Skip to main content

Delivery of Metals to Brain and the Role of the Blood-Brain Barrier

  • Chapter
Metals and Oxidative Damage in Neurological Disorders

Abstract

Metals serve critical roles in brain as essential cofactors, catalysts, second messengers, and modulators of gene, enzyme, and receptor activity. Currently, eight metals, including calcium, magnesium, iron, copper, zinc, manganese, cobalt, and molybdenum, are known to be required for the normal development and function of the brian (Prohaska, 1987). Each must be supplied at specific levels to avoid signs of deficiency or toxic excess. Others, such as lead, aluminum, and mercury, are not essential, but are toxic if allowed to accumulate in the nervous system. Several metals, including iron, stimulate free radical formation and have been linked to oxidative damage in neurological disorders, including ischemia, stroke, and Parkinson’s disease (Riederer et al., 1989; Dexter et al., 1989; Griffiths and Crossman, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, N. J., 1992, Comparative physiology of the blood-brain barrier, in: Physiology and Pharmacology of the Blood-Brain Barrier, Handbook of Experimental Pharmacology, Volume 103, (M. W. B. Bradbury, ed.), Springer-Verlag, Berlin, pp. 371–396.

    Chapter  Google Scholar 

  • Aisen, P., Aasa, R., and Redfield, A. G., 1969, The chromium, manganese, and cobalt complexes of transferrin, J. Biol. Chem. 244:4628–4633.

    PubMed  CAS  Google Scholar 

  • Aldred, A. R., Dickson, P. W., Marley, P. D., and Schreiber, G., 1987, Distribution of transferrin synthesis in brain and other tissues in the rat, J. Biol. Chem. 262:5293–5297.

    PubMed  CAS  Google Scholar 

  • Allen, D. D., Orvig, C., and Yokel, R. A., 1995, Evidence for energy-dependent transport of aluminum out of brain extracellular fluid, Toxicology 98:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Aschner, M., and Aschner, J. L., 1990a, Mercury neurotoxicity: Mechanisms of blood-brain barrier transport, Neurosci. Biobehav. Rev. 14:169–176.

    Article  PubMed  CAS  Google Scholar 

  • Aschner, M., and Aschner, J. L., 1990b, Manganese transport across the blood-brain barrier: Relationship to iron homeostasis, Brain Res. Bull. 24:857–860.

    Article  PubMed  CAS  Google Scholar 

  • Aschner, M., and Gannon, M., 1994, Manganese (Mn) transport across the rat blood-brain barrier: Saturable and transferrin-dependent transport mechanisms, Brain Res. Bull. 33:345–349.

    Article  PubMed  CAS  Google Scholar 

  • Banks, W. A., Kastin, A. J., Fasold, M. B., Barrera, C. M., and Augereau, G., 1988, Studies of the slow bidirectional transport of iron and transferrin across the blood-brain barrier, Brain Res. Bull. 21:881–885.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, B., Popovici, T., Chouham, S., Levin, M. J., Tuil, D., and Kahn, A., 1987, Transferrin gene expression in choroid plexus of the adult rat brain, Brain Res. Bull. 18:573–576.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury, M. W. B., 1979, The Concept of a Blood-Brain Barrier, Wiley & Sons, Chichester.

    Google Scholar 

  • Bradbury, M. W. B., 1992, Trace metal transport at the blood-brain barrier, in: Physiology and Pharmacology of the blood-brain barrier, Handbook of Experimental Pharmacology, Volume 103, (M. W. B. Bradbury, ed.), Springer-Verlag, Berlin, pp. 263–278.

    Chapter  Google Scholar 

  • Bradbury, M. W. B., 1994, Transport of Fe2+ into brain during cerebrovascular perfusion in the anaesthetized rat, J. Physiol. 479:37P.

    Google Scholar 

  • Bradbury, M. W. B., and Deane, R., 1986, Rate of uptake of lead-203 into brain and other soft tissues of the rat at constant radiotracer levels in plasma, Ann. NY Acad. Sci. 481:142–160.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury, M. W. B., and Deane, R., 1993, Permeability of the blood-brain barrier to lead, Neurotoxicology 14:131–136.

    PubMed  CAS  Google Scholar 

  • Brightman, M. W., and Tao-Cheng, J. H., 1993, Tight junctions of brain endothelium and epithelium, in: The Blood-Brain Barrier (W M. Pardridge, ed.), Raven Press, New York.

    Google Scholar 

  • Buxani-Rice, S., Ueda, F., and Bradbury, M. W. B., 1994, Transport of zinc-65 at the blood-brain barrier during short cerebrovascular perfusion in the rat: Its enhancement by histidine, J. Neurochem. 62:665–672.

    Article  PubMed  CAS  Google Scholar 

  • Citi, S., Sabanay, H., Jakes, R., Geiger, B., and Kendrick-Jones, J., 1988, Cingulin: a new peripheral component of tight junctions, Nature 333:272–276.

    Article  PubMed  CAS  Google Scholar 

  • Crichton, R. R., ed., 1991, Inorganic Biochemistry of Iron Metabolism, Ellis Horwood, New York.

    Google Scholar 

  • Crone, C., 1984, Lack of selectivity to small ions in paracellular pathways in cerebral and muscle capillaries of the frog. J. Physiol (Lond) 353:317–337.

    CAS  Google Scholar 

  • Crone, C., and Olesen, S. P., 1982, Electrical resistance of brain microvascular endothelium, Brain Res. 241:49–55.

    Article  PubMed  CAS  Google Scholar 

  • Davidsson, L., Lönnerdal, B., Sandström, B., Kunz, C., and Keen, C. L., 1989, Identification of transferrin as the major plasma carrier protein for manganese introduced orally or intravenously or after in vitro addition in the rat, J. Nutr. 119:1461–1464.

    PubMed  CAS  Google Scholar 

  • Dawson, D. C., and Ballatori, N., 1995, Membrane transporters as sites of action and routes of entry for toxic metals, in: Toxicology of Metals: Biochemical Aspects, Handbook of Experimental Pharmacology, Volume 115, (R. A. Goyer and M. G. Cherian, eds.), Springer-Verlag, Berlin, pp. 53–76.

    Google Scholar 

  • Deane, R., and Bradbury, M. W. B., 1990, Transport of lead-203 at the blood-brain barrier during short cerebrovascular perfusion with saline in the rat, J. Neurochem. 54:905–914.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel, R., and Krause, D., 1991, Molecular anatomy of the blood-brain barrier as defined by immunocytochemistry, Int. Rev. Cytol. 127:57–109.

    Article  PubMed  CAS  Google Scholar 

  • Dexter, D. T., Wells, F. R., Lees, A. J., Agid, F., Agid, Y, Jenner, P., and Marsden, C. D., 1989, Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease, J. Neurochem. 52:1830–1836.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, J. B., Rubin, J. B., Handrahan, J. V, Connor, J. R., and Fine, R. E., 1987, Receptor-mediated transcytosis of transferrin across the blood-brain barrier, J. Neurosci. Res. 18:299–304.

    Article  PubMed  CAS  Google Scholar 

  • Frame, M. D. S., and Milanick, 1991, Mn and Cd transport by the Na-Ca exchanger of ferret red blood cells, Am. J. Physiol. 261:C467-C475.

    Google Scholar 

  • Griffiths, P. D., and Crossman, A. R., 1993, Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease, Dementia 4:61–65.

    PubMed  CAS  Google Scholar 

  • Huebers, H. A., and Finch, C. A., 1987, The physiology of transferrin and transferrin receptors, Physiol. Rev. 67:520–582.

    PubMed  CAS  Google Scholar 

  • Idzerda, R. L., Huebers, H., Finch, C. A., and McKnight, G. S., 1986, Rat transferrin gene expression: Tissue-specific regulation by iron deficiency, Proc. Natl. Acad. Sci. USA 83:3723–3727.

    Article  PubMed  CAS  Google Scholar 

  • Jefferies, W. A., Brandon, M. R., Hunt, S. V, Williams, A. F., Gatter, K. C., and Mason, D. Y, 1984, Transferrin receptor on endothelium of brain capillaries, Nature 312:162–163.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R. N., Sromek, S. M., Grahovac, I., and Harik, S. I., 1992, Transferrin receptors of rat and human brain and cerebral microvessels and their status in Alzheimer’s disease, Brain Res. 585:87–93.

    Article  PubMed  CAS  Google Scholar 

  • Kasarskis, E. J., 1984, Zinc metabolism in normal and zinc-deficient rat brain, Exp. Neurology 85:114–127.

    Article  CAS  Google Scholar 

  • Kerper, L. E., Ballatori, N., and Clarkson, T. W., 1992, Methylmercury transport across the blood-brain barrier by an amino acid carrier, Am. J. Physiol. 262:R761-R765.

    Google Scholar 

  • Martin, R. B., Savory, J., Brown, S., Bertholf, R. L., and Wills, M. R., 1987, Transferrin binding of Al3+ and Fe3+, Clin. Chem. 33:405–407.

    PubMed  CAS  Google Scholar 

  • May, P. M., Linder, P. W., and Williams, D. R., 1977, Computer simulation of metal-ion equilibria in biofluids: Models for the low-molecular-weight complex distribution of calcium (II), magnesium (II), manganese (II), iron (III), copper (II), and lead (II) ions in human blood plasma, J. Chem. Soc. Dalton 588–595.

    Google Scholar 

  • Morris, C. M., Candy, J. M., Court, J. A., Whitford, C. A., and Edwardson, J. A., 1987, The role of transferrin in the uptake of aluminium and manganese by the IMR 32 neuroblastoma cell line, Biochem Soc. Transactions 15:498–499.

    CAS  Google Scholar 

  • Morris, C. M., Keith, A. B., Edwardson, J. A., and Pullen, R. G. L., 1992, Uptake and distribution of iron and transferrin in the adult rat brain, J. Neurochem. 59:300–306.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V. A., and Rapoport, S. I., 1992, Brain transfer coefficients for 67Ga: Comparison to 59Fe and effect of calcium deficiency, J. Neurochem. 58:898–902.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V. A., Smith, Q. R., and Rapoport, S. I., 1986, Homeostasis of brain and cerebrospinal fluid calcium concentrations during chronic hypo- and hypercalcemia, J. Neurochem. 47:1735–1741.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V. A., Smith, Q. R., and Rapoport, S. I., 1988a, Transfer coefficients for uptake of Ga-67, Cd-109, and Pb-203 into brain and cerebrospinal fluid (CSF), Abstr. Soc. Neurosci. 14:1037.

    Google Scholar 

  • Murphy, V. A., Smith, Q. R., and Rapoport, S. I., 1988b, Regulation of brain and cerebrospinal fluid calcium by brain barrier membranes following vitamin D-related chronic hypo- and hypercalcemia in rats, J. Neurochem. 51:1777–1782.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V. A., Smith, Q. R., and Rapoport, S. I., 1989a, Rates of tracer cadmium uptake into various tissues, The Pharmacologist 31:137.

    Google Scholar 

  • Murphy, V. A., Smith, Q. R., and Rapoport, S. I., 1989b, Uptake and concentration of calcium in rat choroid plexus during chronic hypo- and hypercalcemia, Brain Res. 484:65–70.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V. A., Wadhwani, K. C., Smith, Q. R., and Rapoport, S. I., 1991a, Saturable transport of manganese (II) across the rat blood-brain barrier, J. Neurochem. 57:948–954.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V. A., Rosenberg, J. M., Smith, Q. R., and Rapoport, S. I., 1991b, Elevation of brain manganese in calcium-deficient rats, Neurotoxicology 12:255–264.

    PubMed  CAS  Google Scholar 

  • Murphy, V. A., Smith, Q. R., and Rapoport, S. I., 1991c, Saturable transport of Ca into CSF in chronic hypo- and hypercalcemia, J. Neurosci. Res. 30:421–426.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V. A., Embrey, E. C., Rosenberg, J. M., Smith, Q. R., and Rapoport, S. I., 1991d, Calcium deficiency enhances cadmium accumulation in the central nervous system, Brain Res. 557:280–284.

    Article  PubMed  CAS  Google Scholar 

  • Narita, K., Kawasaki, F., and Kita, H., 1990, Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs, Brain Res. 510:289–295.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M., Eisenberg, J., and Yang, J., 1987, Human blood-brain barrier transferrin receptor, Metabolism 36:892–895.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, T, Howarth, A. G., Krukoff, T. L., and Stevenson, B. R., 1994, Distribution of tight junction-associated protein ZO-1 in circumventricular organs of the CNS, Mol. Brain Res. 21:235–246.

    Article  PubMed  CAS  Google Scholar 

  • Prohaska, J. R., 1987, Functions of trace elements in brain metabolism, Physiol. Rev. 67:858–901.

    PubMed  CAS  Google Scholar 

  • Pullen, R. G. L., Candy, J. M., Morris, C. M., Taylor, G., Keith, A. B., and Edwardson, J. A., 1990, Gallium-67 as a potential marker for aluminium transport in rat brain: Implications for Alzheimer’s disease, J. Neurochem. 55:251–259.

    Article  PubMed  CAS  Google Scholar 

  • Pullen, R. G. L., Franklin, P. A., and Hall, G. H., 1991, 65Zn uptake from blood into brain in the rat, J. Neurochem. 56:485–489.

    Article  PubMed  CAS  Google Scholar 

  • Rabin, O., Hegedus, L., Bourre, J. M., and Smith, Q. R., 1993, Rapid brain uptake of manganese (II) across the blood-brain barrier, J. Neurochem. 61:509–517.

    Article  PubMed  CAS  Google Scholar 

  • Radunovic, A., 1994, Transport of aluminium, compared with 67-Ga and 59-Fe, into brain and other tissues of the young adult rat, Ph.D. thesis, University of London.

    Google Scholar 

  • Rapoport, S. I., Ohno, K., and Pettigrew, K. D., 1979, Drug entry into the brain, Brain Res. 172:354–359.

    Article  PubMed  CAS  Google Scholar 

  • Riederer, P., Sofie, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K., and Youdim, M. B. H., 1989, Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains, J. Neurochem. 52:515–520.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R., Sandra, A., Siek, G. C., Lucas, J. J., and Fine, R. E., 1992, Studies of the mechanism of iron transport across the blood-brain barrier, Ann. Neurol. 32:S43-S50.

    Article  Google Scholar 

  • Roberts, R. L., Fine, R. E., and Sandra, A., 1993, Receptor-mediated endocytosis of transferrin at the blood-brain barrier, J. Cell Sci. 104:521–532.

    PubMed  CAS  Google Scholar 

  • Roskams, A. J., and Connor, J. R., 1990, Aluminum access to the brain: A role for transferrin and its receptor, Proc. Natl. Acad. Sci. USA 87:9024–9027.

    Article  PubMed  CAS  Google Scholar 

  • Schielke, G. R, and Betz, A. L., 1992, Electrolyte transport, in: Physiology and Pharmacology of the Blood-Brain Barrier, Handbook of Experimental Pharmacology, Volume 103, (M. W. B. Bradbury, ed.), Springer-Verlag, Berlin pp. 221–243.

    Chapter  Google Scholar 

  • Schreiber, G., and Aldred, A. R., 1993, Molecular cloning of choroid plexus-specific transport proteins, in The Blood-Brain Barrier (W. M. Pardridge, ed.), Raven Press, New York, pp. 441–459.

    Google Scholar 

  • Skarlatos, S., Yoshikawa, T., and Pardridge, W. M., 1995, Transport of [125I]transferrin through the rat blood-brain barrier, Brain Res. 683:164–171.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Q. R., 1989, Quantitation of blood-brain barrier permeability, in: Implications of the Blood-Brain Barrier and Its Manipulation, Volume 1, (E. A. Neuwelt, ed.), Plenum Press, New York, pp. 85–118.

    Chapter  Google Scholar 

  • Smith, Q. R., 1990, Regulation of metal uptake and distribution within brain, in: Nutrition and the Brain, Volume 8 (R. J. Wurtman and J. J. Wurtman, eds.), Raven Press, New York, pp. 25–74.

    Google Scholar 

  • Smith, Q. R., 1993, Drug Delivery to brain and the role of carrier-mediated transport, in: Frontiers in Cerebral Vascular Biology: Transport and Its Regulation, (L. R. Drewes, and A. L. Betz, eds.), Plenum Press, New York, pp. 83–93.

    Chapter  Google Scholar 

  • Smith, Q. R., and Rapoport, S. I., 1986, Cerebrovascular permeability coefficients to sodium, potassium, and chloride, J. Neurochem. 46:1732–1742.

    Article  PubMed  CAS  Google Scholar 

  • Suárez, N., and Eriksson, H., 1993, Receptor-mediated endocytosis of a manganese complex of transferrin into neuroblastoma (SHSY5Y) cells in culture, J. Neurochem. 61:127–131.

    Article  PubMed  Google Scholar 

  • Tai, C., Smith, Q. R., and Rapoport, S. I., 1986, Calcium influxes into brain and cerebrospinal fluid are linearly related to plasma ionized calcium concentration, Brain Res. 385:227–236.

    Article  PubMed  CAS  Google Scholar 

  • Takasato, Y, Rapoport, S. I., and Smith, Q. R., 1984, An in situ brain perfusion technique to study cerebrovascular transport in the rat, Am. J. Physiol. 247:H484-H493.

    Google Scholar 

  • Taylor, E. M., and Morgan, E. H., 1990, Developmental changes in transferrin and iron uptake by the brain in the rat, Dev. Brain Res. 55:35–42.

    Article  CAS  Google Scholar 

  • Taylor, E. M., and Morgan, E. H., 1991, Role of transferrin in iron uptake by the brain: a comparative study, J. Comp. Physiol. B 161:521–524.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, E. M., Crowe, A., and Morgan, E. H., 1991, Transferrin and iron uptake by the brain: Effects of altered iron status, J. Neurochem. 57:1584–1592.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, F., Raja, K. B., Simpson, R. J., Trowbridge, I. S., and Bradbury, M. W. B., 1993, Rate of 59Fe uptake into brain and cerebrospinal fluid and the influence thereon of antibodies against the transferrin receptor, J. Neurochem. 60:106–113.

    Article  PubMed  CAS  Google Scholar 

  • Watson, P. M., Anderson, J. M., Vanltaille, C. M., and Doctorow, S. R., 1991, The tight junction-specific protein ZO-1 is a component of the human and rat blood-brain barriers, Neurosci. Lett. 129:6–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, Q.R., Rabin, O., Chikhale, E.G. (1997). Delivery of Metals to Brain and the Role of the Blood-Brain Barrier. In: Connor, J.R. (eds) Metals and Oxidative Damage in Neurological Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0197-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0197-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0199-6

  • Online ISBN: 978-1-4899-0197-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics