Magnetic Resonance Imaging of Brain Iron

  • George Bartzokis


The frequency of Alzheimer’s Disease (AD) increases dramatically with age. The prevalence of AD among people over 65 years of age is 5–10%. The prevalence is as high as 47% among those over age 85 (Evans et al., 1989). Similarly, small age-related increases in neurofibrillary tangles (NFT) have been observed in brains of nonde-mented individuals (Price et al., 1991; Morris et al., 1991; Arriagada et al., 1992). NFT density has been specifically associated with both dementia severity (Berg et al., 1993) and cortical atrophy (Huesgen et al., 1993). Based on the age-related increases observed both in AD and NFT, some have speculated that there is a common pathologic process leading to NFT formation in both aging and AD (Arriagada et al., 1992), while others suggest that AD may represent a specific brain vulnerability to age-related oxidation in which iron may play a role (Stadtman, 1990; Smith et al., 1991).


Globus Pallidus Iron Level Brain Iron Frontal White Matter Tissue Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. D., and Victor, M., Principles of Neurology, McGraw-Hill, New York, 1993.Google Scholar
  2. Andersen, P. B., Birgegard, G., Nyman, R., and Hemmingsson, A., 1991, Magnetic resonance imaging in idiopathic hemochromatosis, Eur. J. Haematology 47:174–178.CrossRefGoogle Scholar
  3. Andorn, A. C., Britton, R. S., and Bacon, R. R., 1990, Evidence that lipid peroxidation and total iron are increased in Alzheimer’s brain, Neurobiol. Aging 11:316.Google Scholar
  4. Aoki, S., Okada, Y, Nishimura, K., Barkovich, A. J., Kjos, B. O., Brasch, R. C., and Norman, D., 1989, Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T, Radiology 172(2):381–385.PubMedGoogle Scholar
  5. Arendash, G. W., Millard, W. J., Dunn, A. J., and Meyer, E. M., 1987, Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat, Science 238:952–956.PubMedCrossRefGoogle Scholar
  6. Arriagada, R V., Marzloff, K., and Hyman, B. T., 1992, Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease, Neurol. 42:1681–1688.CrossRefGoogle Scholar
  7. Bartzokis, G., Aravagiri, M., Oldendorf, W. H., Mintz, J., and Marder, S. R., 1993a, Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores, Magn. Reson. Med. 29:459–464.PubMedCrossRefGoogle Scholar
  8. Bartzokis, G., Mintz, J., Marx, P., Osborn, D., Gutkind, D., Chiang, F., Phelan, C. K., and Marder, S. R., 1993b, Reliability of in vivo volume measures of hippocampus and other brain structures using MRI, Magn. Reson. Imag. 11:993–1006.CrossRefGoogle Scholar
  9. Bartzokis, G., Sultzer, D., Mintz, J., Marx, P., Phelan, C. K., and Marder, S. R., 1994a, MRI suggests increased brain iron in Alzheimer’s disease, Biol. Psych. 35:480–487.CrossRefGoogle Scholar
  10. Bartzokis, G., Mintz, J., Sultzer, D., Marx, P., Herzberg, J. S., Phelan, C. K., and Marder, S. R., 1994b, In vivo MR evaluation of age-related increases in brain iron, Am. J. Neuroradiol. 15:1129–1138.PubMedGoogle Scholar
  11. Bartzokis, G., Beckson, M., Hance, D. B., Marx, P., Foster, J. A., and Marder, S. R., 1997, MR evaluation of age-related increase of brain iron in young adult and older normal males, Magn. Reson. Imag. 15:29–35.CrossRefGoogle Scholar
  12. Berg, L., McKeel, D. W., Miller, J. P., Baty, J., and Morris, J. C., 1993, Neuropathological indexes of Alzheimer’s disease in demented and nondemented persons aged 80 years and older, Arch. Neurol. 50:349–358.PubMedCrossRefGoogle Scholar
  13. Bernardino, M. E., Chaloupka, J. C., Malko, J. A., Chezmar, J. L., and Nelson, R. C., 1989, Are hepatic and muscle T2 values different at 0.5 and 1.5 Tesla?, Magn. Reson. Imag. 7:363–367.CrossRefGoogle Scholar
  14. Besson, J. A. O., Crawford, J. R., Parker, D. M., Ebmeier, K. P., Best, P. V., Gemmell, H. G., Sharp, P. E, and Smith, F. W., 1990, Multimodal imaging in Alzheimer’s disease, Br. J. Psych. 157:216–220.CrossRefGoogle Scholar
  15. Bizzi, A., Brooks, R. A., Brunetti, A., Hill, J. M., Alger, J. R., Miletich, R. S., Francavilla, T. L., and Di Chiro, G., 1990, Role of iron and ferritin in MR imaging of the brain, Radiology 177:59–65.PubMedGoogle Scholar
  16. Blaise, A., Chappert, J., and Girardet, J. L., 1965, Observation par mesures magnetique et effet Mossbauer d’un antiferromagnetisme de grains fins dans la ferritine, Comptes Rendus Hebdomadaires Seanc. Acad. Sci., Paris, 261D:2310–2313.Google Scholar
  17. Boas, J. F., and Window, B., 1966, Mossbauer effect in ferritin, Aust. J. Phys. 19:573–576.CrossRefGoogle Scholar
  18. Bondareff, W., Raval, J., Colletti, P. M., and Hauser, D. L., 1988, Quantitative magnetic resonance imaging and the severity of dementia in Alzheimer’s disease, Am. J. Psych. 145:853–856.Google Scholar
  19. Bottomley, P. A., Hardy, C. J., Argersinger, R. E., and Allen-Moore, G., 1987, A review of 1H nuclear magnetic resonance relaxation in pathology: Are T1 and T2 diagnostic?, Med. Phys. 14:1–37.PubMedCrossRefGoogle Scholar
  20. Brooks, D. J., Luthert, P., Gadian, D., and Marsden, C.D., 1989, Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral water proton T2 values and iron levels, J. Neurol. Neurosurg. Psych. 52:108–111.CrossRefGoogle Scholar
  21. Brooks, R. A., and Di Chiro, G., 1987, Magnetic resonance imaging of stationary blood: A review, Med. Phys. 14:903–913.PubMedCrossRefGoogle Scholar
  22. Brun, A., and Gustafron, L., 1978, Limbic lobe involvement in presenile dementia, Arch. Psych. Nervenkr. 226:79–93.CrossRefGoogle Scholar
  23. Carpenter, M. B., 1991, Core Text of Neuroanatomy, William & Wilkins, Baltimore, pp. 383–384.Google Scholar
  24. Chen, J. C., Hardy, P. A., Clauberg, M., Joshi, J. G., Parravano, J., Deck, J. H. N., Henkelman, R. M., Becker, L. E., and Kucharczyk, W., 1989, T2 values of the human brain: Comparison with quantitative assays of iron and ferritin, Radiology 173:521–526.PubMedGoogle Scholar
  25. Chen, J. C., Hardy, P. A., Kucharczyk, W., Clauberg, M., Joshi, J., Vourlas, A., Dahr, M., and Henkelman, R., 1993, MR of human postmortem brain tissue: Correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease, Am. J. Neuroradiol. 14:275–281.PubMedGoogle Scholar
  26. Coffey, C. E., Figiel, G. S., Djang, W. T., and Weiner, R. D., 1990, Subcortical hyperintensity on magnetic resonance imaging: A comparison of normal and depressed elderly subjects, Am. J. Psych. 147:187–189.Google Scholar
  27. Connor, J. R., Menzies, S. L., St. Martin S. M., and Mufson, E. J., 1992, A histochemical study of iron, transferrin, and ferritin in Alzheimer’s disease brains, J. Neurosci. Res. 31:75–83.PubMedCrossRefGoogle Scholar
  28. Dedman, D. J., Treffry, A., Candy, J. M., Taylor, G. A. A., Morris, C. M., Bloxham, C. A., Perry, R. H., Edwardson, J. A., and Harrison, P. M., 1992, Iron and aluminum in relation to brain ferritin in normal individuals and Alzheimer’s disease and chronic renal-dialysis patients, Biochem. J. 287:509–514.PubMedGoogle Scholar
  29. Dexter, D. T., Wells, F. R., Lees, A. J., Agid, F., Agid, Y., Jenner, P., and Marsden, C. D., 1989, Increased nigral iron content and alterations in other metal ions occurring in the brain in Parkinson’s disease, J. Neurochem. 52:1830–1836.PubMedCrossRefGoogle Scholar
  30. Dexter, D. T., Jenner, P., Schapira, A. H., and Marsden, C. D., 1992, Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia, Ann. Neurol. 32:S94-S100.CrossRefGoogle Scholar
  31. Dockery, S. E., Suddarth, S. A., and Johnson, G. A., 1989, Relaxation measurements at 300 Hz using MR microscopy, Magn. Reson. Med. 11:182–192.PubMedCrossRefGoogle Scholar
  32. Doucette, R., Fishman, M., Hachinski, V. C., and Mersky, H., 1986, Cell loss from the nucleus basalis of Meynert in Alzheimer’s disease, Can. J. Neurol. Sci. 13:435–440.PubMedGoogle Scholar
  33. Drayer, B. R., 1989, Basal ganglia: Significance of signal hypointensity on T2-weighted images, Radiology 173:311–312.PubMedGoogle Scholar
  34. Duvernoy, H. M., 1988, The Human Hippocampus: an Atlas of Applied Anatomy. Springer-Verlag, New York, pp. 135–139.CrossRefGoogle Scholar
  35. Earle, K. M., 1968, Studies on Parkinson’s disease including X-ray fluorescent spectroscopy of formalin fixed brain tissue, J. Neuropathol. Exp. Neurol. 27:1–14.PubMedCrossRefGoogle Scholar
  36. Ehmann, W D., Markesbery, W. R., Alauddin, M., Hossain, T. I. M., and Brubaker, E. H., 1986, Brain trace elements in Alzheimer’s disease, Neurotoxicology 7:197–206.Google Scholar
  37. Evans, D. A., Funkenstein, H. H., Albert, M. S., Scherr, P. A., Cook, N. R., Chown, M. J., Hebert, L. E., Hennekens, C. H., and Taylor, J. O., 1989, Prevalence of Alzheimer’s disease in a community population of older persons, JAMA 18:2551–2556.CrossRefGoogle Scholar
  38. Floyd, R. A., and Carney, J. M., 1993, The role of iron in oxidative processes and aging, Toxicol, lndust. Health 9:197–214.Google Scholar
  39. Folstein, M. F., Folstein, S. E., and McHugh, P. R., 1975, “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician, J. Psych. Res. 12:189–198.CrossRefGoogle Scholar
  40. Gillis, P., and Konig, S. H., 1987, Transverse relaxation of solvent protons induced by magnetized spheres: Application to ferritin, erythrocytes, and magnetite, Magn. Reson. Med. 5:323–345.PubMedCrossRefGoogle Scholar
  41. Gomori, J. M., Grossman, R. I., Yu-Ip, C., and Asakura, T., 1987, NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity, J. Comput. Assist. Tomogr. 11:684–690.PubMedCrossRefGoogle Scholar
  42. Good, P. F., Perl, D. P., Bierer, L. M., and Schmeidler, J., 1992, Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: A laser microprobe (LAMMA) study, Ann. Neurol. 31:286–292.PubMedCrossRefGoogle Scholar
  43. Goodman, L., 1953, Alzheimer’s disease: A clinico-pathologic analysis of twenty-three cases with a theory on pathogenesis, J. Nerv. Ment. Dis. 117:97–130.CrossRefGoogle Scholar
  44. Griffiths, P. D., and Crossman, A. R., 1993, Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease, Dementia 4:61–65.PubMedGoogle Scholar
  45. Grundke-Iqbal, I., Fleming, J., Tung, Y. C., Lassmann, H., Iqbal, K., and Joshi, J. G., 1990, Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia, Acta Neuropathologica 81:105–110.PubMedCrossRefGoogle Scholar
  46. Hallgren, B., and Sourander, P., 1958, The effect of age on the non-haemin iron in the human brain, J. Neurochem. 3:41–51.PubMedCrossRefGoogle Scholar
  47. Hallgren, B., and Sourander, P., 1960, The non-haemin iron in the cerebral cortex in Alzheimer’s disease, J. Neurochem. 5:307–310.PubMedCrossRefGoogle Scholar
  48. Halliwell, B., and Gutteridge, J. M., C., 1985, The importance of free radicals and catalytic metal ions in human diseases, Molec. Aspects Med. 8:89–193.CrossRefGoogle Scholar
  49. Halliwell, B., and Gutteridge, J. M. C., 1988, Iron as biological pro-oxidant, ISI Atlas Sci. Biochem. 1:48–52.Google Scholar
  50. Harrington, C. R., Louwagie, J., Rossau, R., Vanmechelen, E., Perry, R. H., Perry, E. K., Xuereb, J. H., Roth, M., and Wischik, C. M., 1994, Influence of apolipoprotein E genotype on senile dementia of the Alzheimer and Lewy body types, Am. J. Path. 145:1472–1484.PubMedGoogle Scholar
  51. Hendrie, H. C., Osuntokun, B. O., Hall, K. S., Ogunniyi, A. O., Hui, S. L., Unverzagt, F. W., Gureje, O., Rodenberg, C. A., Olusegun, B., Musick, B. S., Adeyinka, A., Farlow, M. R., Oluwole, S. O., Class, C. A., Komolafe, O., Brashear, A., and Burdine, V., 1995, Prevalence of Alzheimer’s disease and dementia in two communities: Nigerian Africans and African Americans, Am. J. Psych. 152:1485–1492.Google Scholar
  52. Huesgen, C. T., Burger, P. C., Crain, B. J., and Johnson, G. A., 1993, In vitro MR microscopy of the hippocampus in Alzheimer’s disease, Neurology 43:145–152.PubMedCrossRefGoogle Scholar
  53. Jernigan, T. L., Salamon, D. P., Butters, N., and Hesselink, J. R., 1991, Cerebral structure on MRI: Specific changes in Alzheimer’s and Huntington’s disease, Biol. Psych. 29:55–81.Google Scholar
  54. Jenner, P., Schapira, A. H. V., and Marsden, C. D., 1992, New insights into the causes of Parkinson’s disease, Neurology 42:2241–2250.PubMedCrossRefGoogle Scholar
  55. Johnson, G. A., Hefkens, R. J., and Brown, M. A., 1985, Tissue relaxation time: in vivo field dependence, Radiology 156:805–810.PubMedGoogle Scholar
  56. Kamman, R. L., Go, K. G., Brouwer, W., and Berendsen, H. J. C., 1988, Nuclear magnetic resonance relaxation in experimental brain edema: Effects of water concentration, protein concentration, and temperature, Magn. Reson. Med. 6:265–274.PubMedCrossRefGoogle Scholar
  57. Klintworth, G. K., 1973, Huntington’s chorea: Morphologic contributions of a century, in: Huntington’s Chorea, 1872–1972 (A. Barbeau, T. N. Chase, and G. W. Paulson, eds.), Raven Press, New York, pp. 353–368.Google Scholar
  58. Kucharczyk, W., Henkelman, R. M., and Chen, J., 1993, Brain iron and T2 signal, Am. J. Neuroradiol. 14:1795–1796.Google Scholar
  59. Malisch, T. W., Hedlund, L. W., Suddarth, S. A., and Johnson, G. A., 1991, MR microscopy at 7.0 T: Effects of brain iron, J. Magn. Reson. Imag. 1:301–305.CrossRefGoogle Scholar
  60. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E. M., 1984, Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services task force on Alzheimer’s disease, Neurology 34:939–944.PubMedCrossRefGoogle Scholar
  61. McLachlan, D. R. C., Dalton, A. J., Kruck, T. P. A., Bell, M. Y., Smith, W. L., Kalow, W., and Andrews, D. E, 1991, Intramuscular desferoxamine in patients with Alzheimer’s disease, Lancet 337:1304–1308.CrossRefGoogle Scholar
  62. Miller, T. P., Tinklenberg, J. R., Brooks, J. O., and Yesavage, J. A., 1991, Cognitive decline in patients with Alzheimer disease: Differences in patients with and without extrapyramidal signs, Alzheimer Disease & Associated Disorders 5:251–256.CrossRefGoogle Scholar
  63. Milton, W. J., Atlas, S. W., Lexa, F. J., and Mozley, P. D., 1991, Deep gray matter hypointensity patterns with aging in healthy adults: MR imaging at 1.5 T, Radiology 181:715–719.PubMedGoogle Scholar
  64. Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Crain, B. J., Brownlee, L. M., Vogel, F. S., Huges, J. P., van Belle, G., and Berg, L., 1991, The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease, Neurology 41:479–486.PubMedCrossRefGoogle Scholar
  65. Morris, C. M., Candy, J. M., Keith, A. B., Oakley, A. E., Taylor, G. A., Pullen, R. G. L., Bloxham, C. A., Gocht, A., and Edwardson, J. A., 1992, Brain iron homeostasis, J. Inorg. Biochem. 47:257–265.PubMedCrossRefGoogle Scholar
  66. Morris, J. C., McKeel, D. W., Storandt, M., Rubin, E. H., Price, J. L., Grant, E. A., Ball, M. J., and Berg, L., 1991, Very mild Alzheimer’s disease: Informant-based clinical, psychometric, and pathologic distribution from normal aging, Neurology 41:469–478.PubMedCrossRefGoogle Scholar
  67. Neel, L., 1961, Superparamagnetisme des grain tres fins antiferomagnetiques. Comptes Rendus Hebdomadaires Seanc. Acad. Sci., Paris, 252B:4075–4080.Google Scholar
  68. Olanow, C. W., Holgate, R. C., Murtaugh, R., and Martinez, C., 1989, MR imaging in Parkinson’s disease and aging, in: Parkinsonism and Aging (D. B. Calne, G. Comi, D. Crippa, R. Horowski, and M. Trabucchi, eds.), Raven Press, New York, pp. 155–164.Google Scholar
  69. Ordidge, R. J., Gorell, J. M., Deniau, J. C., Knight, R. A., and Helpern, J. A., 1994, Assessment of relative brain iron concentration using T2-weighted and T2*-weighted MRI at 3 Tesla, Magn. Reson. Med. 32:335–341.PubMedCrossRefGoogle Scholar
  70. Price, J. L., Davis, P. B., and White, D. L., 1991, The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease, Neurobiol. Aging 12:295–312.PubMedCrossRefGoogle Scholar
  71. Pujol, J., Junque, C., Vendreli, P., Grau, J. M., Marti-Vilalta, J. L., Olive, C., and Gili, J., 1992, Biological significance of iron-related magnetic resonance imaging changes in the brain, Arch. Neurol. 49:711–717.PubMedCrossRefGoogle Scholar
  72. Richards, M., Folstein, M., Albert, M., Miller, L., Bylsma, F., Lafleche, G., Marder, K., Bell, K., Sano, M., Devanand, D., Loreck, D., Wootten, J., and Stern, Y, 1993, Multicenter study of predictors of disease course in Alzheimer disease (the “Predictors Study”). II Neurological, psychiatric, and demographic influences on baseline measures of disease severity, Alzheimer Disease & Associated Disorders 7:22–32.CrossRefGoogle Scholar
  73. Rutledge, J. N., Hilal, S. K., Silver, A. J., Defendini, R., and Fahn, S., 1987, Study of movement disorders and brain iron by MR, Am. J. Neuroradiol. 8:397–411.Google Scholar
  74. Sadeh, M., and Sandbank, U., 1980, Neuraxonal dystrophy and hemosiderin in the central nervous system, Ann. Neurol. 7:286–287.PubMedCrossRefGoogle Scholar
  75. Salonen, J. T., Nyyssonen, K., Korpela, H., Tuomilehto, J., Seppanen, R., and Salonen, R., 1992, High iron levels are associated with excess risk of myocardial infarction in eastern Finnish men, Circulation 85:803–811.CrossRefGoogle Scholar
  76. Samuel, W. A., Henderson, V W., and Miller, C. A., 1991, Severity of dementia in Alzheimer disease and neurofibrillary tangles in multiple brain regions, Alzheimer Dis. Assoc. Disord. 5:1–11.PubMedCrossRefGoogle Scholar
  77. Schenker, C., Meier, D., Wichmann, W, Boiesiger, P., and Valavanis, A., 1993, Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen, Neuroradiology 35:119–124.PubMedCrossRefGoogle Scholar
  78. Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., and Markesberry, W. R., 1991, Excess brain protein oxidation and enzyme dysfunction in normal aging and Alzheimer disease, Proc. Natl. Acad. Sci. USA 88:10540–10543.PubMedCrossRefGoogle Scholar
  79. Soininen, H., Laulumaa, V., Helkala, E. L., Hartikainen, P., and Riekkinen, P. J., 1992, Extrapyramidal signs in Alzheimer’s disease: A 3-year follow-up study, J. Neural Transm. (P-D Sect.) 4:107–119.CrossRefGoogle Scholar
  80. Stadtman, E. R., 1990, Metal ion-catalyzed oxidation of proteins, Free Rad. Biol. Med. 9:315–325.PubMedCrossRefGoogle Scholar
  81. St. Clair, D., Norrman, J., Perry, R., Yates, C., Wilcock, G., and Brookes, A., 1994, Apolipoprotein E epsilon 4 allele frequency in patients with Lewy body dementia, Alzheimer’s disease and age-matched controls, Neurosci. Lett. 176:45–6.CrossRefGoogle Scholar
  82. Subbarao, K. V., Richardson, J. S., and Ang, L. C., 1990, Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro, J. Neurochem. 55(l):342–345.PubMedCrossRefGoogle Scholar
  83. Theil, E. C., 1990, The ferritin family of iron storage proteins, Advances in Enzymology and Related Areas of Molecular Biology 63:421–429.PubMedGoogle Scholar
  84. Thomas, L. O., Boyko, O. B., Anthony, D. C., and Burger, P. C., 1993, MR detection of brain iron, Am. J. Neuroradiol. 14:1043–1048.PubMedGoogle Scholar
  85. Vymazal, J., Brooks, R. A., Zak, O., McRill, C., Shen, C., and Di Chiro, G., 1992, T1 and T2 of ferritin at different field strengths: Effect on MRI, Magn. Reson. Med. 27:368–374.PubMedCrossRefGoogle Scholar
  86. Vymazal, J., Zak, O., Bulte, J. W. M., Aisen, P., and Brooks, R. A., 1996, T1 and T2 of ferritin solutions: Effect of loading factor, Magn. Reson. Med. 36:61–65.PubMedCrossRefGoogle Scholar
  87. Ye, F. Q., Martin, W. R. W., Hodder, J., and Allen, P. S., 1994, Brain iron imaging exploiting heterogeneous-susceptibility-enhanced proton relaxation, Proceedings of the Society on Magnetic Resonance, 2nd Annual Meeting, San Francisco, pp. 5.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • George Bartzokis
    • 1
    • 2
  1. 1.Department of PsychiatryUCLALos AngelesUSA
  2. 2.the Research Service and the Psychiatry ServiceWest Los Angeles Veterans Affairs Medical CenterLos AngelesUSA

Personalised recommendations