An Inflammatory Role for Nitric Oxide during Experimental Meningitis in the Rat

  • Kathleen M. K. Boje
Part of the GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia book series (GWUN)


Nitric oxide (NO) functions as an intracellular messenger and an inflammatory mediator, depending on its concentration and cellular target. An enthusiastic, intensive and multi-disciplinary approach best characterizes the current research efforts focussed on understanding the diverse biological roles of NO. Physiological and pathological effects of NO have been described for the cardiovascular, pulmonary, gastrointestinal, immune, renal, endocrinological and central nervous systems1,2. Certainly, knowledge of the pathological effects of NO will facilitate the development potential therapeutic drugs applicable to a broad array of disease states.


Nitric Oxide Nitric Oxide Bacterial Meningitis Evans Blue cNOS Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.M. Dawson and V.L. Dawson, Nitric oxide: Actions and pathological roles, The Neuroscienctist 1:7 (1995).CrossRefGoogle Scholar
  2. 2.
    H.H.H.W. Schmidt and U. Walter, NO at work, Cell 78:919 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Nathan and Q.-W. Xie, Nitric oxide synthases: Roles, tolls and controls, Cell 78:915 (1994).PubMedCrossRefGoogle Scholar
  4. 4.
    J.S. Stamler, Redox signaling: Nitrosylation and related target interactions of nitric oxide, Cell 78:931 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Radi, J.S. Beckman, K.M. Bush, and B.A. Freeman, Peroxynitrite oxidation of sulhydryls: The cytotoxic potential of Superoxide and nitric oxide, J. Biol Chem. 266:4244 (1991).PubMedGoogle Scholar
  6. 6.
    J.C. Drapier and J.B. Hibbs, Jr., Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells, J. Immunol 140: 2829 (1988).PubMedGoogle Scholar
  7. 7.
    M. Denis, Human monocytes / macrophages: NO or no NO? J. Leukocyte Biol 55:682 (1994).PubMedGoogle Scholar
  8. 8.
    J.B. Ochoa, A.O. Udekwu, T.R Billiar, R.D. Curran, F.B. Cerra, R.L. Simmons, and A.B. Peitzman, Nitrogen oxide levels in patients after trauma and during sepsis, Ann. Surg. 214: 621 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    H.F. Goode, P.D. Howdle, B.E. Walker and N.R. Webster, Nitric oxide synthase activity is increased in patients with sepsis syndrome, Clinical Sci 88:131 (1995).Google Scholar
  10. 10.
    J.B. Hibbs, C. Westenfelder, R. Taintor, Z. Vavrin, C. Kablitz, R.L. Baranowski, J.H. Ward., R.L. Menlove, M.P. McMurry, J.P. Kushner, and W.E. Samlowski, Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy, J. Clin. Invest 89: 867 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    J.B. Ochoa, B. Curtis, A.B. Peitzman, R.L Simmons, T.R. Billiar, R. Hoffman, R. Rault, D.L. Longo, W.J. Urba, and A.C. Ochoa, Increased circulating nitrogen oxides after human tumor immunotherapy: correlation with toxic hemodynamic changes, J. Natl Cancer Inst. 84: 864 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    A.K. Nussler, M. Di Silvio, T.R. Billiar, R.A. Hoffman, D.A. Geller, R. Selby, J. Madariaga, and R.L. Simmons, Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin, J. Exp. Med. 176: 261 (1992).PubMedCrossRefGoogle Scholar
  13. 13.
    D.A. Geller, C.J. Lowenstein, R.A. Shapiro, A.K. Nussler, M. Di Silvio, S.C. Wang, D.K. Nakayama, R.L. Simmons, S.H. Snyder, and T.R. Billiar, Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes, Proc. Natl Acad. Sci USA 90:3491 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    I.G. Charles, R.J.M. Palmer, M.S. Hickery, M.T. Bayliss, A.P. Chubb, V.S. Hall, D.W. Moss, and S. Moncada, Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte, Proc. Natl Acad. Sci. USA 90:11419 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    N.A. Chartrain, D.A. Geller, P.P. Koty, N.F. Sitrin, A.K. Nussler, E.P. Hoffman, T.R. Billiar, N. I. Hutchinson, and J.S. Mudgett, Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene, J. Biol Chem. 269: 6765, 1994.Google Scholar
  16. 16.
    A.W. Johnson, J.M. Land, E.J. Thompson, J.P. Bolanos, J.B. Clark, and S.J.R. Heales, Evidence for increased nitric oxide production in multiple sclerosis, J. Neurol. 58: 107 (1995).Google Scholar
  17. 17.
    L. Bö, T.M. Dawson, S. Wesselingh, S. Mörk, S. Choi, P.A. Kong, D. Hanley, and B.D. Trapp, Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains, Ann. Neurol 36:778 (1994).PubMedCrossRefGoogle Scholar
  18. 18.
    J.D. MacMicking, D.O. Willenborg, M.J. Wedemann, K.A. Rockett, and W.B. Cowden, Elevated secretion of reactive nitrogen and oxygen intermediates by inflammatory leukocytes in hyperacute experimental autoimmune encephalomyelitis: Enhancement by the soluble products of encephalitogenic T cell, J. Exp.Med. 176:303 (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    A.H. Cross, T.P. Misko, R.F. Lin, W.F. Hickey, J.L. Trotter, and R.G. Tilton, Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice, J. Clin. Invest 93:2684 (1994).PubMedCrossRefGoogle Scholar
  20. 20.
    J.P. Nowicki, D. Duval, H. Poignet, and B. Scatton, Nitric oxide mediates neuronal death after focal cerebral ischemia, Eur. J. Pharmacol 204: 339 (1991).PubMedCrossRefGoogle Scholar
  21. 21.
    I.L. Campbell, A. Samimi, and C.-S. Chiang, Expression of the inducible nitric oxide synthase: correlation with neuropathology and clinical features in mice with lymphocytic choriomeningitis, J. Immunol 153:3622 (1994).PubMedGoogle Scholar
  22. 22.
    J.J. Visser, R.J.P.M. Scholten, and K. Hoekman, Nitric oxide synthesis in meningococcal meningitis, Ann. Internal Med. 120:345 (1994).CrossRefGoogle Scholar
  23. 23.
    S. Milstien, N. Sakai, BJ. Brew, C. Krieger, J.H. Vickers, K. Saito, and M.P. Heyes, Cerebrospinal fluid nitrite/nitrate levels in neurologic diseases, J. Neuropathol. 63:1178 (1994).Google Scholar
  24. 24.
    H.-W. Pfister, A. Bernatowicz, U. Ködel, and M. Wick, Nitric oxide production in bacterial meningitis, J. Neurol Neurosurg. Psychiat. 58:384 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    K.M.K. Boje, Inhibition of nitric oxide synthase partially attenuates alterations in the blood-cerebrospinal fluid barrier during experimental meningitis in the rat, Eur. J. Pharmacol 272:297 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    V.J. Quagliarello, A. Ma, H. Stukenbrok, and G.E. Palade, Ultrastructural localization of albumin transport across the cerebral microvasculature during experimental meningitis in the rat, J. Exp. Med. 174:657 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    B. Wispelwey, A.J. Lesse, E.J. Hansen, and W.M. Scheid, Haemophilus influenzae lipopolysaccharide-induced blood brain barrier permeability during experimental meningitis in the rat, J. Clin. Invest. 82:1339 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    B. Wispelwey, E.J. Hansen, and W.M. Scheld, Haemophilus influenzae outer membrane vesicle-induced blood-brain barrier permeability during experimental meningitis, Infec. Immun. 57:2559 (1989).Google Scholar
  29. 29.
    V. Quagliarello and W.M. Scheld, Bacterial meningitis: Pathogenesis, pathophysiology, and progress, New England J. of Med. 327:864 (1992).CrossRefGoogle Scholar
  30. 30.
    X. Sáez-Llorens, O. Ramilo, M.M. Mustafa, J. Mertsola, and G.H. McCracken, Molecular patho-physiology of bacterial meningitis: Current concepts and therapeutic implications. J. Ped. 116:671 (1990).CrossRefGoogle Scholar
  31. 31.
    AR. Tunkel and W.M. Scheld, Pathogenesis and pathophysiology of bacterial meningitis. Annual Rev. Med. 44:103 (1993).CrossRefGoogle Scholar
  32. 32.
    H.-W. Pfister, K. Frei, B. Ottand, U. Koedel, A. Tomasz, and A. Fontana, Transforming growth factor β2 inhibits cerebrovascular changes and brain edema formation in the tumor necrosis factor a independent early phase of experimental pneumococcal meningitis, J. Exp. Med. 176:265 (1992).PubMedCrossRefGoogle Scholar
  33. 33.
    J.L. Kadurugamuwa, B. Hengstler, M.A. Bray, and O. Zak, Inhibition of complement-Factor-5a-induced inflammatory reactions by prostaglandin E2 in experimental meningitis, J. Infect Dis. 160:715 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    X. Sáez-Llorens, O. Ramilo, MM. Mustafa, J. Mertsola, C. de Alba, E. Hansen, and G.H. McCracken, Jr., Pentoxifylline modulates meningeal inflammation in experimental bacterial meningitis, Antimicrob. Agents Chemother 34:837 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    E. Tuomanen, Breaching the blood-brain barrier, Scientific American Feb.:80 (1993).Google Scholar
  36. 36.
    A.-M. Van Dam, M. Brouns, W. Man-A-Hing, and F. Berkenbosch, Immunocytochemical detection of prostaglandin E2 in microvasculature and in neurons of rat brain after administration of bacterial endotoxin, Brain Research 613:331 (1993).PubMedCrossRefGoogle Scholar
  37. 37.
    E.I. Tuomanen, S.M. Prasad, J.S. George, A.I. Hoepelman, P. Ibsen, I. Heron, and R.M. Starzyk, Reversible opening of the blood-brain barrier by anti-bacterial antibodies, Proc. Natl Acad. Sci USA 90:7824 (1993).PubMedCrossRefGoogle Scholar
  38. 38.
    H.-W. Pfister, U. Koedel, R.L. Haberl, U. Dirnagl, W. Feiden, G. Ruckdeschel, and K.M. Einhäupl, Microvascular changes during the early phase of experimental bacterial meningitis, J. Cerebral Blood Flow and Metab. 10:914 (1990).CrossRefGoogle Scholar
  39. 39.
    K.M. Boje and P. Arora, Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death, Brain Research 587:250 (1992).PubMedCrossRefGoogle Scholar
  40. 40.
    R.G. Kilborn and P. Belloni, Endothelial cell production of nitrogen oxides in repone to interferon-y in combination with tumor necrosis factor, interleukin-1 or endotoxin, J. Nat Cancer Inst. 82:726 (1990).CrossRefGoogle Scholar
  41. 41.
    S.S. Gross, E.A. Jaffe, R. Levi, and R.G. Kilborn, Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages, Biochem. Biophys. Res. Comm. 178:823 (1991).PubMedCrossRefGoogle Scholar
  42. 42.
    A.R. Tunkel, S.W. Rosser, E.J. Hansen, and W.M. Scheld, Blood-brain barrier alterations in bacterial meningitis: development of an in vitro model and observations on the effects of lipopolysaccharide, In Vitro Cell Dev Biol. 21A: 113 (1991).CrossRefGoogle Scholar
  43. 43.
    J.E. Brian, D.D. Heistad, and F.M. Faraci, Dilatation of cerebral arterioles in response to lipopolysaccharide in vivo, Stroke, 26:277 (1995).PubMedCrossRefGoogle Scholar
  44. 44.
    R.L. Haberl, F. Anneser, U. Ködel, and H.-W. Pfister, Is nitric oxide involved as a mediator of cerebrovascular changes in the early phase of experimental pneumococcal meningitis? Neurol Res. 16:108 (1994).PubMedGoogle Scholar
  45. 45.
    J.A. Corbet, R.G. Tilton, K. Chang, K.S. Hasan, Y. Ido, J.L. Wang, M.A. Sweetland, J.R. Lancaster, J.R. Williamson, and M.L. McDaniel, Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction, Diabetes 41: 552 (1992).CrossRefGoogle Scholar
  46. 46.
    M.S. Mulligan, J.M. Hevel, M.A. Marietta, and P.A. Ward, Tissue injury caused by deposition of immune complexes is L-arginine dependent, Proc. Natl. Acad. Sci. 88: 6338 (1991).PubMedCrossRefGoogle Scholar
  47. 47.
    W.G. Mayhan, Role of nitric oxide in modulating permeability of hamster cheek pouch in response to adenosine 5′-diphosphate and bradykinin, Inflammation 16: 295 (1992).PubMedCrossRefGoogle Scholar
  48. 48.
    P.J. Korytko and K.M.K. Boje, submitted for publication.Google Scholar
  49. 49.
    V.J. Quagliarello, W.J. Long, and W.M. Scheld, Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat, J. Clin. Invest. 77:1084 (1986).PubMedCrossRefGoogle Scholar
  50. 50.
    V.J. Quagliarello, B. Wispelwey, W.J. Long, and W.M. Scheld, Recombinant human interleukin-1 induces meningitis and blood-brain barrier injury in the rat, J. Clin. Invest 87:1360 (1991).PubMedCrossRefGoogle Scholar
  51. 51.
    M.M Mustafa, O. Ramilo, K.D. Olsen, P.S. Franklin, E.J. Hansen, B. Beutler, and G. McCracken, Tumor necrosis factor in mediating experimental haemophilus influenzae type B meningitis, J. Clin. Invest. 84:1253 (1989).PubMedCrossRefGoogle Scholar
  52. 52.
    O. Ramilo, X. Sáez-Llorens, J. Mertsola, H. Jafari, K.D. Olsen, E.J. Hansen, M. Yoshinaga, S. Ohkawara, H. Nariuchi, and G.H. McCracken, Tumor necrosis factor α/cachectin and interleukin 1β initiate meningeal inflammation, J. Exp. Med. 172:497 (1990).PubMedCrossRefGoogle Scholar
  53. 53.
    E. Tuomanen, B. Hengstler, R. Rich, M.A. Bray, O. Zak, and A. Tomasz, Nonsteroidal anti-inflammatory agents in the therapy for experimental pneumococcal meningitis, J. Infect. Dis. 155:985 (1987).PubMedCrossRefGoogle Scholar
  54. 54.
    K. Ohno, K.D. Pettigrew, and S.I. Rapoport, Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat, Am. J. Physiol. 235:H299 (1978).PubMedGoogle Scholar
  55. 55.
    S.I. Rapoport, W.R. Fredericks, K. Ohno, and K.D. Pettigrew, Quantitative aspects of reversible osmotic opening of the blood-brain barrier, Am J. Physiol. 238:R421 (1980).PubMedGoogle Scholar
  56. 56.
    Q.R. Smith, Quantitation of Blood-Brain Barrier Permeability. In Implications of the Blood-Brain Barrier and Its Manipulation, ed. by E.A. Newelt, pp. 85–118, Vol. 1, Plenum Medical Book Co., New York, 1989.CrossRefGoogle Scholar
  57. 57.
    Y.Z. Ziylan, P.J. Robinson, and S.I. Rapoport, Differential blood-brain barrier permeabilities to [14C]-sucrose and [3H]inulin after osmotic opening in the rat, Exp. Neurol. 79:845 (1983).PubMedCrossRefGoogle Scholar
  58. 58.
    Y.Z. Ziylan, P.J. Robinson, and S.I. Rapoport, Blood-brain barrier permeability to sucrose and dextran after osmotic opening, Am. J. Physiol. 247:R634 (1984).PubMedGoogle Scholar
  59. 59.
    K.M.K. Boje, Cerebrovascular permeability changes during experimental meningitis in the rat, J. Pharmacol. Exp. Ther. In press.Google Scholar
  60. 60.
    R. Prado, B.D. Watson, J. Kuluz, and W.D. Dietrich, Endothelium-derived nitric oxide synthase inhibition: effects on cerebral blood flow, pial artery diameter and vascular morphology in rats, Stroke 23:1118 (1992).PubMedCrossRefGoogle Scholar
  61. 61.
    S.I. Rapoport, Opening of the blood-brain barrier by acute hypertension, Exp. Neurol. 52: 467 (1976).PubMedCrossRefGoogle Scholar
  62. 62.
    P. Kubes and N.D. Granger, Editorial comment, Stroke 23: 1124 (1992).Google Scholar
  63. 63.
    M.A. Dwyer, D.S. Bredt, and S.H. Snyder, Nitric oxide synthase: Irreversible inhibition by L-NG-nitroarginine in brain in vitro and in vivo, Biochem. Biophys. Res. Comm. 176:1136 (1991).PubMedCrossRefGoogle Scholar
  64. 64.
    N.M. Olken and M.A. Marietta, NG-methyl-L-arginine functions as an alternate substrate and mechanism-based inhibitor of nitric oxide synthase, Biochem. 32:9677 (1993).CrossRefGoogle Scholar
  65. 65.
    N.M. Olken and M.A. Marietta, NG-allyl-and NG-cyclopropyl-L-arginine: Two novel inhibitors of macrophage nitric oxide synthase, J. Med. Chem. 35:1137 (1992).PubMedCrossRefGoogle Scholar
  66. 66.
    P. Klatt, K. Schmidt, F. Brunner and B. Mayer, Inhibitors of brain nitric oxide synthase: binding kinetics, metabolism and enzyme inactivation, J. Bio. Chem. 269:1674 (1994).Google Scholar
  67. 67.
    T.P. Misko, W.M. Moore, T.P. Kasten, G.A. Nickols, J.A. Corbett, R.G. Tilton, M.L. McDaniel, J. R. Williamson, and M.G. Currie, Selective inhibition of the inducible nitric oxide synthase by aminoguanidine, Eur. J. Pharmacol. 233:119 (1993).PubMedCrossRefGoogle Scholar
  68. 68.
    M.J.D. Griffiths, M. Messent, R.J. MacAllister, and T.W. Evans, Aminoguanidine selectively inhibits inducible nitric oxide synthase, Br. J. Pharmacol. 110:963 (1993).PubMedCrossRefGoogle Scholar
  69. 69.
    F. Laszlo, S.M. Evans, and B.J.R. Whittle, Aminoguanidine inhibits both constitutive and inducible nitric oxide synthase isoforms in rat intestinal microvasculature in vivo, Eur. J. Pharmacol. 272:169 (1995).PubMedCrossRefGoogle Scholar
  70. 70.
    M.A. Beaven, J.W. Gordon, S. Jacobsen and W.B. Severs, A specific and sensitive assay for aminoguanidine: Its application to a study of the disposition of aminoguanidine in animal tissues, J. Pharmacol. Exp. Ther. 165:14 (1969).PubMedGoogle Scholar
  71. 71.
    K.M.K. Boje, manuscript in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Kathleen M. K. Boje
    • 1
  1. 1.Department of Pharmaceutics, School of PharmacyUniversity of BuffaloBuffaloUSA

Personalised recommendations