Neurosci. 5:295–307 (1993).

    Article  CAS  Google Scholar 

  48. M. P. Mattson, and S. W. Scheff, Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapies, J. Neurotrauma 11:3–33 (1994).

    Article  PubMed  CAS  Google Scholar 

  49. M. P. Mattson, M. Murrain, P. B. Guthrie, and S. B. Kater, Fibroblast growth factor and glutamate: Opposing actions in the generation and degeneration of hippocampal neuroarchitecture, J. Neurosci. 9:3728–3740 (1989).

    PubMed  CAS  Google Scholar 

  50. M. P. Mattson, K. Kumar, B. Cheng, H. Wang and E. K. Michaelis, Basic FGF regulates the expression of a functional 71 KDa NMDA receptor protein that mediates calcium influx and neurotoxicity in cultured hippocampal neurons, J. Neurosci. 13:4575–4588 (1993).

    PubMed  CAS  Google Scholar 

  51. B. Cheng, and M. P. Mattson, NGF and bFGF protect rat and human central neurons against hypoglycemic damage by stabilizing calcium homeostasis, Neuron 7:1031–1041 (1991).

    Article  PubMed  CAS  Google Scholar 

  52. Y. Zhang, T. Tatsuno, J. Carney, and M. P. Mattson, Basic FGF, NGF, and IGFs protect hippocampal neurons against iron-induced degeneration, J. Cerebral Blood Flow Metab. 13:378–388 (1993).

    Article  Google Scholar 

  53. M. P. Mattson, Y. Zhang and S. Bose, Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose, Exp. Neurol. 121: 1–13 (1993).

    Article  PubMed  CAS  Google Scholar 

  54. K. Nozaki, S. P. Finklestein, and M. F. Beal, Basic fibroblast growth factor protects against hypoxia/ischemia and NMDA neurotoxicity in neonatal rats, J. Cereb. Blood Flow Metab., 13:221–228 (1993).

    Article  PubMed  CAS  Google Scholar 

  55. T. Shigeno, T. Mima, K. Takakura, D. I. Graham, G. Kato, Y. Hashimoto, and S. Furukawa, Amelioration of delayed neuronal death in the hippocampus by nerve growth factor, J. Neurosci. 11:2914–2919 (1991).

    PubMed  CAS  Google Scholar 

  56. B. Cheng, and M. P. Mattson, IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage, J. Neurosci. 12:1558–1566 (1992).

    PubMed  CAS  Google Scholar 

  57. B. Cheng, and M. P. Mattson, NT-3 and BDNF protect hippocampal, septal, and cortical neurons against metabolic compromise, Brain Res. 640:56–67 (1994).

    Article  PubMed  CAS  Google Scholar 

  58. B. Cheng, Y. Goodman, J. G. Begley and M. P. Mattson, Neurotrophin 4/5 protects hippocampal and cortical neurons against energy deprivation-and excitatory amino acid-induced injury, Brain Res. 650:331–335 (1994).

    Article  PubMed  CAS  Google Scholar 

  59. M. P. Mattson, M. A. Lovell, K. Furukawa and W. R. Markesbery, Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of [Ca2+]i and neurotoxicity, and increase antioxidant enzyme activities in hippocampal neurons, J. Neurochem., In press (1995).

    Google Scholar 

  60. D. Collazo, H. Takahashi and R. D. McKay, Cellular targets and trophic functions of neurotrophin-3 in the developing rat hippocampus, Neuron 9:643–656 (1992).

    Article  PubMed  CAS  Google Scholar 

  61. M. B. Spina, S. P. Squinto, J. Miller, R. M. Lindsay and C. Hyman, Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system, J. Neuropathol. 59:99–106 (1992).

    CAS  Google Scholar 

  62. S. W. Barger, D. Horster, K. Furukawa, Y. Goodman, J. Krieglstein, and M. P. Mattson, TNFs protect hippocampal neurons against amyloid β-peptide toxicity: involvement of NFΚB and attenuation of peroxide and calcium accumulation, Proc. Natl Acad. Sci. U.S.A. In press (1995).

    Google Scholar 

  63. B. Cheng, S. W. Barger, and M. P. Mattson, Staurosporine, K-252a and K-252b stabilize calcium homeostasis and promote survival of CNS neurons in the absence of glucose, J.Neuropathol. 62:1319–1329 (1994).

    CAS  Google Scholar 

  64. Y. Goodman, and M. P. Mattson, Staurosporine and K-252 compounds protect hippocampal neurons against amyloid β-peptide toxicity and oxidative injury, Brain Res. 650: 170–174 (1994).

    Article  PubMed  CAS  Google Scholar 

  65. M. A. Glicksman, J. E. Prantner, S. L. Meyer, M. E. Forbes, M. Dasgupta, M. E. Lewis and N. Neff, K-252a and staurosporine promote choline acetyltransferase activity in rat spinal cord cultures, J. Neurochem. 61: 210–221 (1993).

    Article  PubMed  CAS  Google Scholar 

  66. L. Mucke, E. Masliah, W. B. Johnson, M. D. Ruppe, M. Alford, E. M. Rockenstein, S. Forss-Petter, M. Pietropaolo, M. Mallory, and C. R. Abraham, Synaptotrophic effects of human amyloid β protein precursors in the cortex of transgenic mice, Brain Res. 666:151–167 (1994).

    Article  PubMed  CAS  Google Scholar 

  67. M. P. Mattson, S. W. Barger, B. Cheng, I. Lieberburg, V. L. Smith-Swintosky, and R. E. Rydel, β-amyloid precursor protein metabolites and loss of neuronal calcium homeostasis in Alzheimer’s disease, Trends Neurosci. 16:409–415 (1993).

    Article  PubMed  CAS  Google Scholar 

  68. L. Luo, T. Tully, and K. White, Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene, Neuron 9:595–605 (1992).

    Article  PubMed  CAS  Google Scholar 

  69. W. E. Van Nostrand, S. L. Wagner, W. R. Shankle, J. S. Farrow, M. Dick, J. M. Rozemuller, M. A. Kuiper, E. C. Wolters, J. Zimmerman, and C. W. Cotman, Decreased levels of soluble amyloid β-protein precursor in cerebrospinal fluid of live Alzheimer disease patients, Proc. Natl. Acad. Sci. U.S.A. 89:2551–255 (1992).

    Article  PubMed  Google Scholar 

  70. M. Farlow, B. Ghetti, M. D. Benson, J. S. Farrow, W. E. van Nostrand and S. L. Wagner, Low cerebrospinal-fluid concentrations of soluble amyloid β-protein precursor in hereditary Alzheimer’s disease. Lancet 340:453–454 (1992).

    Article  PubMed  CAS  Google Scholar 

  71. N. Nukina, K. Hashimoto, I. Kanazawa and H. Mizusawa, Soluble amyloid precursor protein in familial Alzheimer’s brain (APP717 Val-Ile mutation), Soc. Neurosci. Abstr. 20:607 (1994).

    Google Scholar 

  72. M. P. Mattson, B. Cheng, A. Culwell, F. Esch, I. Lieberburg, and R. E. Rydel, Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of β-amyloid precursor protein, Neuron 10:243–254 (1993).

    Article  PubMed  CAS  Google Scholar 

  73. M. P. Mattson, Secreted forms of β-amyloid precursor protein modulate dendrite outgrowth and calcium responses to glutamate in cultured embryonic hippocampal neurons, J. Neurobiol. 25:439–450 (1994).

    Article  PubMed  CAS  Google Scholar 

  74. V. L. Smith-Swintosky, L. C. Pettigrew, S. D. Craddock, A. R. Culwell, R. E. Rydel, and M. P. Mattson, Secreted forms of β-amyloid precursor protein protect against ischemic brain injury, J. Neurochem., 63: 781–784 (1994).

    Article  PubMed  CAS  Google Scholar 

  75. J. M. Roch, E. Masliah, A. C. Roch-Levecq, M. P. Sundsmo, D. A. Otero, I. Veinbergs and T. Saitoh, Increase of synaptic density and memory retention by a peptide representing the trophic domain of the amyloid β/A4 protein precursor. Proc. Natl Acad. Sci U.SA. 91: 7450–7454 (1994).

    Article  CAS  Google Scholar 

  76. M. P. Mattson, R. E. Lee, M. E. Adams, P. B. Guthrie and S. B. Kater, Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1:865–876 (1988).

    Article  PubMed  CAS  Google Scholar 

  77. K. Furukawa, S. W. Barger, E. M. Blalock, and M. P. Mattson, Secreted βAPPs modulate neuronal excitability by activating K+ channels, through a cGMP pathway, Soc. Neurosci. Abstr. 21, In press (1995).

    Google Scholar 

  78. E. H. Koo, S. S. Sisodia, D. R. Archer, L. J. Martin, A. Weidemann, K. Beyreuther, P. Fischer, C. L. Masters and D. L. Price, Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport, Proc. Natl. Acad. Sci. USA 87:1561–1565 (1990).

    Article  PubMed  CAS  Google Scholar 

  79. K. L. Moya, L. I. Benowitz, G. E. Schneider and B. Allinquant, The amyloid precursor protein is developmentally regulated and correlated with synaptogenesis, Dev. Biol. 161:597–603 (1994).

    Article  PubMed  CAS  Google Scholar 

  80. M. Shimokawa, K. Yanagisawa, H. Nishiye and T. Miyatake, Identification of amyloid precursor protein in synaptic plasma membrane, Biochem. Biophys. Res. Commun. 196:240–244 (1993).

    Article  PubMed  CAS  Google Scholar 

  81. M. R. Nitsch, A. S. Farber, H. J. Growdon and J. R. Wurtman, Release of amyloid βprotein precursor derivatives by electrical depolarization of rat hippocampal slices, Proc. Natl. Acad. Sci. 90:5191–5193 (1993).

    Article  PubMed  CAS  Google Scholar 

  82. H. Ninomiya, J.-M. Roch, M. P. Sundsmo, D. A. Otero, and T. Saitoh, Amino acid sequence RERMS represents the active domain of amyloid β/A4 protein precursor that promotes fibroblast growth, J. Cell Biol. 121:879–886 (1993).

    Article  PubMed  CAS  Google Scholar 

  83. S. W. Barger, R. R. Fiscus, P. Ruth, F. Hofmann, and M. P. Mattson, Role of cyclic GMP in the regulation of neuronal calcium and survival by secreted forms of β amyloid precursor, J. Neuropathol. 64: 2087–2096 (1994).

    Google Scholar 

  84. S. W. Barger and M. P. Mattson, Involvement of NF-KB in neuroprotective genetic programs, Söc. Neurosci. Abstr. 20:687 (1994).

    Google Scholar 

  85. S. W. Barger and M. P. Mattson, Participation of gene expression in the protection against amyloid β-peptide toxicity by the β-amyloid precursor protein, Ann. N.Y. Acad. Sci. in press (1995).

    Google Scholar 

  86. B. Cheng, S. Christakos, and M. P. Mattson, Tumor necrosis factors protect neurons against excitotoxic/metabolic insults and promote maintenance of calcium homeostasis, Neuron 12: 139–153 (1994).

    Article  PubMed  CAS  Google Scholar 

  87. R. Schreck, K. Albermann and P. A. Baeuerle, Nuclear factor KB: an oxidative stressresponsive transcription factor of eukaryotic cells (a review), Free Radic. Res. Commun. 17:221–237 (1992).

    Article  PubMed  CAS  Google Scholar 

  88. A. Logan and M. Berry, Transforming growth factor-βl and basic fibroblast growth factor in the injured CNS, Trends Pharmacol. Sci. 14:337–342 (1993).

    Article  PubMed  CAS  Google Scholar 

  89. E. A. van der Wal, F. Gomez-Pinilla, and C. W. Cotman, Transforming growth factor-βl is in plaques in Alzheimer and Down pathologies fleuroreport 4:69–72 (1993).

    Google Scholar 

  90. C. E. Finch, N. J. Laping, T. E. Morgan, N. R. Nichols and G. M. Pasinetti, TGF-bl is an organizer of responses to neurodegeneration, J. Cell. Biochem. 53:314–322 (1993).

    Article  PubMed  CAS  Google Scholar 

  91. J. H. Prehn, B. Peruche, K. Unsicker, and J. Kriegelstein, Isoform-specific effects of transforming growth factors-β on degeneration of primary neuronal cultures induced by cytotoxic hypoxia or glutamate, J. Neuropathol. 60:1665–1672 (1993).

    CAS  Google Scholar 

  92. M. F. Galindo, J. H. M. Prehn, V. P. Bindokas, and R. J. Miller, Potential role of TGF-βl in Alzheimer’s disease: regulation of APP expression and inhibition of βAP neurotoxicity, Soc. Neurosci. Abstr. 20:1248 (1994).

    Google Scholar 

  93. D. D. Cunningham, L. Pulliam, and P. J. Vaughan, Protease nexin-1 and thrombin: injury related processes in the brain, Thromb. Haemost. 70:168–171 (1993).

    PubMed  CAS  Google Scholar 

  94. J. W. Fenton II, F. A. Ofosu, D. V. Brezniak, and H. I. Hassouna, Understanding thrombin and hemostasis, Hematol. Oncol. Clin. North Am. 7:1107–1119 (1993).

    PubMed  Google Scholar 

  95. S. R. Coughlin, Molecular mechanisms of thrombin signaling, Semin. Hematol. 31: 270–277 (1994).

    PubMed  CAS  Google Scholar 

  96. M. Suzuki, O. Motohashi, A. Nishino, V. Shiina, K. Mizoi, T. Oshimoto, M. Kameyama, and T. Onuma, Diphasic increase in thrombin-antithrombin III complex in blood from the internal jugular vein following severe head injury. Thromb Haemost 71:155 (1994).

    PubMed  CAS  Google Scholar 

  97. H. Akiyama, K. Skeda, H. Kondo, and P.L. McGreer, Thrombin accumulation in brains of patients with Alzheimer’s disease, Neurosci Lett 146:152 (1992).

    Article  PubMed  CAS  Google Scholar 

  98. K. Igarashi, H. Murai, and J-I. Asaka, Proteolytic processing of amyloid β protein precursor (APP) by thrombin. Biochem Biophys Res Commun 185:1000 (1992).

    Article  PubMed  CAS  Google Scholar 

  99. J. Davis-Salinas, S.M. Saporito-Irwin, F.M. Donovan, D.D. Cunningham, and W.E. Van Nostrand, Thrombin receptor activation induces secretion and nonamyloidogenic processing of amyloid beta-protein precursor, J Biol Chem 269:22623 (1994).

    PubMed  CAS  Google Scholar 

  100. J. R. Weinstein, S. J. Gold, D. D. Cunningham and C. M. Gall, Cellular localization of thrombin receptor mRNA in rat brain: expression by mesencephalic dopaminergic neurons and codistribution with prothrombin mRNA, J. Neurosci. 15: 2906–2919 (1995).

    PubMed  CAS  Google Scholar 

  101. M. Dihanich, M. Kaser, E. Reinhard, D.D. Cunningham, and D. Monard, Prothrombin mRNA is expressed by cells of the nervous system. Neuron 6:575 (1991).

    Article  PubMed  CAS  Google Scholar 

  102. V.L. Smith-Swintosky, S. Zimmer, J.W. Fenton II, and M.P. Mattson, Protease nexin-1 and thrombin modulate neuronal Ca2+ homeostasis and sensitivity to glucose deprivation-induced injury. J. Neurosci. in press (1995).

    Google Scholar 

  103. V. L. Smith-Swintosky, S. Zimmer, J. W. Fenton 2nd, and M. P. Mattson, Opposing actions of thrombin and protease nexin-1 on amyloid β-peptide toxicity, and on accumulation of peroxides and calcium in hippocampal neurons, J. Neurochem. Submitted.

    Google Scholar 

  104. E. Reinhard, H. S. Suidan, A. Pavlik, and D. Monard, Glia-derived nexin/protease nexin-1 is expressed by a subset of neurons in the rat brain, J. Neurosci. Res. 37:256–270 (1994).

    Article  PubMed  CAS  Google Scholar 

  105. B.W. Festoff, J.S. Rao, and M. Chen, Protease nexin I, thrombin-and urokinase-inhibiting serpin, concentrated in normal human cerebrospinal fluid, Neurology 42:1361 (1992).

    Article  PubMed  CAS  Google Scholar 

  106. K. Furukawa, V. L. Smith-Swintosky, and M. P. Mattson, Evidence that actin depolymerization protects hippocampal neurons against excitotoxicity by stabilizing [Ca2+]i, Exp.Neurol. In press (1995).

    Google Scholar 

  107. C. Rosenmund, and G. L. Westbrook, Calcium-induced actin depolymerization reduces NMDA channel activity, Neuron 10:805–814 (1993).

    Article  PubMed  CAS  Google Scholar 

  108. K. Furukawa, and M. P. Mattson, Cytochalasins protect hippocampal neurons against amyloid β-peptide toxicity: evidence that actin depolymerization suppresses Ca2+influx. J. Neurochem. In press (1995).

    Google Scholar 

  109. K. Furukawa, and M. P. Mattson, Taxol stabilizes [Ca2+]i and protects hippocampal neurons against excitotoxicity, Brain Res. In press (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mattson, M.P. et al. (1996). βAPP Metabolites, Radicals, Calcium, and Neurodegeneration: Novel Neuroprotective Strategies. In: Fiskum, G. (eds) Neurodegenerative Diseases. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0209-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0209-2_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0211-5

  • Online ISBN: 978-1-4899-0209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics