Skip to main content

Polymorphonuclear-Endothelial Cell Interactions and the Control of Coronary Vasculature

  • Chapter
  • 64 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 283))

Abstract

The generation of leukotrienes (LTs) exhibits remarkable cellular specificity; both PMNL and eosinophils contain the 5-lipoxygenase (5-LO) enzyme, a single protein possessing both the dioxygenase activity necessary for the synthesis of 5-hydroperoxy eicosatetraenoic acid (5-HPETE), and the epoxygenase activity leading to leukotriene A4 (LTA4)(Shimizu et al, 1984). This unstable allylic epoxide can be further converted by secondary enzymes, i.e. LTA4 hydrolase and leukotriene C4 (LTC4) synthase, into leukotriene B4 (LTB4) or LTC4 respectively (Lewis & Austen, 1984). Following challenge with the calcium ionophore A23187 (Borgeat & Samuelsson, 1979), PMNL generate predominantly LTB4, a compound with very potent chemoattractant activities. On the other hand eosinophils (Weller et al., 1983) show preferential generation of LTC4, a potent bronchoconstrictor. Recently it has been shown that the two biosynthetic steps leading to bioactive leukotrienes, can be carried out by different cell types, whereby PMNL (i.e. donor cells) can synthesize the unstable metabolic intermediate LTA4 which can be metabolized by vicinal cells (i.e. acceptor cells) into LTs B4 or C4. Such reaction involves the cooperation of PMNL with erythrocytes, platelets, endothelial cell (McGee & Fitzpatrick, 1986; Maclouf & Murphy, 1988; Feinmark & Cannon, 1986 and 1987; Marcus et al., 1982). This process has been termed “transcellular biosynthesis” and suggests that the cellular environment (i.e. cell-cell interaction) is an important control in the production of eicosanoids (Maclouf et al., 1989). Most in vitro studies of transcellular biosynthesis have used cells isolated from blood or cultured endothelial cells as a reflection of what might happen in pathological situations such as in inflammatory reactions or in cardiovascular diseases where cell-cell interactions constitute an important part of this process (Lucchesi & Mullane, 1986).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borgeat, P. and Samuelsson, B., 1979, Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci USA, 76(5), 2148–2152.

    Article  PubMed  CAS  Google Scholar 

  • Brady, H.R. and Serhan, C.N., 1992, Adhesion promotes transcellular leukotriene biosynthesis during neutrophil-glomerular endothelial cell interactions: inhibition by antibodies against CD18 and L-selectin. Biochem Biophys Res Commun, 186, 1307–1314.

    Article  PubMed  CAS  Google Scholar 

  • Carry, M., Korley, V., Willerson, J.T., Weigelt, L., Ford-Hutchinson, A.W. and Tagari, P., 1992, Incresed urinary excretion in patients with cardiac ischemia. In vivo evidence for 5-lipoxygenase activation. Circulation, 85, 230–236.

    Article  PubMed  CAS  Google Scholar 

  • Claesson H.E. and Haeggström J., 1988, Human endothelial cells stimulate leukotriene synthesis and convert granulocyte-released leukotriene A4 into leukotrienes B4, C4, D4 and E4. Eur J Biochem, 173, 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Dahlen, S.E., Bjork, J., Hedquist, P., et al., 1981, Leukotriene promote plasma leakage and leukocyte adhesion in post-capillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA, 78:3887–3891.

    Article  PubMed  CAS  Google Scholar 

  • Evers, A.S., Murphree, S., Saffitz, J.E., Jakschik, B.A. and Needleman, P., 1985, Effects of endogenously produced leukotrienes, thromboxane and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J Clin Invest, 75, 992–999.

    Article  PubMed  CAS  Google Scholar 

  • Feinmark, S.J. and Cannon, P.J., 1986, Endothelial cell leukotriene C4 synthesis results from intracellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes. J Biol Chem, 261, 16466–16472.

    PubMed  CAS  Google Scholar 

  • Feinmark, S.J. and Canno, P.J., 1987, Vascular smooth muscle cells leukotriene C4 synthesis: requirement for transcellular leukotriene A4 metabolism. Biochim Biophys Acta, 922, 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Fleish, J.H., Rinkema, L.E., Haisch, K.D., Swanson-Bean. D., Goodson, T., Ho, P.P.K. and Marshall, W.S., 1985, LY171883,1-(2-hydroxy-3-propyl-4-(4-(1H-tetrazol-5yl)butoxy) phenyl)ethanone, an orally active leukotriene D4 antagonist. J Pharmacol Exp Therap, 233(1), 148–157.

    Google Scholar 

  • Gillard, J., Ford-Hutchinson, A.W., Chan, C., Charleson, S., Denis, D., Foster, A., Leger, S., McFarlane, C.S., Morton, H., Piechuta, H., Riendeau, D., Rouzer, CA., Rokach, J., Young, R., MacIntyre, D.E., Peterson, L., Bach, T., Eiermann, G., Hopple, S., Humes, J., Hupe, L., Luell, S., Metzger, J., Meurer, R., Miller, D.K,. Opas, E. and Pacholok, S., 1989, L-663,536 (MK-886) (3-(1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropyilndol-2-yl)-2,2-dimethylpropanoic acid), a novel orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol, 67(5), 456–464.

    Article  PubMed  CAS  Google Scholar 

  • Grimminger, F., Kreusler, B., Schneider, U., Becker, G. and Seeger, W., 1990, Influence of microvascular adherence on neutrophil leukotriene generation. J Immunol, 144, 1866–1872.

    PubMed  CAS  Google Scholar 

  • Hatzelmann, A., Fruchtmann, R., Mohrs, K.H., Raddatz, S. and Müller-Peddinghaus, R., 1993, Mode of action of the new selective leukotriene synthesis inhibitor BAY X1005 ((R)-2-(4-(quinolin-2-yl-methoxy)phenyl)-2-cyclopentyl acetic acid and structurally related compounds. Biochem Pharmacol, 45, 101–111

    Article  PubMed  CAS  Google Scholar 

  • Hock, C.E., Beck, L.D. and Papa, L.A., 1992, Peptide leukotriene receptor antagonism in myocardial ischemia and reperfusion. Cardiovascular Research, 26, 1206–1211.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R.O., 1987, Integrins: a family of cell surface receptors. Cell, 48, 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G.I., Bliss, G.A., Newman, P.J. and McEver, R.P., 1990, Structure of the human gene encoding granule membrane protein-140, a member of the selectin family of adhesion receptors for leukocytes. J Biol Chem, 265(34), 21381–21385.

    PubMed  CAS  Google Scholar 

  • Kubes, P., Suzuki, M. and Granger, D.N., 1991, Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci, 88, 4651–4655.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, R.A. and Austen, K.F., 1984, The biologically active leukotrienes: biosynthesis, metabolism, receptors, functions and pharmacology. J Clin Invest, 73, 889–897.

    Article  PubMed  CAS  Google Scholar 

  • Lo, S.K., Everitt, J., Gu, J. and Malik, A.B., 1992, Tumor Necrosis Factor Mediates Experimental Pulmonary Edema by ICAM-1 and CD18-dependent Mechanisms. J Clin Invest, 89, 981–988.

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi, B.R. and Mullane, K.M., 1986, Leukocytes and ischemia-induced myocardial injury. Ann Rev Pharmacol Toxicol, 26, 201–224

    Article  CAS  Google Scholar 

  • Maclouf, J.A. and Murphy, R.C., 1988, Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. J Biol Chem, 263, 174–181.

    PubMed  CAS  Google Scholar 

  • Maclouf, J., Murphy, R.C. and Henson, P., 1989, Transcellular sulfidopeptide leukotriene biosynthetic capacity of vascular cells. Blood, 74(2), 703–707.

    PubMed  CAS  Google Scholar 

  • Marcus, A.J., Broekman, M.J., Safier, L.B., Ullman, H.L., Islam, N., Serhan, C.N., Rutherford, L.E., Korchak, H.M. and Weissman, G., 1982, Formation of leukotriene and other hydroxyacids during platelet-neutrophil interactions in vitro. Biochem Biophys Res Commun, 109, 130–138.

    Article  PubMed  CAS  Google Scholar 

  • McGee, J.E. and Fitzpatrick, F.A., 1986, Erythrocyte-neutrophil interaction: formation of leukotriene B4 by transcellular biosynthesis. Proc Natl Acad Sci USA, 83, 1349–1353.

    Article  PubMed  CAS  Google Scholar 

  • Michelassi, F., Landa, L., Hill, R.D., Lowenstein, E., Watkins, W.D., Petkau, A.J. and Zapol, W.M., 1982, Leukotriene D4: a potent coronary artery vasoconstrictor associated with impaired ventricular contraction. Science, 217, 841–843.

    Article  PubMed  CAS  Google Scholar 

  • Mong, S., Wu, H.L., Miller, J., Hall, R.F., Gleason, J.G. and Crooke, S.T., 1987, SKF104353, a high affinity antagonist for human and guinea-pig lung LTD4 receptor, blocked phosphatidylinositol metabolism and thromboxane synthesis induced by leukotriene D4. Mol Pharmacol, 32, 223–229.

    PubMed  CAS  Google Scholar 

  • Mullane, K., 1988, Myocardial ischemia-reperfusion injury: role of neutrophils and neutrophil derived mediators. In Human Inflammatory Disease-Clinical Immunology, ed. Marone, G., Lichtenstein, L.M., Condorelli, M. and Fauci, A.S. pp 143–160. Toronto-Philadelphia: B.C. Decker Inc.

    Google Scholar 

  • Palmentier, R., Krump, E., Rocheleau, H., Laviolette, M. and Borgeat, P., 1995, Dynamics of 5-lipoxygenase product synthesis by human neutrophils and eosinophils in plasma and salt solution (HBSS). Inflammation Res, 44(Suppl. 3), S259.

    Google Scholar 

  • Piper, P.J. and Samhoun, M.N., 1987, Leukotrienes. Brit Med Bull, 43(2), 297–311.

    PubMed  CAS  Google Scholar 

  • Rossoni, G., Sala, A., Berti, F., Testa, T., Buccellati, C., Müller-Peddinghaus, R., Maclouf, J. and Folco, G.C., 1996, Myocardial protection by the leukotriene synthesis inhibitor BAY X1005; importance of transcellular biosynthesis of cysteinyl-leukotrienes. J Pharmacol Exp Therap, 276, 335–341.

    CAS  Google Scholar 

  • Roth, D.M. and Lefer, A.M., 1983, Studies on the mechanism of leukotriene induced coronary artery constriction. Prostaglandins, 26(4), 573–581.

    PubMed  CAS  Google Scholar 

  • Sala, A., Aliev, G.M., Rossoni, G., Berti, F., Buccellati, C., Burnstock, G., Folco, G.C. and Maclouf, J., 1996, Morphological and functional changes of coronary vasculature caused by transcellular biosynthesis of sulfidopeptide leukotrienes in isolated heart of rabbit. Blood, press., 87 (5)

    Google Scholar 

  • Sala, A., Rossoni, G., Buccellati, C., Berti, F., Maclouf, J. and Folco, G.C., 1993, Formation of sulfidopeptide-leukotrienes by cell-cell interaction causes coronary vasoconstriction in isolated, cell-perfused rabbit heart. Br J Pharmacol, 110, 1206–1212.

    Article  PubMed  CAS  Google Scholar 

  • Schror, K. Cytoprotective properties of prostacyclin., 1992, In: Rubanyi, G.M., Vane, J. (eds). Prostacyclin: new perspectives for basic research and novel therapeutic indication. Amsterdam: Elsevier, 157–168.

    Google Scholar 

  • Shimizu, T., Rådmark, O. and Samuelsson, B., 1984, Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc. Natl. Acad. Sci. USA, 81: 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Sugama, Y., Tiruppati, C., Janakidevi, K., Andersen, T.T., Fenton, J.W. and Malik, A.B., 1992, Thrombin-induced Expression of Endothelial P-Selectin and Intercellular Adhesion Molecule-1: A Mechanism for Stabilizing Neutrophil Adhesion. J Cell Biol, 119(4), 935–944.

    Article  PubMed  CAS  Google Scholar 

  • Vane, J. and Botting, R., 1993, Prostacyclin in perspective. Crit Ischaemia, 3(Suppl.1), 4–13.

    Google Scholar 

  • Weller, P.F., Lee, C.W., Foster, D.W., Corey, E.J., Austen, K.F. and Lewis, R.A., 1983, Generation and metabolism of 5-lipoxygenase pathway leukotrienes by human eosinophils: predominant production of leukotriene C4. Proc Natl Acad Sci USA, 80, 7626–7630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sala, A. (1996). Polymorphonuclear-Endothelial Cell Interactions and the Control of Coronary Vasculature. In: Folco, G.C., Samuelsson, B., Maclouf, J., Velo, G.P. (eds) Eicosanoids. NATO ASI Series, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0200-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0200-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0202-3

  • Online ISBN: 978-1-4899-0200-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics