Intracellular Regulator of Metal Availability
  • J. G. Joshi


Toxicity of cations results from excessive intake or from their presence at high concentrations in an unsequestered form. The toxic level and the expression of toxicity vary with the cation. For example, in experimental animals, exposure to Pb2+ causes, among other ill-effects, inhibition of specific enzymes involved in heme synthesis. In addition, Pb2+ causes replacement of iron in the heme by Zn2+, to generate a nonfunctional zinc protporphyrine (Jeslow, 1980). In some instances, living systems respond to toxic levels of metal ions such as Cd2+, Zn2+, or Cu2+ by synthesizing a family of proteins, metallothioneins, to sequester the detoxicant (Kojima and Kagi, 1978).


Iron Metabolism Iron Core Ferroxidase Center Ferritin Heavy Chain Liver Ferritin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisen, P., and Listowsky, I., 1980, Iron transport and storage proteins, Annu. Rev. Biochem. 49:357–393.PubMedCrossRefGoogle Scholar
  2. Aldridge, W. N., 1966, Toxicity of beryllium, Lab. luvet. 15:176–178.Google Scholar
  3. Aust, S. D., 1988, Source of iron for lipid peroxidation in biological systems, in: Oxygen Radicals and Tissue Injury, Proceedings of the Brook Lodge Symposium (Berry Halliwell, ed.), Fed. American Soc. Exp. Biol., Augusta, Michigan, pp. 27–33.Google Scholar
  4. Babior, B. M., Curnutte, J. T., and Okamura, N., 1988, The respiratory burst oxidase of the human neutrophil, in: Oxygen Radicals and Tissue Injury. Proceedings of the Brook Lodge Symposium (Barry Halliwell, ed.), Fed. American Soc. Exp. Biol., Augusta, Michigan, pp. 43–48.Google Scholar
  5. Barrow, C. J., and Zargorski, M. G., 1991, Solution structures of beta peptide and its constituent fragments: Relation to amyloid deposition, Science 253:179–182.PubMedCrossRefGoogle Scholar
  6. Bolann, B. J., and Ulvik, R. J., 1993, Stimulated decay of superoxide caused by ferritin bound to copper, FEBS Lett. 328:263–267.PubMedCrossRefGoogle Scholar
  7. Brown, D. A., Chatel, K. W., Chan, A. Y., and Knight, B., 1980, Cytosolic levels and distribution of cadmium, copper and zinc in pretumorous livers from diethylnitrosamine exposed mice and in noncancerous kidneys from cancer patients, Chem. Biol. Interact. 32:13–27.PubMedCrossRefGoogle Scholar
  8. Candy, J. M., Klinowki, J., Perry, R. H., Perry, E. K., Fairbrain, A., Oakley, A., Carpenter, T., Atack, J., Blessed, G., and Edwardson, J., 1986, Alumino-silicates and senile plaque formation in Alzheimer’s disease, Lancet 1:354–356.PubMedCrossRefGoogle Scholar
  9. Castro, L., Rodriguze, M., and Radi, R., 1994, Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide, J. Biol. Chem. 269:29409–29415.PubMedGoogle Scholar
  10. Chauthaiwale, V., Dhar, M., and Joshi, J. G., 1993, Cloning of a novel full length cDNA for ferritin heavy chain (FTH) from adult human brain, FASEB J. 7:A628.Google Scholar
  11. Clauberg, M., and Joshi, J. G., 1993, Regulation of serine protease activity by aluminum: Implications for Alzheimer’s disease, Proc. Natl Acad. Sci. USA 90:1009–1012.PubMedCrossRefGoogle Scholar
  12. Cochran, M., and Chawtar, V., 1988, Interaction of horse-spleen ferritin with aluminum citrate, Clin. Chim. Acta. 178:79–84.PubMedCrossRefGoogle Scholar
  13. Cochran, M., Coates, J., and Neoh, S., 1984, The competitive equilibrium between aluminum and ferric ions for the binding sites of transferrin, FEBS Lett. 176:129–132.PubMedCrossRefGoogle Scholar
  14. Cochran, M., Goddard, G., Ramm, G., Ludwigson, N., Marshall, J., and Holliday, J., 1993, Absorbed aluminum is found with cytosolic protein fractions other than ferritin, in the rat duodenum. Gut 34:643–646.PubMedCrossRefGoogle Scholar
  15. Connor, J. R., Menzies, S. L., St. Martin, S. M., and Mufson, E. L., 1992, A histochemical study of iron, transferrin and ferritin in Alzheimer’s diseased brain, J. Neurosci. Res. 31:75–81.PubMedCrossRefGoogle Scholar
  16. Connor, J. R., Boeshore, K. L., Benkovic, S. A., and Menzies, S. L., 1994, Isoforms of ferritin have a specific cellular distribution in the brain, J. Neurosci. Res. 37:461–465.PubMedCrossRefGoogle Scholar
  17. Connor, J. R., Synder, B. S., Arosio, P., Loeffler, D. A., and Dewitt, P. A., 1995, A quantitative analysis of isoferritins in select regions of aged, parksinsonian, and Alzheimer’s disease brains, J. Neurochem. 65:717–724.PubMedCrossRefGoogle Scholar
  18. Crapper, D. R., Krishnan, S. S., and Quittkat, S., 1976, Aluminum, neurofibrillary degeneration and Alzheimer’s disease, Brain 99:67–80.PubMedCrossRefGoogle Scholar
  19. Crapper-McLachlan, D. R., 1986, Aluminum and Alzheimer’s disease, Neurobiol. Aging 7:525–532.CrossRefGoogle Scholar
  20. Crumbliss, A. L., and Garrison, M. A., 1988, Comparison of some aspects of coordination chemistry of aluminum (III), and iron (III), Comm. Inorg. Chem. 8:1–11.CrossRefGoogle Scholar
  21. Dedman, D. J., Treffrey, A., Candy, J. M., Taylor, G. A., Morris, C. M., Bloxham, C. A., Perry, R. H., Edwardson, J. A., and Harrison, P., 1992a, Iron and aluminum in relation to brain ferritin in normal individuals and Alzheimer’s disease and chronic renal-dialysis patients, Biochem J. 287:509–514.PubMedGoogle Scholar
  22. Dedman, D. J., Treffry, A., and Harrison, P. M., 1992b, Interaction of aluminum citrate with horse spleen ferritin, Biochem. J. 287:515–520.PubMedGoogle Scholar
  23. Deshpande, V. V., and Joshi, J. G., 1985, Vit C. Fe (III) induced loss of the covatently bound phosphate and enzyme activity of phosphoglucomutase, J. Biol. Chem. 260:757–764.PubMedGoogle Scholar
  24. Dhar, M., and Joshi, J. G., 1993, Differential processing of ferritin heavy chain mRNA in human liver and adult human brain, J. Neurochem. 61:2140–2146.PubMedCrossRefGoogle Scholar
  25. Dhar, M., and Joshi, J. G., 1994, Detection and quantitation of a novel ferritin H-chain mRNA in human tissues, Biofactors 3:147–149.Google Scholar
  26. Dhar, M., Chauthaiwale, V., and Joshi, J. G., 1993, Sequence of a cDNA encoding the ferritin H-chain from an 11-week old fetal brain, Gene 126:275–278.PubMedCrossRefGoogle Scholar
  27. Dyrks, T., Dyrks, E., Hartmann, Masters, C., and Beyreuther, K., 1992, Amyloidogenicity of βA4 and βA4 bearing amyloid precurson fragments by metal-catalyzed oxidation, J. Biol Chem. 267:18210–18127.PubMedGoogle Scholar
  28. Evans, P. H., Peterhans, E., Bürge, T., and Klinowski, J., 1992, Aluminosilicate-induced free radical generation by murine brain glial cells in vitro. Potential significance in the aetiopathogenesis of Alzheimer’s dementia, Dementia 3:1–6.Google Scholar
  29. Fleming, J. T., and Joshi, J. G., 1987, Ferritin: Isolation of aluminum-ferritin complex from brain, Proc. Natl. Acad. Sci USA 84:7866–7870.PubMedCrossRefGoogle Scholar
  30. Fleming, J. T., and Joshi, J. G., 1991, Ferritin: The role of aluminum in ferritin function, Neurobiol. Aging 12:413–418.PubMedCrossRefGoogle Scholar
  31. Fridovich, I., 1989, Superoxide dismutases: An adaptation to a paramagnetic gas, J. Biol. Chem. 264:7761–7764.PubMedGoogle Scholar
  32. Godbold, D. L., Fritz, E., and Hütermann, A., 1988, Aluminum toxicity and forest decline, Proc. Natl. Acad. Sci. USA 85:3888–3892.PubMedCrossRefGoogle Scholar
  33. Good, P. F., Perl, D. P., Bierer, L. M., and Schmeidler, J., 1992, Selective accumulation of aluminum and iron in neurofibrillary tangles of Alzheimer’s disease: A laser microprobe (LAMMA) study, Ann. Neurol. 31:286–292.PubMedCrossRefGoogle Scholar
  34. Granick, S., and Hahn, P., 1944, Ferritin VIII—speed and uptake of iron by liver and its conversion to ferritin iron, J. Biol. Chem. 155:661–669.Google Scholar
  35. Grant, C. T., and Tabrosky, G., 1966, The generation of labile protein-bound phosphate by phosphoprotein oxidation linked to autooxidation of ferrous ions, Biochemistry 5:544–553.PubMedCrossRefGoogle Scholar
  36. Green, S., and Mazur, A., 1957, Relation of citric acid metabolism to release iron from hepatic ferritin, J. Biol. Chem. 227:653–668.Google Scholar
  37. Grundke-Iqbal, I., Fleming, J. T., Tung, Y. C., Lassmann, H., Iqbal, K., and Joshi, J. G., 1990, Ferritin is a component of the neuritic (senile) plaque in Alzheimer’s dementia, Acta. Neuropathol. 81:105–110.PubMedCrossRefGoogle Scholar
  38. Gutteridge, J. M. C., Quinlan, G. J., Clark, I., and Halliwell, B., 1985, Aluminum salts accelerate peroxidation of membrane lipids stimulated by iron salts, Biochem. Biophys. Acta. 835:441–447.PubMedCrossRefGoogle Scholar
  39. Guzzo, A., Karatzios, C., Diorio, C., and DuBow, M. S., 1994, Metallothionein-II and ferritin H mRNA levels are increased in arsenite-exposed HeLa cells, Biochem. Biophys. Res. Commun. 205:590–595.PubMedCrossRefGoogle Scholar
  40. Hallgren, B., and Sourander, P., 1958, The effect of age on the nonheme iron in the human brain, J. Neurochem. 3:41–51.PubMedCrossRefGoogle Scholar
  41. Harford, J. B., and Klausner, R. D., 1990, Coordinate post-transcriptional regulation of ferritin and transferrin receptor expression: the role of regulated RNA-protein interaction, Enzyme 44:28–41.PubMedGoogle Scholar
  42. Hashimoto, T., Joshi, J. G., Del Rio, C., and Handler, P., 1967, Phosphoglucomutase: IV Inactivation by beryllium ions, J. Biol. Chem. 242:1671–1679.PubMedGoogle Scholar
  43. Hausladen, A., and Fridovich, I., 1994, Superoxide and peroxyoitrite inactivate aconitases but nitric oxide does not, J. Biol. Chem. 269:29405–29408.PubMedGoogle Scholar
  44. Hederson, B. R., Seiser, C., and Kuhn, L., 1993, Characterization of a second RNA-binding protein in rodents with specificity to iron-responsive elements, J. Biol Chem. 268:27327–27334.Google Scholar
  45. Hill, J. M., 1988, The distribution of iron in the brain, in: Brain Iron: Neurochemical and Behavioral Aspects (M. B. H. Youdin, ed.), Taylor and Frances, London, pp. 1–24.Google Scholar
  46. Jeslow, M. M., 1980, Blood zinc and lead poisoning, in: Zinc in the Environment. Part II. Health Effects. (J. O. Nrigau, ed.), Wiley Interscience, New York, pp. 171–181.Google Scholar
  47. Joshi, J. G., 1990, Aluminum: A neurotoxin which affects diverse metabolic reactions, Biofactors 2:163–169.PubMedGoogle Scholar
  48. Joshi, J. G., 1991, Neurochemical hypothesis: Participation by aluminum in producing critical mass of colocalized errors in brain leads to neurological diseases, Comp. Biochem. Physio. 100C: 103–105.Google Scholar
  49. Joshi, J. G., and Clauberg, M., 1988, Ferritin: An iron storage protein with diverse functions, Biofactors 1:207–212.PubMedGoogle Scholar
  50. Joshi, J. G., and Zimmerman, A., 1988, Ferritin: An expanded role in metabolic regulation, Toxicology 48: 21–29.PubMedCrossRefGoogle Scholar
  51. Joshi, J. G., Price, D. J., and Fleming, J., 1984, Ferritin and metal toxicity, In Protides of Biological Fluids, (H. Peeters, ed.), Pergamon Press, Elmsford, New York, 183–186.Google Scholar
  52. Joshi, J. G., Clauberg, and Dhar, M. S., 1992, Role of iron and aluminum in brain disorders, Adv. Behav. Biol. 40:387–396.CrossRefGoogle Scholar
  53. Joshi, J. G., Clauberg, M., Dhar, M., and Chauthaiwale, V., 1994, Iron and aluminum homeostasis in neural disorders, Environ. Health Perspect. 102 (suppl 3):207–213.PubMedGoogle Scholar
  54. Klausner, R. D., Roualt, T. A., and Harford, J. B., 1993, Regulating the fate of mRNA: The control of cellular iron metabolism, Cell 72:19–28.PubMedCrossRefGoogle Scholar
  55. Kojima, Y, and Kagi, J. H. R., 1978, Mettallothioneins, Trends Biochem. Sci. 3:90–93.CrossRefGoogle Scholar
  56. Kong, S., Liochev, S., and Fridorich, I., 1992, Aluminum (III) facilitates the oxidation of NADH by the superoxide anions, Free Radic. Biol. Med. 13:79–81.PubMedCrossRefGoogle Scholar
  57. Lindenschmidt, R. C., Sendelbach, L. E., Witschi, H. P., Price, D. J., Fleming, J., and Joshi, J. G., 1986, Ferritin and in vivo beryllium toxicity, Toxicol. Appl. Pharm. 82:344–350.CrossRefGoogle Scholar
  58. Lovell, M. A., Ehmann, W. D., and Markesbery, W. R., 1993, Laser microprobe analysis of brain aluminum in Alzheimer’s disease, Ann. Neurol. 33:36–42.PubMedCrossRefGoogle Scholar
  59. Macara, I. G., Hoy, T. G., and Harrison, P. M., 1973a, The formation of ferritin from apoferritin. Catalytic action of apoferritin, Biochem. J. 135:343–348.PubMedGoogle Scholar
  60. Macara, I. G., Hoy, T. G., and Harrison, P. M., 1973b, The formation of ferritin from apoferritin, inhibition of metal ion-binding studies, Biochem. J. 135:785–789.PubMedGoogle Scholar
  61. MacDoland, M. H., Cook, J. D., Epstein, M. L., and Flowers, C. H., 1994, Large amount of (apo) ferritin in the pancreatic insulin cell and its stimulation by glucose, FASEB J. 8:771–781.Google Scholar
  62. Mantyh, P. W., Ghilardi, J. R., Rogers, S., DeMaster, E., Allen, C. J., Stimson, E. R., and Maggion, J. E., 1993, Aluminum, iron and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide, J. Neurochem. 61:1167–1170.CrossRefGoogle Scholar
  63. Mazur, A., and Carleton, A., 1965, Hepatic xanthine oxidase and ferritin iron in the developing rat, Blood 26:317–322.PubMedGoogle Scholar
  64. Mazur, A., Green, S., Saha, A., and Carelton, A., 1958, Mechanism of release of ferritin iron in vivo by xanthine oxidase, J. Clin. Invest. 37:1809–1817.PubMedCrossRefGoogle Scholar
  65. McCord, J. M., 1986, Superoxide radical: A likely link between reperfusion injury and inflammation, Adv. Free. Rad. Biol. Med. 2:325–345.CrossRefGoogle Scholar
  66. McLachlan, D. R. C., Dalton, A. J., Kruck, T. P. A., Bell, M. Y, Smith, W. L., Kalow, W., Andrews, D. F, 1993, Intramuscular desferrioxamine in patients with Alzheimer’s disease, Lancet 337:1304–1308.CrossRefGoogle Scholar
  67. Müller, J. P., Vedel, M., Monnot, M. J., Touzet, N., Wegnez, M., 1991, Molecular cloning and expression of ferritin mRNA in heavy metal-poisoned Xenopus laevis cells, DNA-Cell Biol. 10:571–579.PubMedCrossRefGoogle Scholar
  68. Munekata, K., and Hossman, K. A., 1987, Effect of five-minute ischemia on regional pH and energy state of the brain. Relation to selective vulnerability of the hippocampus, Stroke 18:412–417.PubMedCrossRefGoogle Scholar
  69. Munro, H., 1993, The ferritin genes. Their response to iron status, Nutrit. Rev. 51:65–73.PubMedCrossRefGoogle Scholar
  70. Nelson, R. B., and Simon, R., 1990, Clipsin, a chymotrypsin-like protease in the rat brain which is irreversibly inhibited by a-1-antichymotrypsin, J. Biol. Chem. 265:3836–3843.PubMedGoogle Scholar
  71. Nelson, S. K., Bose, S. K., and McCord, J. M., 1994, The toxicity of high dose of superoxide dismutase suggests that superoxide can both initiate and terminate lipid peroxidation in the reperfused heart, Free Rad. Biol. Med. 16:195–200.PubMedCrossRefGoogle Scholar
  72. Nelson, S. K., Wong, G. H. W., and McCord, J. M., 1995, Leukemia inhibitory factor and tumor necrosis factor induce manganese superoxide dismutase and protect rabbit hearts from reperfusion injury, J. Mol Cell. Cardio. 27:223–229.CrossRefGoogle Scholar
  73. Noda, M., Yasuda, M., and Kitagawa, M., 1991, Iron as a possible aggrevating factor for osteopathy in itai-itai disease, a disease associate with chronic cadmium intoxication, J. Bone Miner Res. 6:245–255.PubMedCrossRefGoogle Scholar
  74. Paschen, W., Djuricic, B., Mies, G., Schmidt, Kastner, R., and Linn, F., 1987, Lactate and pH in the brain. Association and dissociation in different pathophysiological states, J. Neurochem. 48:154–159.PubMedCrossRefGoogle Scholar
  75. Percy, M. E., Bauer, S., Rainey, S., McLachlan, D. R. C., Dhar, M., and Joshi, J. G., 1995, Localization of a new ferritin heavy chain sequence present in human brain mRNA to chromosome 11, Genome 38:450–457.PubMedCrossRefGoogle Scholar
  76. Perl, D. P., and Brody, A. R., 1980, Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle baring neurons, Science 208:297–299.PubMedCrossRefGoogle Scholar
  77. Price, D. J., and Joshi, J. G., 1982, Ferritin: A zinc detoxicant and a zinc ion donor, Proc. Natl Acad. Sci. USA 57:1482–1485.Google Scholar
  78. Price, D. J., and Joshi, J. G., 1983, Ferritin: Binding of beryllium and other divalent metal ions, J. Biol. Chem. 258:10873–10880.PubMedGoogle Scholar
  79. Price, D. J., and Joshi, J. G., 1984, Ferritin: Protection of enzymatic activity against the inhibition by divalent metal ions in vitro, Toxicology 31:151–163.PubMedCrossRefGoogle Scholar
  80. Reif, D. W., 1992, Ferritin as a source of iron for oxidative damage, Free Radic. Biol. Med. 12:417–427.PubMedCrossRefGoogle Scholar
  81. Roskams, A. J., and Connor, J. R., 1990, Aluminum access to the brain: A role for transferrin and its receptor, Proc. Natl. Acad. Sci. USA 87:9024–9028.PubMedCrossRefGoogle Scholar
  82. Roth, E. L., Dunlap, J. R., and Stacy, J., 1987, Localization of aluminum in soybean bacteriods and seeds, Appl. Environ. Microbiol. 53:2548–2543.PubMedGoogle Scholar
  83. Rüssell, H. A., 1970, Über die binding von blei an eisenhydroxidhaltige Stoffe in leber, niere and milz-vergifteter rinder, Bull. Environ. Contam. Toxicol. 5:115–124.CrossRefGoogle Scholar
  84. San-Marina, S., and Nicholls, D. M., 1992, Some effects of aluminum on rat brain protein synthesis, Comp. Biochem. Physiol. 103:585–591.CrossRefGoogle Scholar
  85. Sczekan, S. R., and Joshi, J. G., 1989, Metal binding properties of phytoferritin and synthetic iron cores, Biochim. Biophys. Acta 990:8–14.CrossRefGoogle Scholar
  86. Seiko, D. J., 1990, Deciphering Alzheimer’s disease: The amyloid precursor protein yields new clues, Science 248:1058–1060.CrossRefGoogle Scholar
  87. Sendelbach, L. E., and Witschi, H. P., 1987, Protection against pulmonary beryllium toxicity by iron, Toxicol. Lett. 48:321–325.CrossRefGoogle Scholar
  88. Sinha, S., Dovey, H. G., Seubert, P., Ward, P. J., Blacher, R. W., Blaber, M., Bradshaw, R. A., Arici, M., Mobley, W. C., and Lieberburg, I., 1990, The protease inhibitory properties of the Alzheimer’s beta-amyloid precursor proteins, J. Biol. Chem. 265:8983–8985.PubMedGoogle Scholar
  89. Stadtman, E. R., and Oliver, C. N., 1991, Metal-catalysed oxidation of proteins, J. Biol. Chem. 266:2005–2009.PubMedGoogle Scholar
  90. Suarez, N., and Eriksson, H., 1993, Receptor-mediated endocytosis of a manganese complex of transferrin into neuroblastoma (SHSY5Y) cells in culture, J. Neurochem. 61:127–131.PubMedCrossRefGoogle Scholar
  91. Sun, S., and Chasteen, N. D., 1992, Ferroxidase kinetics of horse spleen apoferritin, J. Biol. Chem. 267:25160–25166.PubMedGoogle Scholar
  92. Sun, S., and Chasteen, N. D., 1994, Rapid kinetics of the EPR-active species formed during initial iron uptake in horse spleen apoferritin, Biochemistry 33:15095–15102.PubMedCrossRefGoogle Scholar
  93. Swaiman, K. F., 1991, Hallervorden-Spatz syndrome and brain iron metabolism, Arch. Neurol. 48:1285–1292.PubMedCrossRefGoogle Scholar
  94. Tepper, L. B., 1972, Beryllium, CRC Crit. Rev. Toxicol. 1:235–259.CrossRefGoogle Scholar
  95. Theil, E. C., 1987, Ferritin: Structure, gene regulation, and cellular function in animals, plants, and microorganisms, Annu. Rev. Biochem. 56:289–315.PubMedCrossRefGoogle Scholar
  96. Thomas, M., and Aldridge, W. N., 1966, Inhibition of enzymes by beryllium, Biochem. J. 98:94–98.PubMedGoogle Scholar
  97. Toda, G., Hashimoto, T., Asakura, T., and Minakami, S., 1967, Inhibition of Na-K-activated ATPase by beryllium, Biochem. Biophys. Acta. 135:570–572.PubMedCrossRefGoogle Scholar
  98. Trapp, G. A., 1983, Plasma aluminum is bound to transferrin, Life. Sci. 33:311–316.PubMedCrossRefGoogle Scholar
  99. Udom, A. O., and Brady, F. O., 1980, Reactivation in vitro of Zn-requiring apoenzymes by rat liver Zn-thionein Biochem. J. 187:329–335.PubMedGoogle Scholar
  100. Wardeska, J. G., Viglione, B., and Chasteen, N. D., 1986, Metal ion complexes of apoferritin. Evidence for initial binding in the hydrophilic channels, J. Biol. Chem. 261:847–850.Google Scholar
  101. Witschi, H. P., and Aldridge, W. N., 1968, Uptake, distribution, and binding of beryllium to organelles of the rat liver cell, Biochem. J. 106:811–820.PubMedGoogle Scholar
  102. Yates, C. M., Butterworth, J., Tennant, M. C., and Gordon, A., 1990, Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer type and other dementia, J. Neurochem. 55:1624–1630.PubMedCrossRefGoogle Scholar
  103. Zamen, S., and Verwilghen, R. L., 1981, Influence of zinc on iron uptake by monolayer-cultures of rat hepatocytes and the hepatocellular ferritin, Biochem. Biophys. Acta. 675:77–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. G. Joshi
    • 1
  1. 1.Department of BiochemistryUniversity of TennesseeKnoxvilleUSA

Personalised recommendations