Skip to main content

Oxygen Radical-Mediated Oxidation of Serotonin: Potential Relationship to Neurodegenerative Diseases

  • Chapter
Neurodegenerative Diseases

Abstract

Oxygen free radicals have been implicated as a pathoetiological factor in aging1–5 and in a number of neurodegenerative brain disorders such as Alzheimer’s Disease,1,6–9 Parkinson’s Disease,10–12 transient cerebral ischemia13 and as a result of methamphetamine14–16 and ethanol17 abuse. The brain appears to be particularly vulnerable to oxygen radical-mediated damage, often referred to as oxidative stress, because of several biochemical features that include high oxygen consumption, high iron content of some brain regions,4 relatively low levels of protective enzymes and antioxidants such as the tocopherols,5 and high content of peroxidizable polyunsaturated fatty acids associated with lipid membranes. It seems to be rather widely accepted that oxygen radicals formed in the central nervous system (CNS) limit their damage to lipids, proteins and nucleic acids.5,7–13,18 However, it is of relevance to note that in all of the neurodegenerative brain disorders noted previously the serotonergic, noradrenergic and/or dopaminergic systems are seriously damaged. The neurotransmitters employed by these systems, 5-hydroxytryptamine (5-HT; serotonin), norepinephrine (NE), and dopamine (DA) are all very easily oxidized species.19–22 Thus, it seems likely that these neurotransmitters are also prime targets for oxygen radical-mediated oxidation. Accordingly, a major focus of research in this laboratory is to explore the hypothesis that the aberrant oxidative metabolites of these neurotransmitters might include endotoxins that contribute to the degenerative processes.23–26

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Smith, L.M. Sayre, V.M. Monnier and G. Perry, Radical AGEing in Alzheimer’s Disease, Trends Neurosci., 18: 172–176 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. C.P. LeBel and S.C. Bondy, Oxidative damage and cerebral aging, Prog. Neurobiol, 38:601–609 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. C.W. Olanow, A radical hypothesis for neurodegeneration, Trends Neurosci., 16: 439–444 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. M. Gerlach, D. Ben-Shachar, P. Riederer and M.B.H. Yondim, Altered brain metabolism of iron as a cause of neurodegenerative disease? J. Neurochem., 63: 793–807 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. B. Halliwell and J.M.C. Gutteridge, Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts, Arch. Biochem. Biophys., 246: 501–514 (1986).

    Article  PubMed  CAS  Google Scholar 

  6. R. A. Nixon and A.M. Cataldo, Free radicals, proteolysis and degeneration of neurons in Alzheimer’s Disease: how essential is the β-amyloid link? Neurobiol. Aging 15: 463–469 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. C.D. Smith, J.M. Carney, P.E. Starke-Reed, C.N. Oliver, E.R. Stadtman, R.A. Floyd and W.R. Markesbery, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s Disease, Proc. Nat. Acad. Sci. U.S.A., 88: 10540–10543 (1991).

    Article  CAS  Google Scholar 

  8. K. Hensley, J.M. Carney, M.P. Mattson, M. Aksenova, M. Harris, J.F. Wu, R.A. Floyd and D.A. Butterfield, A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer’s Disease, Proc. Nat. Acad. Sci. U.S.A., 91: 3270–3274 (1994).

    Article  CAS  Google Scholar 

  9. K.V. Subbarao, J.S. Richardson and L.C. Ang, Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro, J. Neurochem., 55: 342–345 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. D.T. Dexter, C.J. Carter, F.R. Wells, F. Javoy-Agid, P. Jenner and C.D. Marsden, Basal lipid peroxidation in substantia nigra is increased in Parkinson’s Disease, J. Neurochem., 52: 381–389 (1987).

    Article  Google Scholar 

  11. P. Jenner, D.T. Dexter, J. Sian, A.H.V. Schapira and D.C. Marsden, Oxidative stress as a cause of nigral cell death in Parkinson’s Disease and incidental Lewy Body Disease, Ann. Neurol., (Suppl.), 32: S82–S87 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. P. Jenner, A.H.V. Schapira and CD. Marsden, New insights into the cause of Parkinson’s Disease, Neurology 42: 2241–2250 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. C.N. Oliver, P.E. Starke-Reed, E.R. Stadtman, G.J. Liu, J.M. Carney and R.A. Floyd, Oxidative damage to brain proteins, loss of glutamine synthetase activity and production of free radicals during ischemia/reperfusion-induced injury in gerbil brain, Proc. Nat. Acad. Sci. U.S.A., 87: 5144–5147 (1990).

    Article  CAS  Google Scholar 

  14. M.J. DeVito and G.C. Wagner, Methamphetamine-induced neuronal damage: a possible role for free radicals, Neuropharmacology 28: 1145–1150 (1989).

    Article  CAS  Google Scholar 

  15. L.S. Seiden and G. Vosmer, Formation of 6-hydroxydopamine in caudate nucleus of the rat after a single large dose of methylamphetamine, Pharmacol. Biochem. Behav., 21: 29–31 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. D.L. Commins, K.J. Axt, G. Vosmer and L.S. Seiden, 5,6-Dihydroxytryptamine, a serotonergic neurotoxin is formed endogenously in the rat brain, Brain Res., 403: 7–14 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. C. Montoliu, S. Vallés, J. Renau-Piqueras and C. Guerri, Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption, J. Neurochem., 63: 1855–1862 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. B. Halliwell, Reactive oxygen species and the central nervous system, J. Neurochem., 59: 1609–1623 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. M.Z. Wrona and G. Dry hurst, Electrochemical oxidation of 5-hydroxytryptamine in aqueous solution at physiological pH, Bioorg. Chem., 18: 291–317 (1990).

    Article  CAS  Google Scholar 

  20. M.Z. Wrona and G. Dryhurst, Interactions of 5-hydroxytryptamine with oxidative enzymes, Biochem. Pharmacol, 41: 1145–1162 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. F. Zhang and G. Dryhurst, Oxidation chemistry of dopamine: possible insights into the age-dependent loss of dopaminergic nigrostriatal neurons, Bioorg. Chem., 21: 392–410 (1993).

    Article  CAS  Google Scholar 

  22. M.Z. Wrona, F. Zhang and G. Dryhurst, Electrochemical oxidations of central nervous system indoleamines, catecholamines and alkaloids. Potential significance into neurodegenerative diseases, J. Chin. Chem. Soc., 41: 231–249 (1994).

    CAS  Google Scholar 

  23. F. Zhang and G. Dryhurst, Effects of L-cysteine on the oxidation chemistry of dopamine: new reaction pathways of potential relevance to idiopathic Parkinson’s Disease, J. Med. Chem., 37: 1084–1098 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. M.Z. Wrona, Z. Yang, M. McAdams, S. O’Connor-Coates and G. Dryhurst, Hydroxyl radical-mediated oxidation of serotonin: potential insights into the neurotoxicity of methamphetamine, J. Neurochem., 64: 1390–1400 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. K-S. Wong, R.N. Goyal, M.Z. Wrona, C.L. Blank and G. Dryhurst, 7-S-Glutathionyl-tryptamine-4,5-dione: a possible aberrant metabolite of serotonin, Biochem. Pharmacol., 46: 1637–1652 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. M.Z. Wrona, R.N. Goyal, D. Turk, C.L. Blank and G. Dryhurst, 5,5′-Dihydroxy-4,4′-bitryptamine: a potentially aberrant neurotoxic metabolite of serotonin, J. Neurochem., 59: 1392–1398 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. P. Davies and A.F.J. Maloney, Selective loss of cerebral cholinergic neurons in Alzheimer’s Disease, Lancet 2: 1403 (1976).

    Article  PubMed  CAS  Google Scholar 

  28. E.K. Perry, R.H. Perry, G. Blessed and B.E. Tomlinson, Necropsy evidence of cerebral cholinergic deficits in senile dementia, Lancet 1: 189 (1977).

    Article  PubMed  CAS  Google Scholar 

  29. D.M. Bowen, S.J. Allen, J.S. Benton, M.J. Goodhart, E.A. Haan, A.M. Palmer, N.R. Sims, C.C.T. Smith, J.A. Spillane, M.M. Esiri, D. Neary, J.S. Snowden, G.K. Wilcock and A.N. Davison, Biochemical assessment of serotonergic and cholinergic dysfunction in cerebral atrophy in Alzheimer’s Disease, J. Neurochem., 41: 266–272 (1983).

    Article  PubMed  CAS  Google Scholar 

  30. A.M. Palmer and D.M. Bowen, Neurochemical basis of dementia of the Alzheimer type: contribution of postmortem and antemortem studies, in: Biological Markers in Dementia of Alzheimer Type, C. Fowler, L.A. Carlson, C.G. Gottfries and B. Winblad, Eds., Smith-Gordon, London, 1990.

    Google Scholar 

  31. A.M. Palmer, P.T. Francis, D.M. Bowen, J.S. Benton, D. Neary, D.M.A. Mann and J.S. Snowden, Catecholaminergic neurones assessed ante-mortem in Alzheimer’s Disease, Brain Res., 414: 365–375 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. D.M.A. Mann, P.O. Yates and J. Hawkes, The noradrenergic system in Alzheimer and multi-infarct dementias, J. Neurol. Neurosurg. Psychiatry 45:113–119 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. B.E. Tomlinson, D. Irving and G. Blessed, Cell loss in locus ceruleus in senile dementia of the Alzheimer type, J. Neurol. Sci., 49: 418–421 (1981).

    Article  Google Scholar 

  34. T. Yamamoto and A. Hirano, Nucleus raphe dorsalis in Alzheimer’s Disease: neurofibrillary tangles and loss of large neurones, Ann. Neurol., 17: 573–577 (1985).

    Article  PubMed  CAS  Google Scholar 

  35. A.M. Palmer, P.T. Francis, J.S. Benton, N.R. Sims, D.M.A. Mann, D. Neary, J.S. Snowden and D.M. Bowen, Presynaptic serotonergic dysfunction in patients with Alzheimer’s Disease, Brain Res., 48: 8–15 (1987).

    CAS  Google Scholar 

  36. D.M.A. Mann, P.O. Yates and B. Marcyniuk, Dopaminergic neurotransmitter systems in Alzheimer’s Disease and Down’s Syndrome in middle age, J. Neurol. Neurosurg. Psychiatry 50: 341–344 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. A.W. Proctor, A.M. Palmer, P.T. Francis, S.L. Lowe, D. Neary, D.M.A. Mann and D.M. Bowen, Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s Disease, J. Neurochem., 50: 790–802 (1988).

    Article  Google Scholar 

  38. B.T. Hyman, G.W. Van Hoesen and A. Damasio, Alzheimer’s Disease: Glutamate depletion in the hippocampal perforant pathway zone, Ann. Neurol., 22: 37–40 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. B.M. Hubbard and J.M. Anderson, Age-related variation in the neuron content of the cerebral cortex in senile dementia of the Alzheimer type, Neuropath. Appl. Neurobiol., 11: 309–382 (1985).

    Article  Google Scholar 

  40. M.J. Ball, Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with aging and dementia, Acta Neuropath., 37: 111–118 (1977).

    Article  PubMed  CAS  Google Scholar 

  41. D.M.A. Mann, Neuropathological and neurochemical aspects of Alzheimer’s Disease, in: Psychopharmacology of the Aging Nervous System, L.L. Iversen, S.D. Iversen and S.H. Snyder, Eds.; Plenum Press, New York, 1988, pp. 1–67.

    Google Scholar 

  42. C.B. Saper, B.H. Wainer and D.C. German, Axonal and transneuronal transport in the transmission of neurobiological disease: potential role in system degenerations, including Alzheimer’s Disease, Neuroscience 23: 389–398 (1987).

    Article  PubMed  CAS  Google Scholar 

  43. J. Hardy, R. Adolfsson, L. Alafuzoff, G. Bucht, J. Marcusson, P. Nyberg, E. Perdahl, P. Wester and B. Winblad, Transmitter defecits in Alzheimer’s Disease, Neurochem. Int., 7: 545–563 (1985).

    Article  PubMed  CAS  Google Scholar 

  44. L. Volicer, P.J. Langlais, W.R. Matson, K.A. Mark and P.H. Gamache, Serotonergic system in dementia of the Alzheimer type. Abnormal forms of 5-hydroxytryptophan and serotonin in cerebrospinal fluid, Arch. Neurol., 42: 1158–1161 (1985).

    Article  PubMed  CAS  Google Scholar 

  45. A. Slivka and G. Cohen, Hydroxyl radical attack on dopamine, J. Biol. Chem., 260: 15466–15472 (1985).

    PubMed  CAS  Google Scholar 

  46. M.J. Del Rio, C.V. Pardo, J. Pinxteren, W. DePotter, G. Ebinger and G. Vauquelin, Binding of serotonin and dopamine to serotonin binding proteins’ in bovine frontal cortex: evidence for iron-induced oxidative mechanisms, Eur. J. Pharmacol., 247: 11–23 (1993).

    Article  Google Scholar 

  47. S. Udenfriend, C.T. Clark, J. Axelrod and B.B. Brodie, Ascorbic acid in aromatic hydroxylation, J. Biol. Chem., 208: 731–738 (1954).

    PubMed  CAS  Google Scholar 

  48. S. Singh, J-F. Jen and G. Dryhurst, Autoxidation of the indolic neurotoxin 5,6-dihydroxytryptamine, J. Org, Chem., 55: 1484–1489 (1990).

    Article  CAS  Google Scholar 

  49. S. Singh and G. Dryhurst, Further insights into the oxidation chemistry and biochemistry of the serotonergic neurotoxin 5,6-dihydroxytryptamine, J. Med. Chem., 33: 3035–3044 (1990).

    Article  PubMed  CAS  Google Scholar 

  50. K-S. Wong and G. Dryhurst, Tryptamine-4,5-dione: properties and reactions with glutathione, Bioorg. Chem., 18: 253–264 (1990).

    Article  CAS  Google Scholar 

  51. H.G. Baumgarten, H.P. Klemm, L. Lachenmeyer, A Björklund, W. Lovenberg and H.G. Schlossberger, Mode and mechanism of action of neurotoxic indoleamines: a review and progress report, Ann. New York Acad. Sci., 305: 3–24 (1976).

    Article  Google Scholar 

  52. S. Singh, M.Z. Wrona and G. Dryhurst, Synthesis and reactivity of the putative neurotoxin tryptamine-4,5-dione, Bioorg. Chem., 35: 82–93 (1992).

    Google Scholar 

  53. Z. Fa, R.N. Goyal, C.L. Blank and G. Dryhurst, Oxidation chemistry of the central mammalian alkaloid l-methyl-6-hydroxy-l,2,3,4-tetrahdyro-β-carboline, J. Med. Chem., 35: 82–93 (1992).

    Article  Google Scholar 

  54. N. Bowery, GAB AB receptors and their significance in mammalian pharmacology, Trends Pharmacol. Sci., 10: 401–407 (1989).

    Article  PubMed  CAS  Google Scholar 

  55. R. Spector and J. Eells, Deoxynucleoside and vitamin transport into the central nervous system, Fed. Proc., 43: 196–200 (1984).

    PubMed  CAS  Google Scholar 

  56. A. Slivka, C. Mytilineou and G. Cohen, Histochemical evaluation of glutathione in brain, Brain Res., 409: 275–284 (1987).

    Article  PubMed  CAS  Google Scholar 

  57. D.W. Choi, Ionic dependence of glutamate neurotoxicity, J. Neurosci., 7: 369–379 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wrona, M.Z., Yang, Z., Waskiewicz, J., Dryhurst, G. (1996). Oxygen Radical-Mediated Oxidation of Serotonin: Potential Relationship to Neurodegenerative Diseases. In: Fiskum, G. (eds) Neurodegenerative Diseases. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0209-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0209-2_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0211-5

  • Online ISBN: 978-1-4899-0209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics