Skip to main content

Is there a Relationship between Conditions Associated with Chronic Hypoxia, the Mitochondria, and Neurodegenerative Diseases, Such as Alzheimer’s Disease?

  • Chapter
Book cover Neurodegenerative Diseases

Abstract

The central nervous system (CNS) is extremely sensitive to hypoxia, as neuronal cells require a high rate of energy metabolism to maintain transmembrane potentials. As these cells normally rely on aerobic mitochondrial metabolism to generate the required energy, a lack of oxygen results in a shift toward the anaerobic utilization of glucose. Such a metabolic shift may result in a cascade of potentially deleterious events beginning with an increased production of lactic acid and a decreased rate of ATP production.1 Increased lactic acid concentrations may cause a decrease in cellular pH, followed by the release of iron and the reaction of ferrous ions with hydrogen peroxide to produce hydroxyl radicals. A decrease in ATP may adversely affect DNA replication, transcription,2 and mRNA translation. In addition, the levels of inter-cellular calcium will increase as the ATP dependent calcium ion pump mechanism fails. Increased calcium levels can activate: endonucleases, nitric oxide synthetase, phospholipases and proteases. All of the above alterations in cellular metabolism may result in damage to the cellular DNA, particularly the mitochondrial DNA (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Beal, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31:119–130 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. T. Kadowaki and Y. Kitagawa, Hypoxic depression of mitochondrial mRNA levels in HeLa cell, Experimental Cell Res. 192:243–247 (1991).

    Article  CAS  Google Scholar 

  3. C. Richter, J.-W. Park, and B.N. Ames, Normal oxidative damage to mitochondrial and nuclear DNA is extensive, Proc. natn. Acad. Sci. U.S.A. 85:6465–6467 (1988).

    Article  CAS  Google Scholar 

  4. K.P. Gupta, K.L. van Golen, E. Randerath, and K. Randerath, Age-dependent covalent DNA alterations (I-compounds) in rat liver mitochondrial DNA, Mut. Res. 237:17–27 (1990).

    Article  CAS  Google Scholar 

  5. D.C. Wallace, Diseases of the mitochondrial DNA, Annu. Rev. Biochem. 61:1175–1212 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. M. Corral-Debrinski, G. Stepien, J.M. Shoffner, M.T. Lott, K. Kanter, and D.C. Wallace, Hypoxemia is associated with mitochondrial DNA damage and gene induction, JAMA 266:1812–1816 (1991).

    Article  PubMed  CAS  Google Scholar 

  7. K. Hattori, M. Tanaka, S. Sugiyama, T. Obayashi, I. Takayki, T. Satake, H. Yoshihiro, J. Asai, M. Nagano, and T. Ozawa, Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia. Am. heart J. 121:1735–1742 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. C.R. Merril, S. Zullo, H. Ghanbari, M.M. Herman, J.E. Kleinman, L.B. Bigelow, J.J. Bartko, and D.J. Sabourin, Possible relationship between hypoxia and brain mitochondrial DNA deletions, Manuscript submitted for publication.

    Google Scholar 

  9. D.L. Sparks, H. Liu, S.W. Scheff, C.M. Coyne, and J.C. Hunsaker, Temporal sequence of plaque formation in the cerebral cortex of non-demented individuals, J. Neuropath. Exp. Neurol. 52:135–142 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. M.K. Aronson, W.L. Ooi, H. Morgenstern, A. Hafner, D. Masur, H. Crystal, W.H. Frishman, D. Fisher, and R. Katzman, Women, myocardial infarction, and dementia in the very old, Neurol. 40:1102–1106 (1990).

    Article  CAS  Google Scholar 

  11. D.L. Sparks, S.W. Scheff, J.C. Hunsaker, III, H. Liu, T. Landers, and D.R. Gross, Induction of Alzheimer-like β-Amyloid immunoreactivity in the brains of rabbits with dietary cholesterol, Exp. Neurol. 126:88–94 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. W.J. Strittmatter, A.M. Saunders, D.E. Schmechel, M. Pericak-Vance, I. Enchild, G.S. Salvesen, and A.D. Roses, Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer’s disease, Proc. natn. Acad. Sci. U.S.A. 90:1977–1981 (1993).

    Article  CAS  Google Scholar 

  13. J. Davignon, R.E. Gregg, and C.F. Sing, Apolipoprotein E polymorphism and atherosclerosis, Atherosclerosis. 8:1–21 (1988).

    CAS  Google Scholar 

  14. D.M. Hallman, E. Boerwinkle, N. Saha, C. Sandhozer, H.J. Menzel, A. Caazar, and G. Utermann, The apolipoprotein E polymorphism: A comparison of allele frequencies and effects in nine populations, Am. J. Hum. Genet. 49:338–349 (1991).

    PubMed  CAS  Google Scholar 

  15. A.M. Cumming and F. Robertson, Polymorphism at the apoprotein-E locus in relation to risk of coronary disease, Clin. Genet. 25:310–318 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. T. Kuusi, M.S. Nieminen, C. Ehnholm, H. Yki-Järvinen, M. Valle, E.A. Nikkilä, and M.-R. Taskinen, Apoprotein E polymorphism and coronary artery disease: Increased prevalence of apolipoprotein E-4 in angiographically verified coronary patients, Atherosclerosis. 9:237–241 (1988).

    Google Scholar 

  17. G.D. Schellenberg, T.D. Bird, E.M. Wijsman, H.T. Orr, L. Anderson, E. Nemens, J.A. White, L. Bonnycastle, J.L. Weber, M.E. Alonso, H. Potter, L.L. Heston, and G.M. Martin, Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14, Science. 258:668–671 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. A. Goate, M.-C. Chartier-Harlin, M. Mullan, J. Brown, F. Crawford, L. Fidani, L. Giuffra, A. Haynes, N. Irving, L. James, R. Mant, P. Newton, K. Rooke, P. Roques, C. Talbot, M. Pericak-Vance, A. Roses, R. Williamson, M. Rossor, M. Owen, and J. Hardy, Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 349:704–706 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. F.-H. Lin, R. Lin, H.M. Wisniewski, Y.-W. Hwang, I. Grundke-Iqbal, G. Healy-Louie, and K. Iqbal, Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in Alzheimer’s brains, Biochem. Biophys. Res. Comm. 182:238–246 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. V. Petruzzella, X. Chen, and E.A. Schon, Is a point mutation in the mitochondrial ND2 gene associated with Alzheimer’s disease? Biochem. Biophys. Res. Comm. 186:490–497 (1992).

    Article  Google Scholar 

  21. F.-H. Lin, and R. Lin, A comparison of single nucleotide primer extension with mispairing PCR-RFLP in detecting a point mutation, Biochem. Biophys. Res. Comm. 189:1202–1206 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. J.M. Shoffner, M.D. Brown, A. Torroni, M.T. Lott, M.F Cabell, S.S. Mirra, M.F. Beal, C.-C. Yang, M. Gearing, R. Salvo, R.L. Watts, J.L. Juncos, L.A. Hansen, B.J. Crain, M. Fayad, C.L. Reckord, and D.C. Wallace, Mitochondrial DNA variants observed in Alzheimer’s disease and Parkinson disease patients, Genomics. 17:171–184 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. M. Corral-Debrinski, T. Horton, M.T. Lott, J.M. Shoffner, A.C. McKee, M.F. Beal, B.H. Graham, and D.C. Wallace, Marked changes in mitochondrial DNA deletion levels in Alzheimer brains, Genomics. 23:471–476 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. N.-W. Soong, D.R. Hinton, G. Cortopassi, and N. Arnheim, Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain, Nature Genet. 2:318–323 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Merril, C.R., Zullo, S., Ghanbari, H. (1996). Is there a Relationship between Conditions Associated with Chronic Hypoxia, the Mitochondria, and Neurodegenerative Diseases, Such as Alzheimer’s Disease?. In: Fiskum, G. (eds) Neurodegenerative Diseases. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0209-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0209-2_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0211-5

  • Online ISBN: 978-1-4899-0209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics