Skip to main content

Glutamate-Promoted Survival in Hippocampal Neurons: A Defect in Mouse Trisomy 16

  • Chapter
Neurodegenerative Diseases

Abstract

Micromolar concentrations of glutamate, acting at non-NMDA, kainate-preferring receptors, increased the survival of cultured mouse hippocampal neurons maintained in serum-free, chemically-defined medium. Glutamate in excess of 20 μM was excitotoxic. Thus, the survival versus glutamate dose response relation was bell-shaped with an optimal glutamate concentration near 1 μM. Hippocampal neurons from mice with the genetic defect, trisomy 16 (Ts16), died 2–3 times faster than normal (euploid) neurons. Moreover, glutamate, at all concentrations tested, failed to increase survival of Ts16 neurons. Ts16 is a naturally-occurring mouse genetic abnormality, the human analog of which (Down syndrome) leads to altered brain development and Alzheimer’s disease. These results demonstrate that the Ts16 genotype confers a defect in the glutamate-mediated survival response of hippocampal neurons and that this defect can account for their accelerated death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.C. Raff, B.A. Barres, J.F. Burne, H.S. Coles, Y. Ishizaki, and M.D. Jacobson, Programmed cell death and the control of cell survival: Lessons from the nervous system. Science 269:695–700 (1993).

    Article  Google Scholar 

  2. H. Potter, Review and hypothesis: Alzheimer disease and Down syndrome — chromosome 21 nondisjunction may underlie both disorders. Am. J. Hum. Genet. 48:1192–1200 (1991).

    PubMed  CAS  Google Scholar 

  3. D.M.A. Mann, Down’s syndrome and Alzheimer’s disease: Towards an understanding of the pathogenesis. in “Neurodegeneration”, A.J. Hunter and M. Clark, eds. Academic Press, San Diego, CA (1992).

    Google Scholar 

  4. J.T. Coyle, M.L. Oster-Granite, R.H. Reeves, and J.D. Gearhart, Down syndrome, Alzheimer’s disease and the trisomy 16 mouse. Trends Neurosci. 11:390–394 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. P. Gregor, R.H. Reeves, E.W. Jabs, X. Yang, W. Dackowski, J.M. Rochelle, R.H. Brown, Jr., J.L. Haines, B.F. O’Hara, G.R. Uhl, and M.F. Seldin, Chromosomal localization of glutamate receptor genes: relationship to familial amyotrophic lateral sclerosis and other neurological disorders of mice and humans. Proc. Natl Acad. Sci USA 90:3053–3057 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. H.S. Singer, M. Tiemeyer, J.C. Hedreen, J. Gearhart, and J.T. Coyle, Morphologic and neurochemical studies of embryonic brain development in murine trisomy 16. Dev. Brain Res. 15:155–166 (1984).

    Article  CAS  Google Scholar 

  7. J.D. Gearhart, M.L. Oster-Granite, R.H. Reeves, and J.T. Coyle, Developmental consequences of autosomal aneuploidy in mammals. Dev. Genet. 8:249–265 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. J. Kiss, M. Schlumpf, and R. Balazs, Selective retardation of the development of the basal forebrain cholinergic and pontine catecholaminergic nuclei in the brain of trisomy 16 mouse, an animal model of Down’s syndrome. Dev. Brain Res. 50:251–264 (1989).

    Article  CAS  Google Scholar 

  9. J.E. Sweeney, C.F. Hohmann, M.L. Oster-Granite, and J.T. Coyle, Neurogenesis of the basal forebrain in euploid and trisomy 16 mice: an animal model for developmental disorders in Down syndrome. Neuroscience 31:413–425 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. M.L. Oster-Granite, The trisomy 16 mouse as an animal model relevant to studies of growth retardation in Down’s syndrome, in “Growth Hormone Treatment in Down’s Syndrome”, S. Castells and K.E. Wisniewski, eds. John Wiley and Sons Ltd, New York (1993).

    Google Scholar 

  11. P. Corsi and J.T. Coyle, Nerve growth factor corrects developmental impairments of basal forebrain cholinergic neurons in the trisomy 16 mouse. Proc. Natl Acad. Sci USA 88:1793–1797 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. D.M. Holtzman, Y. Li, S.J. DeArmond, M.P. McKinley, F.H. Gage, C.J. Epstein, and W.C. Mobley, Mouse model of neurodegeneration: atrophy of basal forebrain cholinergic neurons in trisomy 16 transplants. Proc. Natl Acad. Sci USA 89:1383–1387 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. G.J. Brewer, J.R. Torricelli, E.K. Evege, and P.J. Price, Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci Res. 35:567–576 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. K. Unsicker, H. Reichert-Preibsch, R. Schmidt, B. Pettmann, G. Labourdette, and M. Sensenbrenner, Astroglial and fibroblast growth factors have neurotrophic functions for cultured peripheral and central nervous system neurons. Proc. Natl Acad. Sci USA 84:5459–5463 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. D.W. Choi, Excitotoxic cell death. J. Neurobiol. 23:1261–1276 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. R. Balazs, O.S. Jorgensen, and N. Hack, N-Methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27:437–451 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. R.D. Burgoyne, M.E. Graham, and M. Cambray-Deakin, Neurotrophic effects of NMDA receptor activation on developing cerebellar granule cells. J. Neurocyt. 22:689–695 (1993).

    Article  CAS  Google Scholar 

  18. G.-M. Yan, B. Ni, M. Weller, K.A. Wood, and S.M. Paul, Depolarization or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons. Brain Res. 656:43–51 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. E. Gould, H.A. Cameron, and B.S. McEwen, Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus. J. Comp. Ncurol. 340:551–565 (1994).

    Article  CAS  Google Scholar 

  20. H.T.J. Mount, C.F. Dreyfus, and I.B. Black, Purkinje cell survival is differentially regulated by metabotropic and ionotropic excitatory amino acid receptors. J. Neurosci. 13:3173–3179 (1993).

    PubMed  CAS  Google Scholar 

  21. A. Copani, V.M.G. Bruno, V. Barresi, G. Battaglia, D.F. Condorelli, and F. Nicoletti, Activation of metabotropic glutamate receptors prevents neuronal apoptosis in culture. J. Neurosci. 64:101–108 (1995).

    CAS  Google Scholar 

  22. A. Lehman, H. Isacsson, and A. Hamberger, Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. J. Neurochem. 40:1314–1320 (1983).

    Article  Google Scholar 

  23. K. Sugiyama, A. Brunori, and M.L. Mayer, Glial uptake of excitatory amino acids influences neuronal survival in cultures of mouse hippocampus. Neuroscience 32:779–791 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. M.P. Mattson and B. Rychlik, Glia protect hippocampal neurons against excitatory amino acid-induced degeneration: involvement of fibroblast growth factor. Int. J. Devl. Neurosci 8:399–415 (1990).

    Article  CAS  Google Scholar 

  25. J.D. Rothstein, L. Jin, M. Dykes-Hoberg, and R.W. Kuncl, Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl Acad. Sci USA 90:6591–6595 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. V. Parpura, T.A. Basarsky, F. Liu, K. Jeftinija, S. Jeftinija, and P.G. Haydon, Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. G. Pepeu, L. Ballerini, and A.M. Pugliese, Neurotrophic factors in the aging brain: a review. Arch. Gerontol Geriatr. Suppl. 2:151–158 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bambrick, L.L., Yarowsky, P.J., Krueger, B.K. (1996). Glutamate-Promoted Survival in Hippocampal Neurons: A Defect in Mouse Trisomy 16. In: Fiskum, G. (eds) Neurodegenerative Diseases. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0209-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0209-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0211-5

  • Online ISBN: 978-1-4899-0209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics