Skip to main content

Iron and Oxidative Stress in Neonatal Hypoxic-Ischemic Brain Injury Directions for Therapeutic Intervention

  • Chapter
Metals and Oxidative Damage in Neurological Disorders

Abstract

When placental or pulmonary gas exchange is compromised in the fetus or newborn infant it produces hypoxemia, hypercapnia, and metabolic acidosis. Initially during asphyxia, blood flow to the brain increases to maintain cerebral energy metabolism until cardiac depression causes hypotension, bradycardia, and cerebral ischemia (Van-nucci, 1990). Unless prompt and effective resuscitation is achieved, the asphyxiated infant will die. Even when resuscitation is successful, survival may be accompanied by varying degrees of brain injury, the nature of which is related to the duration of the primary insult, the gestational age, and therapeutic interventions initiated during the post-resuscitation period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abello, P. A., Fidler, S. A., Bulkley, G. B., and Buchman, T. G., 1994, Antioxidants modulate induction of programmed endothelial cell death (apoptosis) by endotoxin, Arch. Surg. 129:134–141.

    PubMed  CAS  Google Scholar 

  • Al-Mehdi, A. B., Dodia, C., Jain, M. K., and Fisher, A. B., 1993, A phospholipase A2 inhibitor decreases generation of thiobarbituric acid reactive substance during lung ischemia-reperfusion, Biochim. Biophys. Acta Lipids Lipid Metab. 1167:56–62.

    CAS  Google Scholar 

  • Anderson, D. C., Hughes, B. J., and Smith, C. W., 1981, Abnormal mobility of neonatal polymorphonuclear leukocytes, J. Clin. Invest. 68:863–874.

    PubMed  CAS  Google Scholar 

  • Anderson, D. C., Rothlein, R., Marlin, S. D., Krater, S. S., and Smith, C. W., 1990, Impaired transendothelial migration by neonatal neutrophils: abnormalities of mac-1 (CD 1 lb/CD 18)-dependent adherence reactions, Blood 76:2613–2621.

    PubMed  CAS  Google Scholar 

  • Armstead, W. M., Mirro, R., Busija, D. W., and Leffler, C. W., 1988, Postischemic generation of superoxide anion by newborn pig brain, Am. J. Physiol. 255:H401-H403.

    Google Scholar 

  • Aruoma, O. I., and Halliwell, B., 1987, Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron, Biochem. J. 241:273–278.

    PubMed  CAS  Google Scholar 

  • Azzopardi, D., Wyatt, J. S., Cady, E. B., Delpy, D. T., Baudin, J., Stewart, A. L., Hope, P. L., Hamilton, P. A., and Reynolds, E. O. R., 1989a, Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy, Pediatr. Res. 25:441–451.

    Google Scholar 

  • Azzopardi, D., Wyatt, J. S., Hamilton, P. A., Cady, E. B., Delpy, D. T., Hope, P. L., and Reynolds, E. O. R., 1989b, Phosphorus metabolites and intracellular pH in the brains of normal and small for gestational age infants investigated by magnetic resonance spectroscopy, Pediatr. Res. 25:440–444.

    PubMed  CAS  Google Scholar 

  • Bagenholm, R., Andine, P., and Hagberg, H., 1991, Effects of 21-aminosteroid U74006F on brain damage and edema following perinatal hypoxia-ischemia in the rat, J. Cereb. Blood Flow Metab. 11:S134.

    Google Scholar 

  • Baiping, L., Xiujuan, T., Hongwei, C., Qiming, X., and Quling, G., 1994, Effect of moderate hypothermia on lipid peroxidation in canine brain tissue after cardiac arrest and resuscitation, Stroke 25:147–151.

    Google Scholar 

  • Battus, R. T., Baker, K. L., Heiser, A. D., Sawyer, S. D., Dean, R. L., Elliott, P. J., and Straub, J. A., 1994a, Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage, J. Cereb. Blood Flow Metab. 14:537–544.

    Google Scholar 

  • Battus, R. T., Hayward, N. J., Elliott, P. J., Sawyer, S. D., Baker, K. L., Dean, R. L., Akiyama, A., Straub, J. A., Harbeson, S. L., Li, Z., and Powers, J., 1994b, Calpain inhibitor AK295 protects neurons from focal brain ischemia: Effects of postocclusion intra-arterial administration, Stroke 25:2265–2270.

    Google Scholar 

  • Beckman, J. S., 1994, Peroxynitrite versus hydroxyl radical: The role of nitric oxide in superoxide-dependent cerebral injury, Ann. NY Acad. Sci. 738:69–75.

    PubMed  CAS  Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci. USA 87:1620–1624.

    PubMed  CAS  Google Scholar 

  • Beckman, J. S., Ischiropoulos, H., Chen, J., Zhu, L., and Smith, C. D., 1991, Nitric oxide as a mediator of superoxide-dependent injury, in: Oxidative Damage and Repair: Chemical, Biological and Medical Aspects (K. Davis, ed.), Pergamon Press, Oxford, pp. 251–255.

    Google Scholar 

  • Beckman, J. S., Chen, J., Ischiropoulos, H., and Crow, J. P., 1994, Oxidative chemistry of peroxynitrite, Methods Enzymol. 233:229–240.

    PubMed  CAS  Google Scholar 

  • Beilharz, E. J., Williams, C.E., Draguno, M., Sirimanne, E. S., and Gluckman, P. D., 1995, Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: Evidence for apoptosis during selective neuronal loss, Mol. Brain Res. 29:1–14.

    PubMed  CAS  Google Scholar 

  • Benveniste, H., Drejer, I., Schousboe, A., and Diemer, N. H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia montored by intracerebral microdialysis, J. Neurochem. 43:1369–1374.

    PubMed  CAS  Google Scholar 

  • Berger, H. M., Mumby, S., and Gutteridge, J. M. C., 1995, Ferrous ions detected in iron-overloaded cord blood plasma from preterm and term babies: Implications for oxidative stress, Free Radic. Res. 22:555–559.

    PubMed  CAS  Google Scholar 

  • Betz, A. L., 1985, Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries, J. Neurochem. 44:574–579.

    PubMed  CAS  Google Scholar 

  • Bielenberg, G. W., and Wagener, G., 1989, Infarct reduction by PAF antagonists after MCA occlusion in the rat, J. Cereb. Blood Flow Metabol 9:(Suppl 1)S274.

    Google Scholar 

  • Biemond, P., van Eijk, H. G., Swaak, A. J. G., and Koster, J. K, 1984, Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes. Possible mechanism in inflammatory diseases, J. Clin. Invest. 73:(1984) 1576.

    PubMed  CAS  Google Scholar 

  • Blissman, G., Menzies, S., Beard, J., Palmer, C., and Connor, J., 1996, The expression of ferritin subunits and iron in oligodendrocytes in neonatal procine brains, Dev. Neurosci. 18:274–281.

    PubMed  CAS  Google Scholar 

  • Block, F., Kunkel, M., and Sontag, K. H., 1995, Posttreatment with EPC-K1, an inhibitor of lipid peroxidation and of phospholipase A2 activity, reduces functional deficits after global ischemia in rats, Brain Res. Bull. 36:257–260.

    PubMed  CAS  Google Scholar 

  • Boisvert, D. P., 1991, Effectiveness of postischemic 21-aminosteroid U74006F in preventing reperfusion brain edema, J. Cereb. Blood Flow Metab. 11:S135.

    Google Scholar 

  • Bolann, B. J., and Ulvik, R. J., 1987, Release of iron from ferritin by xanthine oxidase, Biochem. J. 243:55–59.

    PubMed  CAS  Google Scholar 

  • Boveris, A., and Chance, B., 1973, The mitochondrial generation of hydrogen peroxide, Biochem. J. 134:707–716.

    PubMed  CAS  Google Scholar 

  • Bralet, J., Schreiber, L., and Bouvier, C., 1992, Effect of acidosis and anoxia on iron derealization from brain homogenates, Biochem. Pharmacol. 43:979–984.

    PubMed  CAS  Google Scholar 

  • Bromont, C., Marie, C., and Bralet, J., 1989, Increased lipid peroxidation in vulnerable brain regions after transient forebrain ischemia in rats, Stroke 20:918–924.

    PubMed  CAS  Google Scholar 

  • Briine, B., Dimmeler, S., Molina y Vedia, L., and Lapetina, E. G., 1994, Nitric oxide: A signal for ADP-ribosylation of proteins, Life Sci. 54:61–70.

    Google Scholar 

  • Busto, R., Dietrich, W. D., Globus, M. T., and Ginsberg, M. D., 1989, Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury, Neurosci. Lett. 101:299–304.

    PubMed  CAS  Google Scholar 

  • Buttke, T. M., and Sandstrom, P. A., 1994, Oxidative stress as a mediator of apoptosis, Immunol. Today 15:7–10.

    PubMed  CAS  Google Scholar 

  • Candeias, L. P., Patel, K. B., Stratford, M., and Wardman, P., 1993, Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid, FEBS Lett. 333:151–153.

    PubMed  CAS  Google Scholar 

  • Candeias, L. P., Stratford, M., and Wardman, P., 1994, Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron(II) complex, Free Radic. Res. 20:241–249.

    PubMed  CAS  Google Scholar 

  • Cao, X., and Phillis, J. W., 1994, Alpha-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia, Brain Res. 644:267–272.

    PubMed  CAS  Google Scholar 

  • Chan, P. H., and Fishman, R. A., 1980, Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling, J. Neurochem. 35:1004–1007.

    PubMed  CAS  Google Scholar 

  • Chan, P. H., Epstein, C. J., Li, Y., Huang, T. T., Carlson, E., Kinouchi, H., Yang, G., Kamii, H., Mikawa, S., Kondo, T., Copin, J. C., Chen, S. F, Chan, T., Gafni, J., Gobbel, G., and Reola, E., 1995, Transgenic mice and knockout mutants in the study of oxidative stress in brain injury, J. Neurotrauma 12:815–824.

    PubMed  CAS  Google Scholar 

  • Chan, P. H., Schmidley, J. W, Fishman, R. A., and Longar, S. M., 1984, Brain injury, edema and vascular permeability changes induced by oxygen-derived free radicals, Neurology 34:315–320.

    PubMed  CAS  Google Scholar 

  • Charriaut-Marlangue, C., Margaill, I., Plotkine, M., and Ben-Ari, Y, 1995, Early endonuclease activation following reversible focal ischemia in the rat brain, J. Cereb. Blood Flow Metab. 15:385–388.

    PubMed  CAS  Google Scholar 

  • Choi, D. W, 1985, Glutamate neurotoxicity in cortical cell culture is calcium dependent, Neurosci. Lett. 58:293–297.

    PubMed  CAS  Google Scholar 

  • Chopp, M., Chen, H., Dereski, M. O., and Garcia, J. H., 1991, Mild hypothermic intervention after graded ischemic stress in rats, Stroke 22:37–43.

    PubMed  CAS  Google Scholar 

  • Chopp, M., Zhang, R. L., Chen, H., Li, Y, Jiang, N., and Rusche, J. R., 1994, Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats, Stroke 25:869–875.

    PubMed  CAS  Google Scholar 

  • Ciuffi, M., Gentilini, G., Franchi-Micheli, S., and Zilletti, L., 1991, Lipid peroxidation induced “in vivo” by iron-carbohydrate complex in the rat brain cortex, Neurochem. Res. 16:43–49.

    PubMed  CAS  Google Scholar 

  • Coimbra, C., and Weiloch, T., 1994, Moderate hypothermia mitigates neuronal damage in the rat brain when initiated several hours following transient cerebral ischemia, Acta Neuropathol. 87:325–331.

    PubMed  CAS  Google Scholar 

  • Colboume, F., and Corbett, D., 1994, Delayed and prolonged post-ischemic hypothermia is neuroprotective in the gerbil, Brain Res. 654:265–272.

    Google Scholar 

  • Connor, J. R., Pavlick, G., Karli, D., Menzies, S. L., and Palmer, C., 1995, A histochemical study of iron-positive cells in the developing rat brain, J. Comp. Neurol. 355:111–123.

    PubMed  CAS  Google Scholar 

  • Davenpeck, K. L., Gauthier, T. W., and Lefer, A. M., 1994, Inhibition of endothelial-derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation, Gastroenterology 107:1050–1058.

    PubMed  CAS  Google Scholar 

  • Dawson, D. A., 1994, Nitric oxide and focal cerebral ischemia: Multiplicity of actions and diverse outcome, Cerebrovasc. Brain Metab. Rev. 6:299–324.

    PubMed  CAS  Google Scholar 

  • Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H., 1991, Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures, Proc. Natl. Acad. Sci. USA 88:6368–6371.

    PubMed  CAS  Google Scholar 

  • Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R., and Snyder, S. H., 1993, Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures, J. Neurosci. 13:2651–2661.

    PubMed  CAS  Google Scholar 

  • Dawson, V. L., Brahmbhatt, H. P., Mong, J. A., and Dawson, T. M., 1994, Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures, Neuropharmacology 33:1425–1430.

    PubMed  CAS  Google Scholar 

  • Del Zoppo, G. J., 1994, Microvascular changes during cerebral ischemia and reperfusion, Cerebrovasc. Brain Metab. Rev. 6:47–96.

    PubMed  CAS  Google Scholar 

  • Dietrich, W. D., Lin, B. W., Globus, M. Y. T., Green, E. J., Ginsberg, M. D., and Busto, R., 1995, Effect of delayed MK-801 (Dizocilpine) treatment with or without immediate postischemic hypothermia on chronic neuronal survival after global forebrain ischemia in rats, J. Cereb. Blood Flow Metab. 15:960–968.

    PubMed  CAS  Google Scholar 

  • Dirnagl, U., Lindauer, U., Them, A., Schreiber, S., Pfister, H. W., Koedel, U., Reszka, R., Freyer, D., and Villringer, A., 1995, Global cerebral ischemia in the rat: Online monitoring of oxygen free radical production using chemiluminescence in vivo, J. Cereb. Blood Flow Metab. 15:929–940.

    PubMed  CAS  Google Scholar 

  • Ditelberg, J. S., Sheldon, R. A., Epstein, C. J., and Ferriero, D. M., 1996, Brain injury after perinatal hypoxia-ischemia is exacerbated in copper/zinc superoxide dismutase transgenic mice, Pediatr. Res. 39:204–208.

    PubMed  CAS  Google Scholar 

  • Drapier, J. C., and Hibbs, J., 1988, Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells, J. Immunol. 140:2829–2838.

    PubMed  CAS  Google Scholar 

  • Drapier, J. C., Hirling, H., Wietzerbin, J., Kaldy, P., and Kühn, L. C., 1993, Biosynthesis of nitric oxide activates iron regulatory factor in macrophages, EMBO J. 12:3643–3649.

    PubMed  CAS  Google Scholar 

  • Du, C., Hu, R., Csernansky, C. A., Hsu, C. Y., and Choi, D. W., 1996, Very delayed infarction after mild focal cerebral ischemia: A role for apoptosis? J. Cereb. Blood Flow Metab. 16:195–201.

    PubMed  CAS  Google Scholar 

  • Dubinsky, J. M., Kristal, B. S., and Elizondo-Fournier, M., 1995, On the probabilistic nature of excitotoxic neuronal death in hippocampal neurons, Neuropharmacology 34:701–711.

    PubMed  CAS  Google Scholar 

  • Dugan, L. L., Sensi, S. L., Canzoniero, L. M. T., Handran, S. D., Rothman, S. M., Lin, T. S., Goldberg, M. P., and Choi, D. W., 1995, Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate, J. Neurosci. 15:6377–6388.

    PubMed  CAS  Google Scholar 

  • Elliot, S. J., and Schilling, W. P., 1992, Oxidant stress alters Na+pump and Na+-K+-Cl~ cotransporter activates in vascular endothelial cells, Am. J. Physiol. 263:H96-H102.

    Google Scholar 

  • Endoh, M., Maiese, K., Pulsinelli, W. A., and Wagner, J. A., 1993, Reactive astrocytes express NADPH diaphorase in vivo after transient ischemia, Neurosci. Lett. 154:125–128.

    PubMed  CAS  Google Scholar 

  • Evans, P. J., Evans, R., Kovar, I. Z., Holton, A. F., and Halliwell, B., 1992, Bleomycin-detectable iron in the plasma of premature and full-term neonates, FEBS 303:210–212.

    CAS  Google Scholar 

  • Fantone, J. C., and Kinnes, D. A., 1983, Prostaglandin E1 and prostaglandin I2 modulation of superoxide production by human neutrophils, Biophys. Res. Commun. 113:129–137.

    Google Scholar 

  • Ferrer, I., Tortosa, A., Macaya, A., Sierra, A., Moreno, D., Munell, F., Blanco, R., and Squier, W., 1994, Evidence of nuclear DNA fragmentation following hypoxia-ischemia in the infant rat brain, and transient forebrain ischemia in the adult gerbil, Brain Pathol. 4:115–122.

    PubMed  CAS  Google Scholar 

  • Ferriero, D. M., Arcavi, L. J., Sagar, S. M., Mcintosh, T. K., and Simon, R. P., 1988, Selective sparing of NADPH-diaphorase neurons in neonatal hypoxia-ischemia, Ann. Neurol. 24:670–676.

    PubMed  CAS  Google Scholar 

  • Ferriero, D. M., Sheldon, R. A., Black, S. M., and Chuai, J., 1995, Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat, Pediatr. Res. 38:912–918.

    PubMed  CAS  Google Scholar 

  • Fisher, M., Meadows, M. E., Do, T., Weise, J., Trubetskoy, V., Charette, M., and Finklestein, S. P., 1995, Delayed treatment with intravenous basic fibroblast growth factor reduces infarct size following permanent focal cerebral ischemia in rats, J. Cereb. Blood Flow Metab. 15:953–959.

    PubMed  CAS  Google Scholar 

  • Forder, J. R., McClanahan, T. B., Gallagher, K. P., Hedlund, B. E., Hallaway, P. E., and Shlafer, M., 1990, Hemodynamic effects of intraatrial administration of deferoxamine or deferoxamine-pentafraction conjugate to conscious dogs, J. Cardiovasc. Pharmacol. 16:742–749.

    PubMed  CAS  Google Scholar 

  • Galea, E., Reis, D. J., Xu, H., and Feinstein, D. L., 1995, Transient expression of calcium-independent nitric oxide synthase in blood vessels during brain development, FASEB J. 9:1632–1637.

    PubMed  CAS  Google Scholar 

  • Galet, S., and Schulman, H. M., 1976, The postnatal hypotransferrinemia of early preterm newborn infants, Pediatr. Res. 10:118–120.

    PubMed  CAS  Google Scholar 

  • Gasic, A. C., McGuire, G., Drater, S., Farhood, A. I., Goldstein, M. A., Smith, C. W., Entman, M. L., and Taylor, A. A., 1991, Hydrogen peroxide pretreatment of perfused canine vessels induces ICAM-1 and CD18-dependent neutrophil adherence, Circulation 84:2154–2166.

    PubMed  CAS  Google Scholar 

  • Gidday, J. M., Fitzgibbons, J. C., Shah, A. R., Krujalis, M. J., and Park, T. S., 1995, Reduction in cerebral ischemic injury in the newborn rat by potentiation of endogenous adenosine, Pediatr. Res. 38:1–6.

    Google Scholar 

  • Ginsberg, M. D., Sternau, L. L., Globus, M. T., Dietrich, W. D., and Busto, R., 1992, Therapeutic modulation of brain temperature: Relevance to ischemic brain injury, Cerebrovasc. Brain Metab. Rev. 4:189–225.

    PubMed  CAS  Google Scholar 

  • Giulian, D., Corpuz, M., Chapman, S., Mansouri, M., and Robertson, C., 1993, Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J. Neurosci. Res. 36:681–693.

    PubMed  CAS  Google Scholar 

  • Giulian, D., Li, J., Li, X., George, J., and Rutecki, P. A., 1994, The impact of microglia-derived cytokines upon gliosis in the CNS, Dev. Neurosci. 16:128–136.

    PubMed  CAS  Google Scholar 

  • Goplerud, J. M., Kim, S., and Delivoria-Papadopoulos, M., 1995, The effect of post-asphyxial reoxygenation with 21% vs. 100% oxygen on Na+,K+-ATPase activity in striatum of newborn piglets, Brain Res. 696:161–164.

    PubMed  CAS  Google Scholar 

  • Guan, J., Williams, C., Gunning, M., Mallard, C., and Gluckman, P., 1993, The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats, J. Cereb. Blood Flow Metab. 13:609–616.

    PubMed  CAS  Google Scholar 

  • Gutteridge, J. M. C., 1986, Iron promotors of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides, FEBS Lett. 201:291–295.

    PubMed  CAS  Google Scholar 

  • Gutteridge, J. M. C., Rowley, D. A., and Halliwell, B., 1982, Superoxide-dependent formation of hydroxyl radicals and lipid peroxidation in the presence of iron salts, Biochem. J. 206:605–609.

    PubMed  CAS  Google Scholar 

  • Haddad, I. Y, Ischiropoulos, H., Holm, B. A., Beckman, J. S., Baker, J. R., and Matalon, S., 1993, Mechanisms of peroxynitrite-induced injury to pulmonary surfactants, Amer. J. Physiol. 265:L555-L564.

    Google Scholar 

  • Hagberg, H., Andersson, P., Lacarewicz, J., Jacobson, I., Butcher, S., and Sandberg, M., 1987, Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia, J. Neurochem. 49:227–231.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., 1991, Reactive oxygen species in living systems: Source, biochemistry and role in human disease, Am. J. Med. 91(Suppl 3C):14S-22S. Halliwell, B., 1992, Iron and damage to biomolecules, in: Iron and Human Disease (R. B. Lauffer, ed.), CRC Press, Boca Raton, Florida, pp. 210–230.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1992, Biologically relevant metal ion-dependent hydroxyl radical generation, FEBS 307:108–112.

    CAS  Google Scholar 

  • Hara, H., Sukamoto, T., and Kogure, K., 1993, Mechanism and pathogenesis of ischemia-induced neuronal damage, Prog. Neurobiol. 40:645–670.

    PubMed  CAS  Google Scholar 

  • Hattori, H., Morin, A. M., Schwartz, P. H., Fujikawa, D. G., and Wasterlain, C. G., 1989, Post-hypoxic treatment with MK-801 reduces hypoxic-ischemic damage in the neonatal rat, Neurology 39:713–718.

    PubMed  CAS  Google Scholar 

  • He, Y. Y, Hsu, C. Y, Ezrin, A. M., and Miller, M. S., 1993, Polyethylene glycol-conjugated superoxide dismutase in focal cerebral ischemia-reperfusion, Am. J. Physiol. Heart Circ. Physiol. 265:H252-H256.

    Google Scholar 

  • Hedlund, B. E., and Hallaway, P. E., 1993, High-dose systemic iron chelation attenuates reperfusion injury, Biochem. Soc. Trans. 21:340–343.

    PubMed  CAS  Google Scholar 

  • Hill, I. E., MacManus, J. P., Rasquinha, I., and Tuor, U. I., 1995, DNA fragmentation indicative of apoptosis following unilateral cerebral hypoxia-ischemia in the neonatal rat, Brain Res. 676:398–403.

    PubMed  CAS  Google Scholar 

  • Hocking, D. C., Phillips, P. G., Ferro, T. J., and Johnson, A., 1990, Mechanisms of pulmonary edema induced by tumor necrosis factor-α, Circ. Res. 67:68–77.

    PubMed  CAS  Google Scholar 

  • Hope, P. L., Costello, A. M., Cady, E. B., Delpy, D. T., Tofts, P. S., Chu, A., Hamilton, P. A., and Reynolds, E. O. R., 1984, Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants, Lancet 2:366–370.

    PubMed  CAS  Google Scholar 

  • Horn, M., and Schlote, W., 1992, Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia, Acta Neuropathol. 85:79–87.

    PubMed  CAS  Google Scholar 

  • Hossman, K.-A., 1994, Viability threshold and the penumbra of focal ischemia, Ann. Neurol 36:557–565.

    Google Scholar 

  • Huang, Z., Huang, P. L., Panahian, N., Dalkara, T., Fishman, M. C., and Moskowitz, M. A., 1994, Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase, Science 265:1883–1885.

    PubMed  CAS  Google Scholar 

  • Hum, P. D., Koehler, R. C., Blizzard, K. K., and Traystman, R. J., 1995, Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs, Stroke 26:688–694.

    Google Scholar 

  • Iadecola, C., Xu, X., Zhang, F., El-Fakahany, E., and Ross, E., 1995a, Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 15:52–59.

    PubMed  CAS  Google Scholar 

  • Iadecola, C., Zhang, F., Xu, S., Casey, R., and Ross, M. E., 1995b, Inducible nitric oxide synthase gene expression in brain following cerebral ischemia, J. Cereb. Blood Flow Metab. 15:378–384.

    PubMed  CAS  Google Scholar 

  • Iadecola, C., Zhang, F., and Xu, X., 1995c, Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage, Am. J. Physiol. Regul. Integr. Comp. Physiol. 268:R286-R292.

    Google Scholar 

  • Inder, T. E., Graham, P., Sanderson, K., and Taylor, B. J., 1994, Lipid peroxidation as a measure of oxygen free radical damage in the very low birthweight infant, Arch. Dis. Child Fetal Neonatal 70:F107-F111.

    Google Scholar 

  • Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J. C., Smith, C. D., and Beckman, J. S., 1992, Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase, Arch. Biochem. Biophys. 298:431–437.

    PubMed  CAS  Google Scholar 

  • Ivacko, J. A., Sun, R., and Silverstein, F. S., 1996, Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats, Pediatr. Res. 39:39–47.

    PubMed  CAS  Google Scholar 

  • Izumi, Y., Benz, A. M., Clifford, D. B., Zorumski, C. F., 1992, Nitric oxide inhibitors attenuate n-methyl-d-aspartate excitotoxicity in rat hippocampus slices, Neurosci. Lett. 135:227–230.

    PubMed  CAS  Google Scholar 

  • Jiang, N., Moyle, M., Soule, H. R., Rote, W. E., and Chopp, M., 1995, Neutrophil inhibitory factor is neuroprotective after focal ischemia in rats, Ann. Neurol. 38:935–942.

    PubMed  CAS  Google Scholar 

  • Juckett, M. B., Weber, M., Balla, J., Jacob, H. S., and Vercellotti, G. M., 1996, Nitric oxide donors modulate ferritin and protect endothelium from oxidative injury, Free Radic. Biol Med. 20:63–73.

    PubMed  CAS  Google Scholar 

  • Karibe, H., Chen, J., Zarow, G. J., Graham, S. H., and Weinstein, P. R., 1994, Delayed induction of mild hypothermia to reduce infarct volume after temporary middle cerebral artery occlusion in rats, J. Neurosurg. 80:112–119.

    PubMed  CAS  Google Scholar 

  • Kil, H. Y., Zhang, J., and Piantadosi, C. A., 1996, Brain temperature alters hydroxyl radical production during cerebral ischemia perfusion in rats, J. Cereb. Blood Flow Metab. 16:100–106.

    PubMed  CAS  Google Scholar 

  • Kirsch, J. R., Helfaer, M. A., Haun, S. E., Koehler, R. C., and Traystman, R. J., 1993, Polyethylene glycol-conjugated superoxide dismutase improves recovery of post ischemic hypercapnic cerebral blood flow in pigs, Pediatr. Res. 34:530–537.

    PubMed  CAS  Google Scholar 

  • Kondo, Y, Ogawa, N., Asanuma, M., Ota, Z., and Mori, A., 1995, Regional differences in late-onset iron deposition, ferritin, transferrin, astrocyte proliferation, and microglial activation after transient forebrain ischemia in rat brain, J. Cereb. Blood Flow Metab. 15:216–226.

    PubMed  CAS  Google Scholar 

  • Kontos, C. D., Wei, E. P., Williams, J. I., Kontos, H. A., and Povlishock, J. T., 1992, Cytochemical detection of superoxide in cerebral inflammation and ischemia in vivo, Am. J. Physiol. Heart Circ. Physiol. 263:H1234-H1242.

    Google Scholar 

  • Kuboyama, K., Safar, P., Radovsky, A., Tisherman, S. A., Stezoski, S. W., and Alexander, H., 1993, Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: A prospective, randomized study, Crit. Care Med. 21:1348–1358.

    PubMed  CAS  Google Scholar 

  • Kuluz, J. W, Gregory, G. A., Han, Y, Dietrich, W. D., and Schleien, C. L., 1993, Fructose-1,6-bisphosphate reduces infarct volume after reversible middle cerebral artery occlusion in rats, Stroke 24:1576–1583.

    PubMed  CAS  Google Scholar 

  • Lafon-Cazal, M., Culcasi, M., Gaven, F., Pietri, S., and Bockaert, J., 1993a, Nitric oxide, superoxide and peroxynitrite: Putative mediators of NMDA-induced cell death in cerebellar granule cells, Neuropharmacology 32:1259–1266.

    PubMed  CAS  Google Scholar 

  • Lafon-Cazal, M., Pietri, S., Culacazi, M., and Bockaert, J., 1993b, NMDA-dependent superoxide production and neurotoxicity, Nature 364:535–537.

    PubMed  CAS  Google Scholar 

  • Lancelot, E., Callebert, J., Revaud, M. L., Boulu, R. G., and Plotkine, M., 1995, Detection of hydroxyl radicals in rat striatum during transient focal cerebral ischemia: Possible implication in tissue damage, Neurosci. Lett. 197:85–88.

    PubMed  CAS  Google Scholar 

  • Leffler, C. W., Busijia, D. W., Armstead, W. M., Shankin, D. R., Mirro, R., and Thelin, O., 1990, Activated oxygen and arachidonate effects on newborn cerebral arterioles, Am. J. Physiol. 259:H1230-H1238.

    Google Scholar 

  • Lei, S. Z., Pan, Z.-H., Aggarwal, S. K., Chen, H.-S. V., Hartman, J., Sucher, N. J., and Lipton, S. A., 1992, Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex, Neuron 8:1087–1099.

    PubMed  CAS  Google Scholar 

  • Li, Y, Kawamura, S., Yasui, N., Shirasawa, M., and Fukasawa, H., 1994, Therapeutic effects of nilvadipine on rat focal cerebral ischemia, Exp. Brain Res. 99:1–6.

    PubMed  CAS  Google Scholar 

  • Lindsberg, P. J., Yue, T. L., Frerichs, K. U., Hallenbeck, J. M., and Feuerstein, G., 1990, Evidence for platelet-activating factor as a novel mediator in experimental stroke in rabbits, Stroke 21:1452–1457.

    PubMed  CAS  Google Scholar 

  • Linnik, M. D., Zobrist, R. H., and Hatfield, M. D., 1993, Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats, Stroke 24:2002–2008.

    PubMed  CAS  Google Scholar 

  • Lipton, S. A., Choi, Y B., Pan, Z. H., Lei, S. Z., Chen, H. S. V., Sucher, N. J., Loscalzo, J., Singel, D. J., and Stamler, J. S., 1993, A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds, Nature 364:626–632.

    PubMed  CAS  Google Scholar 

  • Liu, T. H., Beckman, J. S., Freeman, B. A., Hogan, E. L., and Hsu, C. Y, 1989, Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury, Am. J. Physiol. 256:H589–H593.

    Google Scholar 

  • Lo, W. D., and Betz, A. L., 1986, Oxygen free-radical reduction of brain capillary rubidium uptake, J. Neurochem. 46:394–398.

    PubMed  CAS  Google Scholar 

  • Lorek, A., Takei, Y, Cady, E. B., Wyatt, J. S., Penrice, J., Edwards, A. D., Peebles, D., Wylezinska, M., Owen-Reece, H., Kirkbridege, V., Cooper, E. E., Aldridge, R. F., Roth, S. C., Brown, G., Delpy, D. T., and Reynolds, E. O. R., 1994, Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: Continuous 48-hour studies by phophorous magnetic resonance spectroscopy, Pediatr. Res. 36:699–706.

    PubMed  CAS  Google Scholar 

  • Manzoni, O., Prezeau, L., Marin, P., Deshager, S., Bockaert, J., and Fagni, L., 1992, Nitric oxide-induced blockade of NMDA receptors, Neuron 8:653–662.

    PubMed  CAS  Google Scholar 

  • Markarian, G. Z., Lee, J. H., Stein, D. J., and Hong, S. C., 1996, Mild hypothermia: Therapeutic window after experimental cerebral ischemia. Neurosurgery 38:542–550.

    PubMed  CAS  Google Scholar 

  • Marro, P. J., McGowan, J. E., Razdan, B., Mishra, O. P., and Delivoria-Papadopoulos, M., 1994, Effect of allopurinol on uric acid levels and brain cell membrane Na+,K+-ATPase activity during hypoxia in newborn piglets, Brain Res. 650:9–15.

    PubMed  CAS  Google Scholar 

  • Matsumoto, T., Pollock, J. S., Nakane, M., and Förstermann, U., 1993, Developmental changes of cytosolic and particulate nitric oxide synthase in rat brain, Dev. Brain Res. 73:199–203.

    CAS  Google Scholar 

  • Matsuo, Y, Onodera, H., Shiga, Y, Nakamura, M., Ninomiya, M., Kihara, T., and Kogure, K., 1994, Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat: Effects of neutrophil depletion, Stroke 25:1469–1475.

    PubMed  CAS  Google Scholar 

  • Matsuo, Y, Kihara, T., Ikeda, M., Ninomiya, M., Onodera, H., and Kogure, K., 1995, Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: Effect of neutrophil depletion on extracellular ascorbyl radical formation, J. Cereb. Blood Flow Metab. 15:941–947.

    PubMed  CAS  Google Scholar 

  • McCord, J. M., 1985, Oxygen-derived free radicals in postischemic tissue injury, N. Eng. J. Med. 312:159–163.

    CAS  Google Scholar 

  • McNeill, H., Williams, C., Guan, J., Dragunow, M., Lawlor, P., Sirimanne, E., Nikolics, K., and Gluckman, P., 1994, Neuronal rescue with transforming growth factor-betal after hypoxic-ischemic brain injury, Neuroreport 5:901–904.

    PubMed  CAS  Google Scholar 

  • McRae, A., Gilland, E., Bona, E., and Hagberg, H., 1995, Microglia activation after neonatal hypoxic-ischemia, Dev. Brain Res. 84:245–252.

    CAS  Google Scholar 

  • Meadows, M. E., Fisher, M., and Minematsu, K., 1994, Delayed treatment with a noncompetitive NMDA antagonist, CNS-1002, reduces infarct size in rats, Cerebrovasc. Dis. 4:26–31.

    Google Scholar 

  • Mishra, O. P., and Delivoria-Papadopoulos, M. D., 1988, Na+,K+-ATPase in developing fetal guinea pig brain and the effect of maternal hypoxia, Neurochem. Res. 13:765–770.

    PubMed  CAS  Google Scholar 

  • Moison, R., Palinckx, J., Roest, M., Houdkamp, E., and Berger, H. M., 1993, Induction of lipid peroxidation of pulmonary surfactant by plasma of preterm babies, Lancet 341:79–82.

    PubMed  CAS  Google Scholar 

  • Moorcraft, J., Bolas, N. M., Ives, N. K., Ouwerkerk, R., Smyth, J., Rajagopalan, B., Hope, P. L., and Radda, G. K., 1991, Global and depth resolved phosphorus magnetic resonance spectroscopy to predict outcome after birth asphyxia, Arch. Dis. Child. 66:1119–1123.

    PubMed  CAS  Google Scholar 

  • Moos, T., 1995, Developmental profile of non-heme iron distribution in the rat brain during ontogenesis, Dev. Brain Res. 87:203–213.

    CAS  Google Scholar 

  • Mousa, S. A., Ritger, R. C., and Smith, R. D., 1992, Efficacy and safety of deferoxamine conjugated to hydroxyethyl starch, J. Cardiovasc. Pharmacol. 19:425–429.

    PubMed  CAS  Google Scholar 

  • Murphy, T. H., Schnaar, R. L., and Coyle, J. T., 1990, Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cysteine uptake, FASEB J. 4:1624–1633.

    PubMed  CAS  Google Scholar 

  • Nathan, C., 1992, Nitric oxide as a secretory product of mammalian cells, FASEB J. 6:3051–3064.

    PubMed  CAS  Google Scholar 

  • Nelson, C. W., Wei, E. P., Povlishock, J. T., Kontos, H. A., and Moskowitz, M. A., 1992, Oxygen radicals in cerebral ischemia, Am. J. Physiol. Heart Circ. Physiol. 263:H1356-H1362.

    Google Scholar 

  • Nishida, A., Misaki, Y., Kuruta, H., and Takashima, S., 1994, Developmental expression of copper, zinc-superoxide dismutase in human brain by chemiluminescence, Brain Dev. 16:40–43.

    PubMed  CAS  Google Scholar 

  • Northington, F. J., Tobin, J. R., Koehler, R. C., and Traystman, R. J., 1995, In vivo production of nitric oxide correlates with NMDA-induced cerebral hyperemia in newborn sheep, Am. J. Physiol. Heart Circ. Physiol. 269:H215-H221.

    Google Scholar 

  • Nowicki, J. P., Duval, D., Poignet, H., and Scatton, B., 1991, Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse, Eur. J. Pharmacol. 204:339–340.

    PubMed  CAS  Google Scholar 

  • Ohno, M., Aotani, H., and Shimada, M., 1995, Glial responses to hypoxic/ischemic encephalopathy in neonatal rat cerebrum, Dev. Brain Res. 84:294–298.

    CAS  Google Scholar 

  • Oka, A., Belliveau, M. J., Rosenberg, P. A., and Volpe, J. J., 1993, Vulnerability of Oligodendroglia to glutamate: Pharmacology, mechanisms, and prevention, J. Neurosci. 13:1441–1453.

    PubMed  CAS  Google Scholar 

  • Omene, J. A., Longe, A. C., Ihongbe, J. C., Glew, R. H., and Holzman, I. R., 1981, Decreased umbilical cord serum ceruloplasmin concentrations in infants with hyaline membrane disease, J. Ped. 99:136–138.

    CAS  Google Scholar 

  • Ostwald, K., Hagberg, H., Andiné, P., and Karlsson, J. O., 1993, Upregulation of calpain activity in neonatal rat brain after hypoxic-ischemia, Brain Res. 630:289–294.

    PubMed  CAS  Google Scholar 

  • Palmer, C., 1996, Brain injury in the neonatal rat is reduced by neutrophil depletion induced before but not after a hypoxic ischemic insult, Pediatr. Res. 39:378A.

    Google Scholar 

  • Palmer, C., and Roberts, R. L., 1991, Reduction of perinatal brain damage with oxypurinol treatment after hypoxic-ischemic injury, Pediatr. Res. 29:362A.

    Google Scholar 

  • Palmer, C., Brucklacher, R. M., Christensen, M. A., and Vannucci, R. C., 1990, Carbohydrate and energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat, J. Cereb. Blood Flow Metab. 10:227–235.

    PubMed  CAS  Google Scholar 

  • Palmer, C., Pavlick, G., Karley, D., Roberts, R. L., and Connor, J. R., 1993a, The regional localization of iron in the cerebral cortex of the immature rat: relation to hypoxic-ischemic injury, Pediatr. Res. 33: 374A.

    Google Scholar 

  • Palmer, C., Towfighi, J., Roberts, R. L., and Heitjan, D. F., 1993b, Allopurinol administered after inducing hypoxia-ischemia reduces brain injury in 7-day-old rats, Pediatr. Res. 33:405–411.

    PubMed  CAS  Google Scholar 

  • Palmer, C., Horrell, L., and Roberts, R. L., 1994a, Inhibition of nitric oxide synthase after cerebral hypoxia ischemia reduces brain swelling in neonatal rats: a dose response study, Pediatr. Res. 35:385A.

    Google Scholar 

  • Palmer, C., Roberts, R. L., and Bero, C., 1994b, Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats, Stroke 25:1039–1045.

    PubMed  CAS  Google Scholar 

  • Palmer, C., Roberts, R. L., and Young, P., 1996, The reduction of hypoxic-ischemic brain injury in the 7-day-old rat with PEG-SOD, Pediatr. Res. 39:379A.

    Google Scholar 

  • Panetta, J. A., and Clemens, J. A., 1994, Novel antioxidant therapy for cerebral ischemia-reperfusion injury, Ann. NY Acad. Sci. 723:239–245.

    PubMed  CAS  Google Scholar 

  • Panetta, T., Marcheselli, V. L., Braquet, P., Spinnewyn, B., and Bazan, N. G., 1987, Effects of a platelet activating factor antagonist (BN 52021) on free fatty acids, diacylglycerols, polyphosphoinositides and blood flow in the gerbil brain: Inhibition of ischemia-reperfusion induced cerebral injury, Biochem. Biophys. Res. Commun. 149:580–587.

    PubMed  CAS  Google Scholar 

  • Park, C. K., and Rudolphi, K. A., 1994, Antiischemic effects of propentofylline (HWA 285) against focal cerebral infarction in rats, Neurosci. Lett. 178:235–238.

    PubMed  CAS  Google Scholar 

  • Parkinson, F. E., Rudolphi, K. A., and Fredholm, B. B., 1994, Propentofylline: a nucleoside transport inhibitor with neuroprotective effects in cerebral ischemia, Gen. Pharmacol. 25:1053–1058.

    PubMed  CAS  Google Scholar 

  • Patt, A., Horesh, I. R., Berger, E. M., Harken, A. H., and Repine, J. E., 1990, Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains, J. Pediatr. Surg. 25:224–228.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W., 1989, Oxypurinol attenuates ischemia-induced hippocampus damage in the gerbil, Brain Res. Bull. 23:467–470.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W., and Sen, S., 1993, Oxypurinol attenuates hydroxyl radical production during ischemia/reperfusion injury of the rat cerebral cortex: An ESR study, Brain Res. 628:309–312.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W., Sen, S., and Cao, X., 1994, Amflutizole, a xanthine oxidase inhibitor, inhibits free radical generation in the ischemic/reperfused rat cerebral cortex, Neurosci. Lett. 169:188–190.

    PubMed  CAS  Google Scholar 

  • Piantadosi, C. A., and Zhang, J., 1996, Mitochondrial generation of reactive oxygen species after brain ischemia in the rat, Stroke 27:327–331.

    PubMed  CAS  Google Scholar 

  • Pourcyrous, M., Leffler, C. W., Bada, H. S., Korones, S. B., and Busija, D. W., 1993, Brain superoxide anion generation in asphyxiated piglets and the effect of indomethacin at therapeutic dose, Ped. Res. 34:366–369.

    CAS  Google Scholar 

  • Pulsinelli, W. A., Brierley, J. B., and Plum, F., 1982, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol. 11:491–498.

    PubMed  CAS  Google Scholar 

  • Qi, Y., Jamindar, T. M., and Dawson, G., 1995, Hypoxia alters iron homeostasis and induces ferritin synthesis in oligodendrocytes, J. Neurochem. 64:2458–2464.

    PubMed  CAS  Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A., 1991, Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide, Arch. Biochem. Biophys. 288: 481–487.

    PubMed  CAS  Google Scholar 

  • Ratan, R. R., Murphy, T. H., and Baraban, J. M., 1994, Oxidative stress induces apoptosis in embryonic cortical neurons, J. Neurochem. 62:376–379.

    PubMed  CAS  Google Scholar 

  • Razdan, B., Marro, P. J., Tammela, O., Goel, R., Mishra, O. P., and Delivoria, P. M., 1993, Selective sensitivity of synaptosomal membrane function to cerebral cortical hypoxia in newborn piglets, Brain Res. 600:308–314.

    PubMed  CAS  Google Scholar 

  • Reif, D. W., and Simmons, R. D., 1990, Nitric oxide mediates iron release from ferritin, Archiv. Biochem. Biophys. 283:537–541.

    CAS  Google Scholar 

  • Reilly, P. M., Schiller, H. J., and Bulkley, G. B., 1991, Pharmacologic approach to tissue injury mediated by free radicals and other reactive oxygen metabolites, Am. J. Surg. 161:488–503.

    PubMed  CAS  Google Scholar 

  • Rice, J. E., Vannucci, R. C., and Brierley, J. B., 1981, The influence of immaturity on hypoxic-ischemic brain damage in the rat, Ann. Neurol. 9:131–141.

    PubMed  Google Scholar 

  • Rordorf, G., Uemura, Y., and Bonventre, J. V., 1991, Characterization of phospholipase A2 (PLA2) activity in gerbil brain: Enhanced activities of cytosolic, mitochondrial and microsomal forms after ischemia and reperfusion, J. Neurosci. 11:1829–1836.

    PubMed  CAS  Google Scholar 

  • Rosenberg, A. A., Murdaugh, E., and White, C. W., 1989, The role of oxygen free radicals in postasphyxia cerebral hypoperfusion in newborn lambs, Pediatr. Res. 26:215–219.

    PubMed  CAS  Google Scholar 

  • Rosenthal, R. E., Chanderbhan, R., Marshall, G., and Fiskum, G., 1992a, Prevention of post-ischemic brain lipid conjugated diene production and neurological injury by hydroxyethyl starch-conjugated deferoxamine, Free Rad. Biol. Med. 12:29–33.

    PubMed  CAS  Google Scholar 

  • Rosenthal, R. E., Williams, R., Bogaert, Y. E., Getson, P. R., and Fiskum, G., 1992b, Prevention of post-ischemic canine neurological injury through potentiation of brain energy metabolism by acetyl-L-carnitine, Stroke 23:1312–1318.

    PubMed  CAS  Google Scholar 

  • Roskams, A., and Connor, J. R., 1994, Iron, transferrin, and ferritin in the rat brain during development and aging, J. Neurochem. 63:709–716.

    PubMed  CAS  Google Scholar 

  • Roth, S. C., Edwards, A. D., Cady, E. B., Delpy, D. T., Wyatt, J. S., Azzopardi, D., Baudin, J., Townsend, J., Stewart, A. L., and Reynolds, E. O., 1992a, Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year [see comments], Develop. Med. Child Neurol. 34:285–295.

    PubMed  CAS  Google Scholar 

  • Roth, S. C., Edwards, A. D., Cady, E. B., Delpy, D. T., Wyatt, J. S., Azzopardi, D., Baudin, J., Townsend, J., Stewart, A. L., and Reynolds, E. O. R., 1992b, Relation between cerebral oxidative metabolism following birth asphyxia and neurodevelopmental outcome and brain growth at one year, Dev. Med. Child Neurol. 34:285–295.

    PubMed  CAS  Google Scholar 

  • Rothman, R., 1992, Cellular pool of transient ferric iron, chelatable by deferoxamine and distinct from ferritin, that is involved in oxidation cell injury, Mol. Pharmacol. 42:703–710.

    PubMed  CAS  Google Scholar 

  • Rothman, S. M., and Olney, J. W., 1986, Glutamate and the pathophysiology of hypoxic-ischemic brain damage, Ann. Neurol. 19:105–111.

    PubMed  CAS  Google Scholar 

  • Royall, J. A., Kooy, N. W., Ye, Y Z., Kelly, D. R., and Beckman, J. S., 1994, Evidence of peroxynitrite in adult respiratory distress syndrome, Pediatr. Res. 35:57A.

    Google Scholar 

  • Sadrzadeh, S. M. H., and Eaton, J. W., 1988, Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate, J. Clin. Invest. 82:1510–1515.

    PubMed  CAS  Google Scholar 

  • Sadrzadeh, S. M. H., and Eaton, J. W., 1992, Hemoglobin-induced oxidant damage to the central nervous system, in: Free Radical Mechanisms of Tissue Injury (M. T. Moslen and C. V. Smith, eds.), CRC Press, Boca Raton, Florida, pp. 23–32.

    Google Scholar 

  • Sadrzadeh, S. M. H., Graf, E., Panter, S. S., Hallaway, P. E., and Eaton, J. W., 1984, Hemoglobin: A biological fenton reagent, J. Biol. Chem. 259:14354.

    PubMed  CAS  Google Scholar 

  • Sadrzadeh, S. M. H., Anderson, D. K., Panter, S. S., Hallaway, P. E., and Eaton, J. W., 1987, Hemoglobin potentiates central nervous system damage, J. Clin. Invest. 79:662–664.

    PubMed  CAS  Google Scholar 

  • Schiff, S. J., and Somjen, G. G., 1985, Hyperexcitability following moderate hypoxia in hippocampal tissue slices, Brain Res. 337:337–340.

    PubMed  CAS  Google Scholar 

  • Schleien, C. L., Koehler, R. C., Shaffner, D. H., and Traystman, R. J., 1990, Blood-brain barrier integrity during cardiopulmonary resuscitation in dogs, Stroke 21:1185–1191.

    PubMed  CAS  Google Scholar 

  • Schmid-Schonbein, G. W., and Lee, J., 1995, Leukocytes in capillary flow, Int. J. Microcirc. Clin. Exp. 15:255–264.

    PubMed  CAS  Google Scholar 

  • Schraufstatter, I. U., Hyslop, P. A., Hinshaw, D. B., Spragg, R. G., Sklaar, L. A., and Cochrane, C. G., 1986, Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly (ADP-ribose) polymerase, Proc. Natl. Acad. Sci. USA 83:4908–4912.

    PubMed  CAS  Google Scholar 

  • Siesjo, B., and Bengtsson, F., 1989, Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis, J. Cereb. Blood Flow Metab. 9:127–140.

    PubMed  CAS  Google Scholar 

  • Siesjo, B. K., 1988, Mechanisms of Ischemic Brain Damage, Cht. Care. Med. 16:954–963.

    CAS  Google Scholar 

  • Siesjo, B. K., 1992, Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment (review), J. Neurosurg. 77:337–354.

    PubMed  CAS  Google Scholar 

  • Siesjo, B. K., Agardh, C.-D., and Bengtsson, F., 1989, Free radicals and brain damage, Cerebrovasc. Brain Metab. Rev. 1:165–211.

    PubMed  CAS  Google Scholar 

  • Sirimanne, E. S., Blumberg, R. M., Bossano, D., Gunning, M., Edwards, A. D., Gluckman, P. D., and Williams, C. E., 1996, The effect of prolonged modification of cerebral temperature on outcome after hypoxic-ischemic brain injury in the infant rat, Pediatr. Res. 39:591–597.

    PubMed  CAS  Google Scholar 

  • Smith, C. V., Hansen, T. N., Martin, N. E., McMicken, H. W., and Elliott, S. J., 1993, Oxidant stress responses in premature infants during exposure to hyperoxia, Pediatr. Res. 34:360–365.

    PubMed  CAS  Google Scholar 

  • Smith, S. E., and Meldrum, B. S., 1996, Cerebroprotective effect of lamotrigine after focal ischemia in rats, Stroke, 26:117–121.

    Google Scholar 

  • Spinnewyn, B., Blavet, N., Clostre, F., Bazan, N., and Braquet, P., 1987, Involvement of platelet-activating factor (PAF) in cerebral post-ischemic phase in mongolian gerbils, Prostaglandins 34:337–349.

    PubMed  CAS  Google Scholar 

  • Stein, D. T., and Vannucci, R. C., 1988, Calcium accumulation during the evolution of hypoxic-ischemic brain damage in the immature rat, J. Cereb. Blood Flow Metab. 8:834–842.

    PubMed  CAS  Google Scholar 

  • Steinberg, G. K., Kunis, D., DeLaPaz, R., and Poljak, A., 1993, Neuroprotection following focal cerebral ischemia with the NMDA antagonist dextromethorphan, has a favourable dose response profile, Neurol. Res. 15:174–180.

    PubMed  CAS  Google Scholar 

  • Subbarao, K. V., and Richardson, J. S., 1990, Iron-dependent peroxidation of rat brain: a regional study, J. Neurosci. Res. 26:224–232.

    PubMed  CAS  Google Scholar 

  • Sullivan, J. L., 1992, Iron Metabolism and Oxygen Radical Injury in Premature Infants, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Sweeney, M. I., Yager, J. Y., Walz, W., and Juurlink, B. H. J., 1995, Cellular mechanisms involved in brain ischemia, Can. J. Physiol. Pharmacol. 73:1525–1535.

    PubMed  CAS  Google Scholar 

  • Takashima, S., Juruta, H., Mito, T., Houdou, S., Konomi, H., Yao, R., and Onodera, K., 1990, Immunohistochemistry of superoxide dismutase-1 in developing human brain, Brain Dev. 12:211–213.

    PubMed  CAS  Google Scholar 

  • Tan, S., Yokoyama, Y, Dickens, E., Cash, T. G., Freeman, B. A., and Parks, D. A., 1993, Xanthine oxidase activity in the circulation of rats following hemorrhagic shock, Free Radic. Biol. Med. 15:407–414.

    PubMed  CAS  Google Scholar 

  • Tan, S., Gelman, S., Wheat, J. K., and Parks, D. A., 1995, Circulating xanthine oxidase in human ischemia reperfusion, South. Med. J. 88:479–482.

    PubMed  CAS  Google Scholar 

  • Tan, W., Williams, C. E., Mallard, C. E., and Gluckman, P. D., 1994, Monosialoganglioside GM1 treatment after a hypoxic-ischemic episode reduces the vulnerability of the fetal sheep brain to subsequent injuries, Am. J. Obstet. Gynecol. 170:663–670.

    PubMed  CAS  Google Scholar 

  • Thiringer, K., Hrbek, A., Karlsson, K., Rosen, K. G., and Kjellmer, I., 1987, Postasphyxiai cerebral survival in newborn sheep after treatment with oxygen free radical scavengers and a calcium antagonist, Ped. Res. 22:62–66.

    CAS  Google Scholar 

  • Thoresen, M., Penrice, J., Lorek, A., Cady, E. B., Wylezinska, M., Kirkbride, B., Cooper, C. E., Brown, G. C, Edwards, A. D., Wyatt, J. S., and Reynolds, E. O. R., 1995, Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet, Pediatr. Res. 37:667–670.

    PubMed  CAS  Google Scholar 

  • Tomic, D., Zobundzija, M., and Meâugorac, M., 1994, Postnatal development of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) positive neurons in rat prefrontal cortex, Neurosci. Lett. 170:217–220.

    PubMed  CAS  Google Scholar 

  • Towfighi, J., Zee, N., Yager, J., Housman, C., and Vannucci, R. C., 1995, Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: A light microscopic study, Acta Neuropathol.(Berl.) 90:375–386.

    CAS  Google Scholar 

  • Traystman, R. J., Kirsch, J. R., and Koehler, R. C., 1991, Oxygen radical mechanisms of brain injury following ischemia and reperfusion, J. Appl. Physiol. 71:1185–1195.

    PubMed  CAS  Google Scholar 

  • Tsukahara, T., Yonekawa, Y, Tanaka, K., Ohara, O., Watanabe, S., Kimura, T., Nishijima, T., and Taniguchi, T., 1994, The role of brain-derived neurotrophic factor in transient forebrain ischemia in the rat brain, Neurosurgery 34:323–331.

    PubMed  CAS  Google Scholar 

  • Turrens, J. F., and Boveris, A., 1980, Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria, Biochem. J. 191:421–427.

    PubMed  CAS  Google Scholar 

  • Umemura, A., Mabe, H., and Nagai, H., 1992, A phospholipase C inhibitor ameliorates postischemic neuronal damage in rats, Stroke 23:1163–1166.

    PubMed  CAS  Google Scholar 

  • Umemura, K., Wada, K., Uematsu, T., Mizuno, A., and Nakashima, M., 1994, Effect of 21-aminosteroid lipid peroxidation inhibitor, U74006F, in the rat middle cerebral artery occlusion model, Eur. J. Pharmacol. 251:69–74.

    PubMed  CAS  Google Scholar 

  • Valentino, K., Newcomb, R., Gadbois, T., Singh, T., Bowersox, S., Bitner, S., Justice, A., Yamashiro, D., Hoffman, B. B., Ciaranello, R., Miljanich, G., and Ramachandran, J., 1993, A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia, Proc. Natl. Acad. Sci. USA 90:7894–7897.

    PubMed  CAS  Google Scholar 

  • van Bel, F., Dorrepaal, C. A., Benders, M. J. N. L., Houdkamp, E., van de Bor, M., and Berger, H. M., 1994, Neurologie abnormalities in the first 24 h following birth asphyxia are associated with increasing plasma levels of free iron and TBA-reactive species, Pediatr. Res. 35:388A.

    Google Scholar 

  • Vannucci, R. C., 1990, Experimental biology of cerebral hypoxia-ischemia: Relation to perinatal brain damage, Pediatr. Res. 27:317–326.

    PubMed  CAS  Google Scholar 

  • Vannucci, R. C., 1993, Experimental models of perinatal hypoxic-ischemic brain damage, APIMS Suppl. 101:89–95.

    Google Scholar 

  • Vannucci, R. C., Christensen, M. A., and Yager, J. Y, 1993, Nature, time-course, and extent of cerebral edema in perinatal hypoxic-ischemic brain damage, Pediatr. Neurol. 9:29–34.

    PubMed  CAS  Google Scholar 

  • Vannucci, R. C., Yager, J. Y., and Vannucci, S. J., 1994, Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat, J. Cereb. Blood Flow Metab. 14:279–288.

    PubMed  CAS  Google Scholar 

  • Volpe, J. J., 1987, Intracranial hemorrhage: Periventricular-intraventricular hemorrhage of the premature infant, in: Neurology of the Newborn (W. B. S. Staff, ed.), W. B. Saunders, Philadelphia, pp. 311–361.

    Google Scholar 

  • Volterra, A., Trotti, D., Tromba, C., and Racagni, G., 1993, Additive inhibition of glutamate uptake by arachidonic acid and oxygen free radicals via two distinct mechanisms, Neurosci. Abstr. 19:1350.

    Google Scholar 

  • Walker, P. R., Weaver, V. M., Lach, B., LeBlanc, J., and Sikorska, M., 1994, Endonuclease activities associated with high molecular weight and internucleosomal DNA fragmentation in apoptosis, Exp. Cell Res. 213:100–106.

    PubMed  CAS  Google Scholar 

  • Wallis, R. A., Panisson, K. L., Henry, D., and Wasterlain, C. G., 1993, Neuroprotection against nitric oxide injury with inhibitors of ADP-ribosylation, Neuroreport 5:245–248.

    PubMed  CAS  Google Scholar 

  • Watanabe, T., Yuki, S., Egawa, M., and Nishi, H., 1994, Protective effects of MCI-186 on cerebral ischemia: Possible involvement of free radical scavenging and antioxidant actions, J. Pharmacol Exp. Then 268:1597–1604.

    CAS  Google Scholar 

  • Watkins, M. T., Haudenschild, C. C., Al-Badawi, H., Velazquez, F. R., and Larson, D. M., 1995, Immediate responses of endothelial cells to hypoxia and reoxygenation: An in vitro model of cellular dysfunction, Am. J. Physiol. Heart Circ. Physiol. 268:H749-H758.

    Google Scholar 

  • Watkins, M. T., Al-Badawi, H., Cardenas, R., Dubois, E., and Larson, D. M., 1996, Endogenous reactive oxygen metabolites mediate sublethal endothelial cell dysfunction during reoxygenation, J. Vase. Surg. 23:95–103.

    CAS  Google Scholar 

  • Wei, E. P., Ellison, M. D., Kontos, H. A., and Povlishock, J. T., 1986, 02 radicals in arachidonate-induced increased blood-brain barrier permeability to proteins, Am. J. Physiol. 251:H693-H699.

    Google Scholar 

  • Weiss, G., Goossen, B., Doppler, W., Fuchs, D., Pantopoulos, K., Werner-Felmayer, G., Wächter, H., and Hentze, M. W., 1993, Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway, EMBO J. 12:3651–3657.

    PubMed  CAS  Google Scholar 

  • Weiss, S. J., 1989, Tissue destruction by neutrophils, N. Engl. J. Med. 320:365–376.

    PubMed  CAS  Google Scholar 

  • White, B. C., Daya, A., DeGracia, D. J., O’Neil, B. J., Skjaerlund, J. M., Trumble, S., Krause, G. S., and Rafols, J. A., 1993, Fluorescent histochemical localization of lipid peroxidation during brain reperfusion following cardiac arrest, Acta Neuropathol. 86:1–9.

    PubMed  CAS  Google Scholar 

  • Whiteman, M., Tritschler, H., and Halliwell, B., 1996, Protection against peroxynitrite-dependent tyrosine nitration and arantiproteinase inactivation by oxidized and reduced lipoic acid, FEBS Lett. 379 :14–16. Wyatt, J. S., 1993, Near-infrared spectroscopy in asphyxiai brain injury (review), Clinics in Perinatology 20:369–378.

    Google Scholar 

  • Yamakawa, T., Yamaguchi, S., Niimi, H., and Sugiyama, I., 1987, White blood cell plugging and blood flow maldistribution in the capillary network of cat cerebral cortex in acute hemorrhagic hypotension: An intravital microscopic study, Circ. Shock. 22:323–332.

    PubMed  CAS  Google Scholar 

  • Yasuda, H., and Nakajima, A., 1993, Brain protection against ischemic injury by nizofenone, Cerebrovasc. Brain Metab. Rev. 5:264–276.

    PubMed  CAS  Google Scholar 

  • Yoshida, T., Limmroth, V., Irikura, K., and Moskowitz, M. A., 1994, The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels, J. Cereb. Blood Flow Metab. 14:924–929.

    PubMed  CAS  Google Scholar 

  • Yoshida, T., Tanaka, M., Sotomatsu, A., and Hirai, S., 1995, Activated microglia cause superoxide-mediated release of iron from ferritin, Neurosci. Lett. 190:21–24.

    PubMed  CAS  Google Scholar 

  • Zaleska, M. M., and Floyd, R. A., 1995, Regional lipid peroxidation in rat brain in vitro: Possible role of endogenous iron, Neurochem. Res. 10:397–410.

    Google Scholar 

  • Zhang, J., and Piantadosi, C. A., 1994, Prolonged production of hydroxyl radical in rat hippocampus after brain ischemia-reperfusion is decreased by 21-aminosteroids, Neurosci. Lett. 177:127–130.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Dawson, V. L., Dawson, T. M., and Snyder, S. H., 1994, Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity, Science 263:687–689.

    PubMed  CAS  Google Scholar 

  • Zhang, R. L., Chopp, M., Chen, H., and Garcia, J. H., 1994a, Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat, J. Neurol. Sci. 125:3–10.

    PubMed  CAS  Google Scholar 

  • Zhang, R. L., Chopp, M., Li, Y, Zalonga, C., Jiang, M., Jones, M., Miyasaka, M., and Ward, P., 1994b, Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat, Neurology 44:1747–1751.

    PubMed  CAS  Google Scholar 

  • Zhang, Z. G., Chopp, M., Tang, W. X., Jiang, N., and Zhang, R. L., 1995, Postischemic treatment (2–4 h) with anti-CD11b and anti-CD 18 monoclonal antibodies are neuroprotective after transient (2 h) focal cerebral ischemia in the rat, Brain Res. 698:79–85.

    PubMed  CAS  Google Scholar 

  • Zhao, Q., Pahlmark, K., Smith, M. L., and Siesjö, B. K., 1994, Delayed treatment with the spin trap a-phenyl-N-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats, Acta Physiol. Scand. 152:349–350.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palmer, C. (1997). Iron and Oxidative Stress in Neonatal Hypoxic-Ischemic Brain Injury Directions for Therapeutic Intervention. In: Connor, J.R. (eds) Metals and Oxidative Damage in Neurological Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0197-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0197-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0199-6

  • Online ISBN: 978-1-4899-0197-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics