Eicosanoids pp 77-88 | Cite as

Transcellular Biosynthesis of Arachidonic Acid Metabolites: From in Vitro Investigations to in Vivo Reality

  • Jacques Maclouf
Part of the NATO ASI Series book series (NSSA, volume 283)


In the seventies as well as in the early eighties, studies were designed to establish the oxidative pathways of the arachidonic acid by specific cell types in order to determine the structure of end-products generated by a given cell. This approach has delineated specific enzymic patterns by certain cells in the blood and in the vasculature (Table I). Platelets produce mainly 12-hydroxy-eicosatetraenoic acid, 12-hydroxy-heptadecatrienoic acid and thromboxane A2. Endothelial cells synthesize mainly prostaglandin I2 (prostacyclin) and prostaglandins E2 and F2 depending on the site of the vasculature. Polymorphonuclear granulocytes synthesize nearly exclusively leukotriene B4 and eosinophils generate leukotriene C4. Monocytes/macrophages, depending upon their maturation produce both leukotrienes and thromboxane or prostacyclin. In contrast, red blood cells and lymphocytes, devoid of oxygenases cannot generate eicosanoids.


Arachidonic Acid Metabolite Calcium Ionophore A23187 Prostaglandin Endoperoxide Unstable Intermediate Acceptor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazzoni, G., Dejana, E. and Del Maschio, A. (1991) Platelet-neutrophil interactions. Possible relevance in the pathogenesis of thrombosis and inflammation. Haematologica. 76:491–499.PubMedGoogle Scholar
  2. Benjamin C.W., Hopkins N.K., Oglesby T.D. and Gorman R.R. (1983) Agonist specific desensitization of leukotriene C4-stimulated PGI2 biosynthesis in human endothelial cells. Biochem. Biophys. Res. Commun. 117:780–787.PubMedCrossRefGoogle Scholar
  3. Bernard, C. and Tedgui, A. Cytokin*e network and the vessel wall. Insights into the septic shock pathogenesis (1992). Eur. Cytokine Netw. 3:19–33.PubMedGoogle Scholar
  4. Borgeat P., Picard S., Vallerand P. and Sirois P. (1981) Prostaglandins Med. 6:557–570.PubMedCrossRefGoogle Scholar
  5. Borgeat B. and Samuelsson B. (1979) Arachidonic acid metabolism in polymorphonuclear leukocytes: Unstable intermediate in the formation of di-hydroxy acids. Proc. Natl. Acad. Sci. USA 76:3213–3217.PubMedCrossRefGoogle Scholar
  6. Brady, H.R. and Serhan, C.N. (1992) Adhesion promotes transcellular leukotriene biosynthesis during neutrophil-glomerular endothelial cell interactions: inhibition by antibodies against CD 18 and L-selectin. Biochem. Biophys. Res. Commun. 186:1307–1314.PubMedCrossRefGoogle Scholar
  7. Braquet P., Touqui L., Shen T.Y. and Vargaftig B.B. (1987) Perspectives in platelet-activating factor research. Pharmacol. Rev. 39:97–145.PubMedGoogle Scholar
  8. Carry, M., Korley, V., Willerson, J.T., Weigelt, J.T., Ford-Hutchinson, A.W. and Tagari, P. (1992) Increased urinary leukotriene excretion in patients with cardiac ischaemia. In vivo evidence for 5-lipoxygenase activation. Circulation 85:230–236.PubMedCrossRefGoogle Scholar
  9. Cramer E.B., Pologe L., Pawlowski N.A., Cohn Z.A. and Scott W.A. (1983) Leukotriene C promotes prostacyclin synthesis by human endothelial cells. Proc. Natl. Acad. Sci. USA 80:4109–4113.PubMedCrossRefGoogle Scholar
  10. Claesson H.E. and Haeggström J. (1988) Human endothelial cells stimulate leukotriene synthesis and convert granulocyte-released leukotriene A4 into leukotrienes B4, C4, D4 and E4. Eur. J. Biochem. 173: 93–100.PubMedCrossRefGoogle Scholar
  11. Dahinden C. A., Clancy R.M., Gross M., Chiller J.M. and Hugly T.E. (1985) Leukotriene C4 production by murine mast cells: Evidence of a role for extracellular leukotriene A4. Proc. Natl. Acad. Sci. USA 82:6632–6636.PubMedCrossRefGoogle Scholar
  12. De Caterina, R., Gianessi, R., Lazzarini, G., Sicari, R., Montalescot, G., Maclouf, J. and Patrono, C. (1992) Production of sulfido-peptide leukotrienes in coronary artery disease patients. Circulation 86:I–744 (Abs).Google Scholar
  13. Del Maschio, A., Dejana, E. and Bazzoni, G. (1993) Bidirectional modulation of platelet and polymorphonuclear leukocyte activity. Ann. Hematol. 67:23–31.PubMedCrossRefGoogle Scholar
  14. Edenius, C., Heidvall, K. and Lindgren, J. Å. (1988) Novel transcellular interaction: conversion of granulocyte-derived leukotriene A4 to cysteinyl-containing leukotrienes by human platelets. Eur. J. Biochem. 178:81–86.PubMedCrossRefGoogle Scholar
  15. Entman, M.L., Michael, L., Rossen, R.D., Dreyer, W.J., Anderson, D.C., Taylor, A.A. and Smith, C.W. (1991) Inflammation in the course of early myocardial ischaemia. FASEB J. 5:2529–2537.PubMedGoogle Scholar
  16. Feinmark S.J. and Cannon P.J. (1986) Endothelial cells leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes. J. Biol. Chem. 261: 16466–16472.PubMedGoogle Scholar
  17. Feinmark S.J. and Cannon P.J. (1987) Vascular smooth muscle cells leukotriene C4 synthesis: requirement for transcellular leukotriene A4 metabolism. Biochim. Biophys. Acta, 922:125–135.PubMedCrossRefGoogle Scholar
  18. Fitzgerald D.J., Roy L., Catella F. and FitzGerald G.A. (1986) Platelet activation in unstable coronary disease. N. Engl. J. Med. 315:983–989.PubMedCrossRefGoogle Scholar
  19. FitzGerald G.A., Brash, A.R., Oates, J.A. and Pedersen, A.K. (1983) Endogenous prostacyclin biosynthesis and platelet fucntion during selective inhibition of thromboxane synthesis in man. J. Clin. Invest. 72:1336–1343.PubMedCrossRefGoogle Scholar
  20. FitzGerald, G.A., Pedersen, A.K. and Patrono, C. (1983) Analysis of prostacyclin and thromboxane biosynthesis in cardiovascular disease. Circulation. 67:1174–1177.PubMedCrossRefGoogle Scholar
  21. Fitzpatrick F.A., Liggett W., McGee J., Bunting S., Morton D. and Samuelsson B. (1984) Metabolism of leukotriene A4 by human erythrocyte: A novel cellular source of leukotriene B4. J. Biol. Chem. 259:11403–11407.PubMedGoogle Scholar
  22. Grimminger, F., Kreusler, B., Schneider, U., Becker, G. and Seeger, W. (1990) Influence of microvascular adherence on neutrophil leukotriene generartion. Evidence for cooperative eicosanoid synthesis. J. Immunol. 144:1866–1872.PubMedGoogle Scholar
  23. Habib A. and Maclouf, J. (1992) Comparison of leukotriene A4 metabolism into leukotriene C4 by human platelets and endothelial cells. Archives Biochem. Biophys. 298:544–552.CrossRefGoogle Scholar
  24. Hamberg M. and Samuelsson B. (1973) Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc. Natl. Acad. Sci. USA 70:899–903.PubMedCrossRefGoogle Scholar
  25. Hamberg M., Svensson J. and Samuelsson B. (1974) Prostaglandin endoperoxides. Anew concept concerning the mode of action and release of prostaglandins. Proc. Natl. acad. Sci. USA 71:3824–3828.PubMedCrossRefGoogle Scholar
  26. Hock, C.E., Beck, L.D. and Papa, L.A. (1992) Peptide leukotriene receptor antagonism in myocardial ischaemia and reperfusion. Cardiovasc. Res. 26:1206–1211.PubMedCrossRefGoogle Scholar
  27. Hynes, R.O. (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25.PubMedCrossRefGoogle Scholar
  28. Jakschik B.A., Harper T. and Murphy R.C. (1982) Leukotriene C4 and D4 formation by particulate enzymes. J. Biol. Chem. 257:5346–5349.PubMedGoogle Scholar
  29. Lawrence, M.B. and Springer, T.A. (1991) Leukocytes roll on a selectin at physiologie flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873.PubMedCrossRefGoogle Scholar
  30. Lindgren J.A., Hansson G. and Samuelsson B. (1981) FEBS Lett. 128:329–335.PubMedCrossRefGoogle Scholar
  31. Ma, X-l., Lefer, D.J., Lefer, A.M. and Rothlein, R. (1992) Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischaemia and reperfusion. Circulation 86:937–946.PubMedCrossRefGoogle Scholar
  32. Maclouf, J., Antoine, C., De Caterina, R., Sicari, R., Murphy, R.C., Patrignani, P., Loizzo, S. and Patrono, C. (1992) Entry rate and metabolism of leukotriene C4 into vascular compartment in healthy subjects. Am. J. Physiol. 263:H244–H249.PubMedGoogle Scholar
  33. Maclouf J., Fruteau de Laclos B. and Borgeat P. (1982) Stimulation of leukotriene biosynthesis by platelet-derived 12-hydroperoxy-icosatetraenoic acid. Proc. Natl. Acad. Sci. USA 79:6042–6046.PubMedCrossRefGoogle Scholar
  34. Maclouf J. and Murphy R.C. (1988) Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. J. Biol. Chem. 263:174–181.PubMedGoogle Scholar
  35. Mc Ever, R.P. (1991) Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb. Haemost. 65:223–228.Google Scholar
  36. Mc Gee J.E. and Fitzpatrick F.A. (1985) Enzymatic hydration of leukotriene A4 hydrolase: Purification and characterization of a novel epoxide hydrolase from human erythrocytes. J. Biol. Chem. 260:12832–12837.Google Scholar
  37. McGee J.E. and Fitzpatrick F.A. (1986) Erythrocyte-neutrophil interactions: Formation of leukotriene B4 via transcellular biosynthesis. Proc. Natl. Acad. Sci. USA, 83:149–1353.CrossRefGoogle Scholar
  38. Makgoba, M.W., Bernard, A. and Sanders, M.E. (1992) Cell adhesion/signalling: biology and clinical applications. Eur. J. Clin. Invest. 22:443–453.PubMedCrossRefGoogle Scholar
  39. Marcus, A.J. (1990) Thrombosis and inflammation as multicellular processes: pathophysiologic significance of transcellular metabolism. Blood 76:1903–1907.PubMedGoogle Scholar
  40. Marcus A.J., Weksler B.B., Jaffe E.A. and Broekman M.J. (1980) Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. J. Clin. Invest. 66:979–986.PubMedCrossRefGoogle Scholar
  41. Marcus A.J., Broekman, M.J., Safier L.B., Ullman H.L., Islam N., Serhan C.N., Rutherford L.E., Korchak H.M. and Weissman G. (1982) Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vivo. Biochem. Biophys. Res. Commun. 109:130–137.CrossRefGoogle Scholar
  42. Marcus A.J., Safier L.B., Ullman H.L., Broekman M.J., Islam N., Oglesby T.D. and Gorman R.R. (1984) 12S,20-dihydroxyicosatetraenoic acid: A new icosanoid produced by thrombin-or collagen-stimulated platelets. Proc. Natl. Acad. Sci. USA 81:903–907.PubMedCrossRefGoogle Scholar
  43. Marcus A.J., Safier L.B., Ullman H.L., Islam N., Broekman M.J., Falck J.R., Fischer S., Von Schacky C. (1988) Platelet-neutrophil interactions: 12S-hydroxyeicosatetraen-l,20-dioic acid: Anew eicosanoid synthesized by unstimulated neutrophils from 12S-20-dihydroxyeicosatetraenoic acid J. Biol. Chem. 263:2223–2229.PubMedGoogle Scholar
  44. Mullane, K. (1991) Neutrophil and endothelial changes in reperfusion injury. Trends Cardiovase. Med. 1:282–289.CrossRefGoogle Scholar
  45. Nowak, J. and FitzGerald, G. (1989) Redirection of prostaglandin endoperoxide metabolism at the platelet-vasculature interface in man. J. Clin. Invest. 83:380–385.PubMedCrossRefGoogle Scholar
  46. Nugteren D.H. and Hazelhof E. (1973) Isolation and properties of intermediates in prostaglandin biosynthesis Biochim. Biophys. Acta 326:448–461.CrossRefGoogle Scholar
  47. Oates J.A., FitzGerald G., Branch R.A., Jackson E.K., Knapp H.R. and Roberts II, J. (1988) Clinical implications of prostaglandin and thromboxane A2 formation. N. Engl. J. Med. 319:689–698.PubMedCrossRefGoogle Scholar
  48. Palabrica, T., Cobb, R., Furie, B.C., Aronovitz, M., Benjamin, C., Hsu, Y.-M., Sajer, S.A. and Furie, B. (1992) Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature, 359:848–851.PubMedCrossRefGoogle Scholar
  49. Patrono, C. (1989) Aspirin and human platelets: from clinical trials to acetylation of cyclooxygenase and back. Trends Pharmacol. Sci. 10:453–458.PubMedCrossRefGoogle Scholar
  50. Patrono, C., Ciabattoni, G., Pugliese, F., Pierucci, A., Blair, I.A. and FitzGerald, G.A. (1986) Estimated rate of thromboxane secretion into the circulation of normal humans. J. Clin. Invest. 77:590–594.PubMedCrossRefGoogle Scholar
  51. Sala, A., Rossoni, R., Buccellati, C., Berti, F., Folco, G. and Maclouf, J. (1993) Formation of sulphidopeptide-leukotrienes by cell-cell interaction causes coronary vasoconstriction in isolated, cell-perfused heart of rabbit. Br. J. Pharmac. 110:1206–1212.CrossRefGoogle Scholar
  52. Samuelsson B. (1965) J. Am. Chem. Soc. 87:3011–3013.PubMedCrossRefGoogle Scholar
  53. Sporn, M.B. and Roberts, A.B. (1992) Autocrine secretion-10 years later Ann. Int. Med. 117:408–414.CrossRefGoogle Scholar
  54. Smith, C.W., Anderson, D.C., Taylor, A.A., Rossen, R.D. and Entman, M.L. (1991) Leukocyte adhesion molecules and myocardial ischaemia. Trens Cardiovasc. Med. 1:167–170.CrossRefGoogle Scholar
  55. Voelkel N.F., Worthen S., Reeves J.T., Henson P.M. and Murphy R.C. (1982) Nonimmunological production of leukotrienes induced by platelet-activating factor. Science 218:286–288.PubMedCrossRefGoogle Scholar
  56. Weksler, B.B., Laye, W. and Jaffe, E.A. (1978) Stimulation of endothelial cell prostacyclin production by thrombin, trypsin and the ionophore A23187. J. Clin. Invest. 69: 923–930.CrossRefGoogle Scholar
  57. Weksler B.B., Marcus A.J. and Jaffe E.A. (1977) Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proc. Natl. Acad. Sci. USA 74: 3922–3926.PubMedCrossRefGoogle Scholar
  58. Williams, A.F. (1991) Out of equilibrium. Nature 252:473–474.CrossRefGoogle Scholar
  59. Yoshimoto T., Soberman R.J., Spur B. and Austen K.F. (1988) Properties of highly purified leukotriene C4 synthase of guinea pig lung. J. Clin. Invest. 81:866–871.PubMedCrossRefGoogle Scholar
  60. Zimmerman, G.A., Mc Intyre, T.M., Mehra, M. and Prescott, S.M. (1990) Endothelial cell-associated platelet-activating factor: a novel mechanism for signalling intercellular adherence. J. Cell. Biol. 110:529–540.PubMedCrossRefGoogle Scholar
  61. Zimmerman, G.A., Prescott, S.M. and Mc Intyre, T.M. (1992) Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol. Today 13:93–100.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jacques Maclouf
    • 1
  1. 1.Hôpital LARIBOISIEREU 348 INSERMParis cedex 10France

Personalised recommendations