Nitric Oxide and Oxidative Damage in the CNS

  • Deborah A. Dawson


NO is synthesized by a family of enzymes known collectively as NO synthases that catalyze the reaction of L-arginine with molecular oxygen to form NO and L-citrulline. The NO synthases can be divided into 2 main groups: a) constitutive isoforms that are continuously expressed and b) inducible isoforms, the de novo synthesis of which is stimulated by cytokines or bacterial-derived lipopolysaccharide (LPS) acting alone or in synergy (Nathan, 1992; Moncada et al., 1991). Although all NO synthases catalyze the same basic reaction, they are structurally and, to a certain extent, functionally distinct enzymes encoded by separate genes (Nathan, 1992). Several important differences exist between constitutive and inducible NO synthases in terms of requirement of Ca2+ for enzyme activation, cellular localization, and perhaps most importantly in the context of this chapter, the actual amount of NO generated. These differences, discussed below, have considerable implications for both NO-dependent toxicity and the development of NO synthase inhibitors as efficacious cytoprotective drugs.


Multiple Sclerosis Nitric Oxide Experimental Autoimmune Encephalomyelitis Multiple System Atrophy Multiple Sclerosis Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson, D. C., Wildemann, B., Sasaki, M., Glass, J. D., McArthur, J. C., Christov, V. I., Dawson, T. M., and Dawson, V. L., 1996, Immunologic NO synthase: Elevation in severe AIDS dementia and induction by HIV-1 gp41, Science 274:1917–1921.PubMedCrossRefGoogle Scholar
  2. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci. USA 87:1620–1624.PubMedCrossRefGoogle Scholar
  3. Benzing, W. C., and Mufson, E. J., 1995, Increased number of NADPH-D-positive neurons within the substantia innominata in Alzheimer’s disease, Brain Res. 670:351–355.PubMedCrossRefGoogle Scholar
  4. Bereta, M., Bereta, J., Georgoff, I., Coffman, F. D., Cohen, S., and Cohen, M. C., 1994, Methylxanthines and calcium-mobilizing agents inhibit the expression of cytokine-inducible nitric oxide synthase and vascular cell adhesion molecule-1 in murine microvascular endothelial cells, Exp. Cell Res. 212:230–242.PubMedCrossRefGoogle Scholar
  5. Bo, L., Dawson, T. M., Wesselingh, S., Mork, S., Choi, S., Kong, P. A., Hanley, D., and Trapp, B. D., 1994, Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brain, Ann. Neurol. 36:778–786.PubMedCrossRefGoogle Scholar
  6. Boje, K. M., and Arora, P. K., 1992, Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death, Brain Res. 587:250–256.PubMedCrossRefGoogle Scholar
  7. Boullerne, A. I., Petry, K. G., Meynard, M., and Geffard, M., 1995, Indirect evidence for nitric oxide involvement in multiple sclerosis by characterization of circulating antibodies directed against conjugated S-nitrosocysteine, J. Neuroimmunol. 60:117–124.PubMedCrossRefGoogle Scholar
  8. Bredt, D. S., Hwang, P. M., and Snyder, S. H., 1990, Localization of nitric oxide synthase indicating a neural role for nitric oxide, Nature 347:768–770.PubMedCrossRefGoogle Scholar
  9. Brosnan, C. F, Battistini, L., Raine, C. S., Dickson, D. W., Casadevall, A., and Lee, S. C., 1994, Reactive nitrogen intermediates in human neuropathology: An overview, Dev. Neurosci. 16:152–161.PubMedCrossRefGoogle Scholar
  10. Brune, B., Dimmeler, S., Molina y Vedia, L., and Lapetina, E. G., 1994, Nitric oxide: A signal for ADP-ribosylation of proteins, Life Sci. 54:61–70.PubMedCrossRefGoogle Scholar
  11. Cho, H. J., Xie, Q. W., Calaycay, J., Mumford, R. A., Swiderek, K. M., Lee, T. D., and Nathan, C., 1992, Calmodulin is a subunit of nitric oxide synthase from macrophages, J. Exp. Med. 176:599–604.PubMedCrossRefGoogle Scholar
  12. Cross, A. H., Misko, T. P., Lin, R. F., Hickey, W. F., Trotter, J. L., and Tilton, R. G., 1994, Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice, J. Clin. Invest. 93:2684–2690.PubMedCrossRefGoogle Scholar
  13. Dawson, D. A., 1994, Nitric oxide and focal cerebral ischemia: Multiplicity of actions and diverse outcome, Cerebrovasc. Brain Metabol. Rev. 6:299–324.Google Scholar
  14. Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R., and Snyder, S. H., 1993, Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures, J. Neurosci. 13:2651–2661.PubMedGoogle Scholar
  15. Di Monte, D. A., Royland, J. E., Jakowec, M. W., and Langston, J. W., 1996, Role of nitric oxide in methamphetamine neurotoxicity: Protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase, J. Neurochem. 67:2443–2450.PubMedCrossRefGoogle Scholar
  16. Dorheim, M.-A., Tracey, W. R., Pollock, J. S., and Grammas, P., 1994, Nitric oxide synthase activity is elevated in brain microvessels in Alzheimer’s disease, Biochem. Biophys. Res. Comm. 205:659–665.PubMedCrossRefGoogle Scholar
  17. Ferrante, R. J., Kowall, N. W., Beal, M. F., Martin, J. B., Bird, E. D., and Richardson, E. P., 1987, Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease, J. Neuropath. Exp. Neurol. 46:12–27.PubMedCrossRefGoogle Scholar
  18. Fujisawa, H., Dawson, D., Browne, S. E., Mackay, K. B., Bullock, R., and McCulloch, J., 1994, Pharmacological modification of glutamate neurotoxicity in vivo, Brain Res. 629:73–78.CrossRefGoogle Scholar
  19. Garthwaite, J., 1991, Glutamate, nitric oxide and cell-cell signalling in the nervous system, Trends Neurosci. 14:60–67.PubMedCrossRefGoogle Scholar
  20. Gryglewski, R. J., Palmer, R. M. J., and Moncada, S., 1986, Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor, Nature 320:454–456.PubMedCrossRefGoogle Scholar
  21. Hammer, B., Davis Parker, W., and Bennett, J. P., 1993, NMDA receptors increase OH radicals in vivo by using nitric oxide synthase and protein kinase C., Neuroreport 5:72–74.PubMedCrossRefGoogle Scholar
  22. Hartung, H.-P, Jung, S., and Stoll, G., 1992, Inflammatory mediators in demyelinating disorders of the CNS and PNS J. Neuroimmunol. 40:197–210.PubMedCrossRefGoogle Scholar
  23. Hasan, K., Heesen, B.-J., and Corbett, J. A., 1993, Inhibition of nitric oxide formation by guanidines, Eur. J. Pharmacol. 249:101–106.PubMedCrossRefGoogle Scholar
  24. Hu, J., and El-Fakahany, E. E., 1993, β-Amyloid 25–35 activates nitric oxide synthase in a neuronal clone, Neuroreport 4:760–762.PubMedCrossRefGoogle Scholar
  25. Huang, Z., Huang, P. L., Panahian, N., Dalkara, T., Fishman, M., and Moskowitz, M., 1994, Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase, Science 265:1883–1885.PubMedCrossRefGoogle Scholar
  26. Hyman, B. T., Marzloff, K., Wenniger, J. J., Dawson, T. M., Bredt, D. S., and Snyder, S. H., 1992, Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer’s disease, Ann. Neurol. 32:818–820.PubMedCrossRefGoogle Scholar
  27. Iadecola, C., Xu, X., Zhang, F., El-Fakahany, E. E., and Ross, M. R., 1995a, Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia, J. Cereb. Blood Flow Metabol. 15:52–59.CrossRefGoogle Scholar
  28. Iadecola, C., Zhang, F., and Xu, X., 1995b, Inhibition of inducible nitric oxide synthase ameliorate cerebral ischemic damage, Am. J. Physiol. 268:R286-R292.Google Scholar
  29. Iadecola, C., Beitz, A. J., Renno, W., Xu, X., Mayer, B., and Zhang, F., 1993, Nitric oxide synthase-containing neural processes on large cerebral arteries and cerebral microvessels, Brain Res. 606:148–155.PubMedCrossRefGoogle Scholar
  30. Jaffrey, S. R., Cohen, N. A., Rouault, T., Klausner, R. D., and Snyder, S. H., 1994, The iron-responsive element binding protein: A target for synaptic actions of nitric oxide, Proc. Natl. Acad. Sci. USA 91:12994–12998.PubMedCrossRefGoogle Scholar
  31. Johnson, A. W., Land, J. M., Thompson, E. J., Bolanos, J. P., Clark, J. B., and Heales, S. J. R., 1995, Evidence for increased nitric oxide production in multiple sclerosis, J. Neurol. Neurosurg. Psych. 58:107–115.CrossRefGoogle Scholar
  32. Kader, A., Frazzinin, V. I., Solomon, R. A., and Trifiletti, R. R., 1993, Nitric oxide production during focal cerebral ischemia in rats, Stroke 24:1709–1716.PubMedCrossRefGoogle Scholar
  33. Koprowski, H., Zheng, Y. M., Heber-Katz, E., Fraser, N., Rorke, L., Fu, Z. F., Hanlon, C., and Dietzschold, B., 1993, In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases, Proc. Natl. Acad. Sci. USA 90:3024–3027.PubMedCrossRefGoogle Scholar
  34. Kuiper, M. A., Visser, J. J., Bergmans, P. L. M., Scheltens, P., and Wolters, E. C., 1994, Decreased cerebrospinal fluid nitrate levels in Parkinson’s disease, Alzheimer’s disease and multiple system atrophy patients, J. Neurolog. Sci. 121:46–49.CrossRefGoogle Scholar
  35. Kwon, N. S., Stuehr, D. J., and Nathan, C. F, 1991, Inhibition of tumour cell ribonucleotide reductase by macrophage-derived nitric oxide, J. Exp. Med. 174:761–768.PubMedCrossRefGoogle Scholar
  36. Lin, R. F., Lin, T.-S., Tilton, R. G., and Cross, A. H., 1993, Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: an electron paramagnetic resonance study, J. Exp. Med. 178:643–648.PubMedCrossRefGoogle Scholar
  37. Lipton, S. A., and Rosenberg, P. A., 1994, Excitatory amino acids as a final common pathway for neurologic disorders, N Engl. J. Med. 330:613–622.PubMedCrossRefGoogle Scholar
  38. Lipton, S. A., Choi, Y.-B., Pan, Z.-H., Lei, S. Z., Chen, H.-S., Sucher, N. J., Loscaizo, J., Singel, D. J., and Stamler, J. S., 1993, A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds, Nature 364:626–632.PubMedCrossRefGoogle Scholar
  39. Lockhart, B. P., Benicourt, C., Junien, J.-L., and Privat, A., 1994, Inhibitors of free radical formation fail to attenuate direct β-amyloid25–35 peptide-mediated neurotoxicity in rat hippocampal cultures, J. Neurosci. Res. 39:494–505.PubMedCrossRefGoogle Scholar
  40. MacMicking, J. D., Willenborg, D. O., Weidemann, M. J., Rockett, K. A., and Cowden, W B., 1992, Elevated secretion of reactive nitrogen and oxygen intermediates by inflammatory leukocytes in hyperacute experimental autoimmune encephalomyelitis: enhancement by the soluble products of encephalitogenic T cells, J. Exp. Med. 176:303–307.PubMedCrossRefGoogle Scholar
  41. Malinski, T., Bailey, F., Zhang, Z. G., and Chopp, M., 1993, Nitric oxide measured by porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion, J. Cereb. Blood Flow Metabol. 13:355–358.CrossRefGoogle Scholar
  42. Matsumoto, T., Nakane, M., Pollock, J. S., Kuk, J. E., and Forstermann, U., 1993, A correlation between soluble brain nitric oxide synthase and NADPH-diaphorase activity is only seen after exposure of the tissue to fixative, Neurosci. Lett. 155:61–64.PubMedCrossRefGoogle Scholar
  43. McCulloch, J., Bullock, R., and Teasdale, G. M., 1991, Excitatory amino acid antagonists: Opportunities for the treatment of ischaemic brain damage in man, in: Excitatory Amino Acid Antagonists (B. S. Meldrum, ed.), Blackwell Scientific Publications, Oxford, pp. 287–326.Google Scholar
  44. Meda, L., Cassatella, M. A., Szendrei, G. I., Otvos, L., Baron, P., Villalba, M., Ferrari, D., and Rossi, R, 1995, Activation of microglial cells by β-amyloid protein and interferon-γ, Nature 374:647–650.PubMedCrossRefGoogle Scholar
  45. Milstien, S., Sakai, N., Brew, B. J., Krieger, C., Vickers, J. H., Saito, K., and Heyes, M. R, 1994, Cerebrospinal fluid nitrite/nitrate levels in neurologic diseases, J. Neurochem. 63:1178–1180.PubMedCrossRefGoogle Scholar
  46. Minc-Golomb, D., Tsarfaty, I., and Schwartz, J. R, 1994, Expression of inducible nitric oxide synthase by neurones following exposure to endotoxin and cytokine, Br. J. Pharmacol. 112:720–722.PubMedCrossRefGoogle Scholar
  47. Mitrovic, B., Ignarro, L. J., Montestruque, S., Smoll, A., and Merrill, J. E., 1994, Nitric oxide as a potential pathological mechanisms in demyelination: Its differential effects on primary glial cells in vitro, Neurosci. 61:575–585.CrossRefGoogle Scholar
  48. Molina, J. A., Jimenez-Jimenez, R J., Navarro, J. A., Ruiz, E., Arenas, J., Cabrera-Valdivia, R, Vazquez, A., Fernandez-Calle, R, Ayuso-Peralta, L., Rabasa, M., and Bermejo, R, 1994, Plasma levels of nitrates in patients with Parkinson’s disease, J. Neurolog. Sci. 127:87–89.CrossRefGoogle Scholar
  49. Moncada, S., Palmer, R. M. J., and Higgs, E. A., 1991, Nitric oxide: Physiology, pathophysiology and pharmacology, Pharmacol. Rev. 43:109–142.PubMedGoogle Scholar
  50. Moore, P. K., Wallace, P., Gaffen, Z. A., Hart, S. L., Babbedge, R. C., 1993, Characterization of the novel nitric oxide synthase inhibitor 7-nitroindazole and related indazoles: Antinociceptive and cardiovascular effects, Br. J. Pharmacol. 110:219–224.PubMedCrossRefGoogle Scholar
  51. Mufson, E. J., and Brandabur, M. M., 1994, Sparing of NADPH-diaphorase striatal neurons in Parkinson’s and Alzheimer’s diseases, Neuroreport 5:705–708.PubMedCrossRefGoogle Scholar
  52. Murphy, S., Simmons, M. L., Agullo, L., Garcia, A., Feinstein, D. L., Galea, E., Reis, D. J., Minc-Golomb, D., and Schwartz, J. P., 1993, Synthesis of nitric oxide in CNS glial cells, Trends Neurosci. 16:323–328.PubMedCrossRefGoogle Scholar
  53. Nagafuji, T., Sugiyama, M., and Matsui, T., 1994, Temporal profiles of Ca2+/calmodulin-dependent and -independent nitric oxide synthase activity in the rat brain microvessels following cerebral ischemia, Acta Neurochir. 60:285–288.Google Scholar
  54. Nathan, C., 1992, Nitric oxide as a secretory product of mammalian cells, FASEB J. 6:3051–3054.PubMedGoogle Scholar
  55. Nguyen, T., Brunson, D., Crespi, C. I., Penman, B. W., Wishnok, J. S., and Tannenbaum, S. R., 1992, DNA damage and mutation in human cells exposed to nitric oxide in vitro, Proc. Natl. Acad. Sci. USA 89:3030–3034.PubMedCrossRefGoogle Scholar
  56. Przedborski, S., Jackson-Lewis, V, Yokoyama, R., Shibata, T., Dawson, V. L., and Dawson, T. M., 1996, Role of neuronal nitric oxide in l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity, Proc. Natl. Acad. Sci. USA 93:4567–4571.CrossRefGoogle Scholar
  57. Olanow, C. W., 1992, An introduction to the free radical hypothesis in Parkinson’s disease, Ann. Neurol. 32:S2-S9.CrossRefGoogle Scholar
  58. Regidor, J., Edvinsson, L., and Divac, I., 1993, NOS neurones lie near branchings of cortical arteriolae, Neuroreport 4:112–114.PubMedCrossRefGoogle Scholar
  59. Reif, D. W., and Simmons, R. D., 1990, Nitric oxide mediates iron release from ferritin, Arch. Biochem. Biophys. 283:537–541.PubMedCrossRefGoogle Scholar
  60. Rossi, R, and Bianchini, E., 1996, Synergistic induction of nitric oxide by beta-amyloid and cytokines in astrocytes, Biochem. Biophys. Res. Commun. 225:474–478.PubMedCrossRefGoogle Scholar
  61. Rubanyi, G. M., Ho, E. H., Cantor, E. H., Lumma, W. C., Parker Botehlo, L. H., 1991, Cytoprotective function of nitric oxide: Inactivation of superoxide radicals produced by human leukocytes, Biochem. Biophys. Res. Comm. 181:1392–1397.PubMedCrossRefGoogle Scholar
  62. Schulz, J. B., Matthews, R. T., Muqit, M. M. K., Browne, S. E., and Beal, M. R, 1995, Inhibition of nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice, J. Neurochem. 64:936–939.PubMedCrossRefGoogle Scholar
  63. Seiden, N., Geula, C., Hersh, L., and Mesulam, M.-M., 1994, Human striatum: chemoarchitecture of the caudate nucleus, putamen and ventral striatum in health and Alzheimer’s disease, Neuroscience 60:621–636.CrossRefGoogle Scholar
  64. Sheng, P., Cerruti, C., Ali, S., and Cadet, J. L., 1996, Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity. In vitro evidence from primary cultures of mesencephalic cells, Ann. N. Y.Acad. Sci. 801:174–186.PubMedCrossRefGoogle Scholar
  65. Shergill, J. K., Cammack, R., Cooper, C. E., Cooper, J. M., Mann, V. M., and Schapira, A. H., 1996, Detection of nitrosyl complexes in human substantia nigra, in relation to Parkinson’s disease, Biochem. Biophys. Res. Commun. 228:298–305.PubMedCrossRefGoogle Scholar
  66. Sherman, M. P., Griscavage, J. M., and Ignarro, L. J., 1992, Nitric oxide-mediated neuronal injury in multiple sclerosis, Med. Hyp. 39:143–146.CrossRefGoogle Scholar
  67. Simonian, N. A., and Coyle, J. T., 1996, Oxidative stress in neurodegenerative diseases, Ann. Rev. Pharmacol. Toxicol. 36:83–106.CrossRefGoogle Scholar
  68. Spencer Smith, T., Swerdlow, R. H., Parker, W. D., and Bennett, J. P., 1994, Reduction of MPP+-induced hydroxyl radical formation and nigrostriatal MPTP toxicity by inhibiting nitric oxide synthase, Neuroreport 5:2598–2600.CrossRefGoogle Scholar
  69. Stamler, J. R., 1994, Redox signalling: Nitrosylation and related target interactions of nitric oxide, Cell 78:931–936.PubMedCrossRefGoogle Scholar
  70. Tomimoto, H., Nishimura, M., Suenaga, T., Nakamura, S., Akiguchi, I., Wakita, H., Kimura, J., and Mayer, B., 1994, Distribution of nitric oxide synthase in the human cerebral blood vessels and brain tissues, J. Cereb. Blood Flow Metabol. 14:930–938.CrossRefGoogle Scholar
  71. Wallis, R. A., Panizzon, K. L., Henry, D., and Wasterlain, C. G., 1993, Neuroprotection against nitric oxide injury with inhibitors of ADP-ribosylation, Neuroreport 5:245–248.PubMedCrossRefGoogle Scholar
  72. Weinberg, E. D., 1992, Iron depletion: A defense against intracellular infection and neoplasia, Life Sci. 50:1289–1297.PubMedCrossRefGoogle Scholar
  73. Weiss, G., Goossen, B., Doppler, W., Fuchs, D., Pantopoulos, K., Werner-Felmayer, G., Wächter, H., and Hentze, M. W., 1993, Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway, EMBO J. 12:3651–3657.PubMedGoogle Scholar
  74. Van Dam, A.-M., Bauer, J., Man-A-Hing, W. K. H., Marquette, C., Tilders, F. J. H., and Berkenbosch, F., 1995, Appearance of inducible nitric oxide synthase in the rat central nervous system after rabies virus infection and during experimental allergic encephalomyelitis but not after peripheral administration of endotoxin, J. Neurosci. Res. 40:251–260.PubMedCrossRefGoogle Scholar
  75. Vincent, S. R., and Kimura, H., 1992, Histochemical mapping of nitric oxide synthase in the rat brain, Neurosci. 46:755–784.CrossRefGoogle Scholar
  76. Xie, Q., and Nathan, C., 1994, The high output nitric oxide pathway: Role and regulation, J. Leukocyte Biol. 56:576–582.PubMedGoogle Scholar
  77. Yoshida, T., Limmroth, V, Irikura, K., and Moskowitz, M. A., 1994, The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels, J. Cereb. Blood Flow Metabol. 14:924–929.CrossRefGoogle Scholar
  78. Youdim, M. B. H., Ben-Shachar, D., Eshel, G., Finberg, J. P. M., and Riederer, P., 1993, The neurotoxicity of iron and nitric oxide. Relevance to the etiology of Parkinson’s disease, Adv. Neurol. 60:259–266.PubMedGoogle Scholar
  79. Zhang, J., Dawson, V. L., Dawson, T. M., and Snyder, S. H., 1993, Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity, Science 263:687–689.CrossRefGoogle Scholar
  80. Zhang, Z. G., Chopp, M., Zaloga, C., Pollock, J. S., and Forstermann, U., 1993, Cerebral endothelial nitric oxide synthase expression after focal cerebral ischemia in rats, Stroke 24:2016–2022.PubMedCrossRefGoogle Scholar
  81. Zielasek, J., Jung, S., Gold, R., Liew, F. Y, Toyka, K. V, and Hartung, H. P., 1995, Administration of nitric oxide synthase inhibitors in experimental autoimmune neuritis and experimental autoimmune encephalomyelitis, J. Neuroimmunol. 58:81–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Deborah A. Dawson
    • 1
  1. 1.Stroke Branch, NINDSNational Institutes of HealthBethesdaUSA

Personalised recommendations