Iron and Neurotransmitter Function in the Brain

  • Yelena Glinka
  • Michael Gassen
  • Moussa B. H. Youdim


Iron involvement in basic cell functions as well as in many human diseases has been described in excellent reviews (see, for example, Lauffer, 1992). Neural cells, like any other cell type, require iron for DNA synthesis, mitochondrial respiration, and other vitally important reactions. They are, on the other hand, susceptible to iron toxicity caused by iron overload. But the most remarkable characteristic of neural cells is observed only on the metacellular level: Neurons are organized in a network, which is used for collecting and analyzing of incoming information and producing an adequate response. This response can include regulation of non-neuronal systems.


Nitric Oxide Iron Deficiency Tyrosine Hydroxylase Iron Overload Axonal Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam-Visi, V, 1992, External Ca2+-independent release of neurotransmitters. J. Neurochem. 58:395–405.CrossRefGoogle Scholar
  2. Adams, J. A., and Taylor, S. S., 1993, Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase, Protein Sci. 2:2177–2186.PubMedCrossRefGoogle Scholar
  3. Alcain, F. J., Low, H., and Crane, F. L., 1994, Iron at the cell surface controls DNA synthesis in CCI 39 cells, Biochem. Biophys. Res. Commun. 203:16–21.PubMedCrossRefGoogle Scholar
  4. Alcantara, O., Obeid, L., Hannun, Y, Ponka, P., and Boldt, D. H., 1994, Regulation of protein kinase C (PKC) expression by iron: Effect on different iron compounds on PKC-ß and PKC-alpha gene expression and role of the 5′-flanking region of the PKC-ß gene in the response to ferric transferrin, Blood 84:3510–3517.PubMedGoogle Scholar
  5. Allen, D. R., Wallis, G. L., and McCay, P. B., 1994, Catechol adrenergic agents enhance hydroxyl radical generation in xanthine oxidase systems containing ferritin: Implications for ischemia/reperfusion, Arch. Biochem. Biophys. 315:235–243.PubMedCrossRefGoogle Scholar
  6. Almas, B., Le Bourdelles, B., Flatmark, T., Mallet, J., and Haavik, J., 1992, Regulation of recombinant human tyrosine hydroxylase isozymes by catecholamine binding and phosphorylation. Structure/ activity studies and mechanistic implications, Eur. J. Biochem. 209:249–255.PubMedCrossRefGoogle Scholar
  7. Anghileri, L. J., Maincent, P., and Cordova-Martinez, A., 1993, On the mechanism of soft tissue calcification induced by complexed iron, Exp. Toxicol. Pathol. 45:365–368.PubMedCrossRefGoogle Scholar
  8. Bading, H., Ginty, D. D., and Greenberg, M. E., 1993, Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways, Science 260:181–186.PubMedCrossRefGoogle Scholar
  9. Beard, J., 1987, Feed efficiency and norepinephrine turnover in iron deficiency, Proc. Soc. Exp. Biol. Med. 184:337–344.PubMedGoogle Scholar
  10. Beard, J., Tobin, B., and Smith, S. M., 1988, Norepinephrine turnover in iron deficiency at three environmental temperatures, Am. J. Physiol. 255:R90–6.Google Scholar
  11. Beard, J. L., Tobin, B. W., and Smith, S. M., 1990, Effects of iron repletion and correction of anemia on norepinephrine turnover and thyroid metabolism in iron deficiency, Proc. Soc. Exp. Biol. Med. 193:306–312.PubMedGoogle Scholar
  12. Beard, J. L., Connor, J. D., and Jones, B. C, 1993, Brain iron: location and function, Prog. Food Nutr. Sci. 17:183–221.PubMedGoogle Scholar
  13. Beard, J. L., Chen, Q., Connor, J., and Jones, B. C, 1994, Altered monamine metabolism in caudate-putamen of iron-deficient rats, Pharmacol. Biochem. Behav. 48:621–624.PubMedCrossRefGoogle Scholar
  14. Ben-Shachar, D., Tovi, A., and Youdim, M. B. H., 1993, Iron regulation of dopaminergic transmission: relevance to movement disorders, in: Iron in Central Nervous System Disorders (P. Riederer and M. B. H. Youdim, eds.), Springer-Verlag, Wien, pp. 55–66.CrossRefGoogle Scholar
  15. Ben-Shachar, D., Zuk, R., and Glinka, Y, 1994, Dopamine neurotoxicity: inhibition of mitochondrial respiration, J. Neurochem. 64:718–723.CrossRefGoogle Scholar
  16. Braughler, J. M., Duncan, L. A., and Chase, R. L., 1985, Interaction of lipid peroxidation and calcium in the pathogenesis of neuronal injury, Cent. Nerv. Syst. Trauma 2:269–283.PubMedGoogle Scholar
  17. Buccigross, J. M., and Nelson, D. J., 1986, EPR studies show that all lanthanides do not have the same order of binding to calmodulin, Biochem. Biophys. Res. Commun. 138:1243–1249.PubMedCrossRefGoogle Scholar
  18. Buccigross, J. M., and Nelson, D. J., 1988, Interactions of spin-labeled calmodulin with trifluoperazine and phosphodiesterase in the presence of Ca(II), Cd(II), La(III), Tb(III), and Lu(III), J. Inorg. Biochem. 33:139–147.PubMedCrossRefGoogle Scholar
  19. Caporaso, G. L., Takei, K., Gandy, S. E., Matteoli, M., Mundigl, O., Greengard, P., and De Camilli, P., 1994, Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer ß/A4 amyloid precursor protein, J. Neurosci, 14:3122–3138.PubMedGoogle Scholar
  20. Carraway, R. E., Mitra, S. P., and Honeyman, T. W, 1993, Effects of GTP analogs and metal ions on the binding of neurotensin to porcine brain membranes, Peptides 14:37–45.PubMedCrossRefGoogle Scholar
  21. Carter, D. A., 1992, Neurotransmitter-stimulated immediate-early gene responses are organized through differential post-synaptic receptor mechanisms, Brain Res. Mol. Brain Res. 16:111–118.PubMedCrossRefGoogle Scholar
  22. Chao, M. V, 1994, Mechanism of action of neurotrophin receptors, Neuropsychopharmacology 10:109S.Google Scholar
  23. Cohen, G., and Werner, P., 1994, Free radicals, oxidative stress, and neurodegeneration, in: Neurodegenerative Diseases (D. B. Calne, ed.), W. B. Saunders, Philadelphia, pp. 139–162.Google Scholar
  24. Cotterill, L. A., Gower, J. D., Clark, P. K., Fuller, B. J., Thorniley, M. S., Goddard, J. G., and Green, C. J., 1993, Reoxygenation following hypoxia stimulates lipid peroxidation and phosphatidylinositol breakdown, Biochem. Pharmacol. 45:1947–1951.PubMedCrossRefGoogle Scholar
  25. Crichton, R. R., and Ward, R. J., 1992, Structure and molecular biology of iron binding proteins and the regulation of “free” iron pools, in: Iron and Human Disease (R. B. Lauffer, ed.), CRC Press, Boca Raton, Florida, pp. 23–75.Google Scholar
  26. Daniel, H., Hemart, N., Jaillard, D., and Crepel, E, 1993, Long-term depression requires nitric oxide and guanosine 3′:5′ cyclic monophosphate production in rat cerebellar Purkinje cells, Eur. J. Neurosci. 5:1079–1082.PubMedCrossRefGoogle Scholar
  27. Davis, G. W., and Murphey, R. K., 1994, Long-term regulation of short-term transmitter release properties: retrograde signaling and synaptic development, Trends Neurosci. 17:9–13.PubMedCrossRefGoogle Scholar
  28. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H., 1991, Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures, Proc. Natl. Acad. Sci. USA 88:6368–6371.PubMedCrossRefGoogle Scholar
  29. De Sousa, E. B., and Cunnigham, E. T., Jr., 1994, Mapping of interleukin-1 receptors in the central nervous system: autoradiographic localization and in situ hybridization studies, Neuropsychopharmacology 10:136S.Google Scholar
  30. Eisenstein, R. S., Tuazon, R T., Schalinske, K. L., Anderson, S. A., and Traugh, J. A., 1993, Iron-responsive element-binding protein. Phosphorylation by protein kinase C., J. Biol. Chem. 268:27363–27370.PubMedGoogle Scholar
  31. Emould, A. P., Ferry, G., Barret, J. M., Genton, A., and Boutin, J. A., 1993, Purification and characterization of the major tyrosine protein kinase from the human promyelocytic cell line, HL60, Eur. J. Biochem. 214:503–514.CrossRefGoogle Scholar
  32. Evans, T. C., and Mackler, B., 1985, Effect of iron deficiency on energy conservation in rat liver and skeletal muscle submitochondrial particles, Biochem. Med. 34:93–99.PubMedCrossRefGoogle Scholar
  33. Ferrendelli, J. A., Chang, M. M., and Kinscherf, D. A., 1974, Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids, J. Neurochem. 22:535–540.PubMedCrossRefGoogle Scholar
  34. Garriga, G., Desai, C., and Horvitz, H. R., 1993, Cell interactions control the direction of outgrowth, branching and fasciculation of the HSN axons of Caenorhabditis elegans, Development 117:1071–1087.PubMedGoogle Scholar
  35. Gibbon, B. C., and Kropt, D. L., 1994, Cytosolic pH gradients associated with tip growth, Science 263:1419–1421.PubMedCrossRefGoogle Scholar
  36. Girotti, A. W., Thomas, J. P., and Jordan, J. E., 1986, Xanthine oxidase-catalyzed crosslinking of cell membrane proteins, Arch. Biochem. Biophys. 251:639–653.PubMedCrossRefGoogle Scholar
  37. Goldstein, G. W., 1993, Evidence that lead acts as a calcium substitute in second messenger metabolism, Neurotoxicology 14:97–101.PubMedGoogle Scholar
  38. Gomez, T. M., and Letourneau, P. C., 1994, Filopodia initiate choices made by sensory neuron growth cones at laminin/fibronectin borders in vitro, J. Neurosci. 14:5959–5972.PubMedGoogle Scholar
  39. Griscavage, J. M., Fukuto, J. M., Komori, Y, and Ignarro, L. J., 1994, Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide, J. Biol. Chem. 269:21644–21649.PubMedGoogle Scholar
  40. Gyenes, M., Wang, Q., Gibbs, T. T., and Farb, D. H., 1994, Phosphorylation factors control neurotransmitter and neuromodulator actions at the gamma-aminobutyric acid type A receptor, Mol. Pharmacol. 46:542–549.PubMedGoogle Scholar
  41. Hamelin, M., Zhou, Y, Su, I. M., Scott, I. M., and Culotti, J. G., 1993, Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally, Nature 364:327–330.PubMedCrossRefGoogle Scholar
  42. Hara, H., Kato, H., Araki, T., Onodera, H., and Kogure, K., 1991, Involvement of lipid peroxidation and inhibitory mechanisms on ischemic neuronal damage in gerbil hippocampus: Quantitative autoradiographic studies on second messenger and neurotransmitter systems, Neuroscience 42:159–169.PubMedCrossRefGoogle Scholar
  43. Haug, A., Shi, B., and Vitorello, V, 1994, Aluminum interaction with phosphoinositide-associated signal transduction, Arch. Toxicol. 68:1–7.PubMedCrossRefGoogle Scholar
  44. Hayes, G., Biden, T. J., Selbie, L. A., and Shine, J., 1992, Structural subtypes of the dopamine D2 receptor are functionally distinct: expression of the cloned D2A and D2B subtypes in a heterologous cell line, Mol. Endocrinol. 6:920–926.PubMedCrossRefGoogle Scholar
  45. Hedberg, K. K., Birrell, G. B., and Griffith, O. H., 1991, Phorbol ester-induced actin cytoskeletal reorganization requires a heavy metal ion, Cell Regul. 2:1067–1079.PubMedGoogle Scholar
  46. Hedberg, K. K., Birrell, G. B., Mobley, P. L., and Griffith, O. H., 1994, Transition metal chelator TPEN counteracts phorbol ester-induced actin cytoskeletal disruption in C6 rat glioma cells without inhibiting activation or translocation of protein kinase C., J. Cell Physiol. 158:337–346.PubMedCrossRefGoogle Scholar
  47. Higashijima, T, Ferguson, K. M., Sternweis, P. C., Smigel, M. D., and Gilman, A. G., 1987, Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins, J. Biol. Chem. 262:762–766.PubMedGoogle Scholar
  48. Hill, J. M., 1985, Iron concentration reduced in ventral pallidum, globus pallidus, and substantia nigra by GABA-transaminase inhibitor, gamma-vinyl GAB A, Brain Res. 342:18–25.PubMedCrossRefGoogle Scholar
  49. Hurtley, S. M., 1993, Membrane proteins involved in targeted membrane fusion, Trends Biol. Sci. 18:453–455.CrossRefGoogle Scholar
  50. Ihle, J. N., Witthuhm, B. R., Ouelle, F. W., Yamamoto, K., Thierfelder, W. E., Kreider, B., and Silvennoinen, O., 1992, Signalling by the cytokine receptor superfamily: JAKs and STATs, Trends Biol. Sci. 19:222–227.CrossRefGoogle Scholar
  51. Kardos, J., Elster, L., Damgaard, L, Krogsgaard-Larsen, P., and Schousboe, A., 1994, Role of GABAB receptors in intracellular Ca2+ homeostasis and possible interaction between GABAA and GABAB receptors in regulation of transmitter release in cerebellar granule neurons, J. Neurosci. Res. 39:646–655.PubMedCrossRefGoogle Scholar
  52. Karschin, A., Wischmeyer, E., Davidson, N., and Lester, H. A., 1994, Fast inhibition of inwardly rectifying K+ channels by multiple neurotransmitter receptors in Oligodendroglia, Eur. J. Neurosci. 6:1756–1764.PubMedCrossRefGoogle Scholar
  53. Kebabian, J. W., 1994, Neurotransmitter receptors in neurodegeneration, in: Neurodegenerative Diseases (D. B. Calne, ed.), W. B. Saunders, Philadelphia, pp. 119–128.Google Scholar
  54. King, M. M., and Huang, C. Y., 1984, The calmodulin-dependent activation and deactivation of the phosphoprotein phosphatase, calcineurin, and the effect of nucleotides, pyrophosphate, and divalent metal ions. Identification of calcineurin as a Zn and Fe metalloenzyme, J. Biol Chem. 259:8847–8856.PubMedGoogle Scholar
  55. Korge, P., and Campbell, K. B., 1993, The effect of changes in iron redox state on the activity of enzymes sensitive to modification of SH groups, Arch. Biochem. Biophys. 304:420–428.PubMedCrossRefGoogle Scholar
  56. Kuhn, D. M., Ruskin, B., and Lovenberg, W., 1980, Tryptophan hydroxylase. The role of oxygen, iron, and sulfhydryl groups as determinants of stability and catalytic activity, J. Biol. Chem. 255:4137–4143.PubMedGoogle Scholar
  57. Landgraf, W., Regulla, S., Meyer, H. E., and Hofmann, F., 1991, Oxidation of cysteines activates cGMP-dependent protein kinase, J. Biol. Chem. 266:16305–16311.PubMedGoogle Scholar
  58. Laufer, R., and Changeux, J. P., 1989, Activity-dependent regulation of gene expression in muscle and neuronal cells, Mol. Neurobiol. 3:1–53.PubMedCrossRefGoogle Scholar
  59. Lauffer, R. B., 1992, Iron, aging, and human disease: historical background and new hypotheses, in: Iron and Human Disease (R. B. Lauffer, ed.), CRC Press, Boca Raton, FL, pp. 1–20.Google Scholar
  60. Leclerc, L., Marden, M., and Poyart, C., 1991, Inhibition of the erythrocyte (Ca2+ + Mg2+)-ATPase by nonheme iron, Biochim. Biophys. Acta. 1062:35–38.PubMedCrossRefGoogle Scholar
  61. Lei, S. Z., Pan, Z. H., Aggarwal, S. K., Chen, H. S., Hartman, J., Sucher, N. J., and Lipton, S. A., 1992, Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex, Neuron 8:1087–1099.PubMedCrossRefGoogle Scholar
  62. Li, C. Y., Watkins, J. A., Hamazaki, S., Altazan, J. D., and Glass, J., 1995, Iron binding, a new function for the reticulocyte endosome H+-ATPase, Biochemistry 34:5130–5136.PubMedCrossRefGoogle Scholar
  63. Lin, C. H., and Forscher, P., 1993, Cytoskeleton remodeling during growth cone-target interactions, J. Cell Biol. 121:1369–1383.PubMedCrossRefGoogle Scholar
  64. Lindsay, R. M., Wiegand, S. J., Altar, C. A., and DiStephano, P. S., 1994, Neurotrophic factors: from molecule to man, Trends Neurosci. 17:182–190.PubMedCrossRefGoogle Scholar
  65. Lippe, G., Comelli, M., Mazzilis, D., Sala, F. D., and Mavelli, I., 1991, The inactivation of mitochondrial Fl ATPase by H202 is mediated by iron ions not tightly bound in the protein, Biochem. Biophys. Res. Commun. 181:764–770.PubMedCrossRefGoogle Scholar
  66. Lipton, S. A., and Moser, A., 1994, Actions of redox-related congeners of nitric oxide at the NMDA receptor, Neuropharmacology 33:1229–1233.PubMedCrossRefGoogle Scholar
  67. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S., Sucher, N. J., Loscalzo, J., Singel, D. J., and Moser, A., 1993, A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds, Nature 364:626–632.PubMedCrossRefGoogle Scholar
  68. Lipton, S. A., Singel, D. J., and Moser, A., 1994a, Nitric oxide in the central nervous system, Prog. Brain Res. 103:359–364.PubMedCrossRefGoogle Scholar
  69. Lipton, S. A., Yeh, M., and Dreyer, E. B., 1994b, Update on current models of HIV-related neuronal injury: Platelet-activating factor, arachidonic acid and nitric oxide, Adv. Neuroimmunol. 4:181–188.PubMedCrossRefGoogle Scholar
  70. Liu, F. C., Takahashi, H., McKay, R. D., and Graybiel, A. M., 1995, Dopaminergic regulation of transcription factor expression in organotypic cultures of developing striatum, J. Neurosci. 15:2367–2384.PubMedGoogle Scholar
  71. Liu, J., and Mori, A., 1993, Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage, Arch. Biochem. Biophys. 302:118–127.PubMedCrossRefGoogle Scholar
  72. Ludlam, W. H., and Kessler, J. A., 1993, Leukemia inhibitory factor and ciliary neurotrophic factor regulate expression of muscarinic receptors in cultured sympathetic neurons, Dev. Biol. 155:497–506.PubMedCrossRefGoogle Scholar
  73. Manne, V., and Kung, H. F, 1985, Effect of divalent metal ions and glycerol on the GTPase activity of H-ras proteins, Biochem. Biophys. Res. Commun. 128:1440–1446.PubMedCrossRefGoogle Scholar
  74. Marti, H. H., Jung, H. H., Pfeilschifter, J., and Bauer, C., 1994, Hypoxia and cobalt stimulate lactate dehydrogenase (LDH) activity in vascular smooth muscle cells, Pflugers Arch. 429:216–222.PubMedCrossRefGoogle Scholar
  75. Masliah, E., Hansen, L., Mallory, M., Albright, T., and Terry, R. D., 1991, Abnormal brain spectrin immunoreactivity in sprouting neurons in Alzheimer disease, Neurosci. Lett. 129:1–5.PubMedCrossRefGoogle Scholar
  76. Mattammal, M. B., Strong, R., Lakshmi, V. M., Chung, H. D., and Stephenson, A. H., 1995, Prostaglandin H synthetase-mediated metabolism of dopamine: Implication for Parkinson’s disease, J. Neurochem. 64:1645–1654.PubMedCrossRefGoogle Scholar
  77. Maurer, M. C., Grisham, C. M., and Sando, J. J., 1992, Activation and inhibition of protein kinase C isozymes alpha and beta by Gd3+, Arch. Biochem. Biophys. 298:561–568.PubMedCrossRefGoogle Scholar
  78. Meij, J. T., Suzuki, S., Panagia, V, and Dhalla, N. S., 1994, Oxidative stress modifies the activity of cardiac sarcolemmal phospholipase C., Biochim. Biophys. Acta. 1199:6–12.PubMedCrossRefGoogle Scholar
  79. Memo, M., Bovolin, P., Costa, E., and Grayson, D. R., 1991, Regulation of gamma-aminobutyric acid A receptor subunit expression by activation of N-methyl-D-aspartate-selective glutamate receptors, Mol. Pharmacol. 39:599–603.PubMedGoogle Scholar
  80. Monasterio, O., and Timasheff, S. N., 1985, Role of the dianionic form of the GTP gamma-phosphate in the polymerization process of tubulin, Arch. Biol. Med. Exp. (Santiago) 18:325–329.Google Scholar
  81. Montastruc, J. L., Galitzky, J., Berlan, M., and Montastruc, P., 1993, Mechanism of receptor regulation during repeated administration of drugs, Therapie 48:421–426.PubMedGoogle Scholar
  82. Montpied, P., Ginns, E. I., Martin, B. M., Roca, D., Farb, D. H., and Paul, S. M., 1991, gamma-Aminobutyric acid (GAB A) induces a receptor-mediated reduction in GABAA receptor alpha subunit messenger RNAs in embryonic chick neurons in culture, J. Biol. Chem. 266:6011–6014.PubMedGoogle Scholar
  83. Moser, A., and Schuster, O., 1990, Iron inhibits D-1 dopamine receptor coupled adenylate cyclase via G-proteins in the caudate nucleus of the rat, Biochem. Biophys. Res. Commun. 171:1372–1377.PubMedCrossRefGoogle Scholar
  84. Nanji, A. A., Zhao, S., Lamb, R. G., Sadrzadeh, S. M., Dannenberg, A. J., and Waxman, D. J., 1993, Changes in microsomal phospholipases and arachidonic acid in experimental alcoholic liver injury: Relationship to cytochrome P-450 2E1 induction and conjugated diene formation, Alcohol Clin. Exp. Res. 17:589–603.CrossRefGoogle Scholar
  85. Nimura, E., Miura, K., Shinobu, L. A., and Imura, N., 1987, Enhancement of Ca2+-sensitive myosin ATPase activity by cadmium, Ecotoxicol. Environ. Safety 14:184–189.PubMedCrossRefGoogle Scholar
  86. Orchinik, M., Weiland, N. G., and McEwen, B. S., 1994, Adrenalectomy selectively regulates GABA A receptor subunit expression in the hippocampus, Mol. Cell Neurosci. 5:451–458.PubMedCrossRefGoogle Scholar
  87. Otto, D., and Unsicker, K., 1993, FGF-2-Mediated protection of cultured mesencephalic dopaminergic neurons against MPTP and MPP+: Specificity and impact of culture conditions, non-dopaminergic neurons, and astroglial cells, J. Neurosci. Res. 34:382–383.PubMedCrossRefGoogle Scholar
  88. Pantopoulos, K., and Hentze, M. W., 1995, Nitric oxide signaling to iron regulatory protein: Direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts, Proc. Natl. Acad. Sci. USA 92:1267–1271.PubMedCrossRefGoogle Scholar
  89. Pathak, D. N., Roy, D., and Singh, R., 1984, Changes in the activity of gamma-amino butyric acid transaminase and succinic semialdehyde dehydrogenase in the cobalt and iron experimental epileptogenic foci in the rat brain, Biochem. Int. 9:59–68.PubMedGoogle Scholar
  90. Payne, M. J., Woods, L. F., Gibbs, P., and Cammack, R., 1990, Electron paramagnetic resonance spectroscopic investigation of the inhibition of the phosphoroclastic system of Clostridium sporogenes by nitrite, J. Gen. Microbiol. 136:2067–2076.PubMedCrossRefGoogle Scholar
  91. Pedigo, N. W, 1994, Neurotransmitter receptor plasticity in aging, Life Sci. 55:1985–1991.PubMedCrossRefGoogle Scholar
  92. Pellmar, T. C., 1987, Peroxide alters neuronal excitability in the CA1 region of guinea-pig hippocampus in vitro, Neuroscience 23:447–456.PubMedCrossRefGoogle Scholar
  93. Piani, D., Constam, D. B., Frei, K., and Fontana, A., 1994, Macrophages in brain: friends or enemies? News in Physiological Sciences 9:80–84.Google Scholar
  94. Price, D. J., and Joshi, J. G., 1984, Ferritin: protection of enzymatic activity against the inhibition by divalent metal ions in vitro, Toxicology 31:151–163.PubMedCrossRefGoogle Scholar
  95. Qin, Z. H., Zhang, S. P., and Weiss, B., 1994, Dopaminergic and glutamatergic blocking drugs differentially regulate glutamic acid decarboxylase mRNA in mouse brain, Brain Res. Mol. Brain Res. 21:293–302.PubMedCrossRefGoogle Scholar
  96. Rafalowska, U., Liu, G. J., and Floyd, R. A., 1989, Peroxidation induced changes in synaptosomal transport of dopamine and gamma-aminobutyric acid, Free Radic. Biol. Med. 6:485–492.PubMedCrossRefGoogle Scholar
  97. Ramassamy, C., Girbe, F., Pincemail, J., Christen, Y, and Costentin, J., 1994, Modifications of the synaptosomal dopamine uptake and release by two systems generating free radicals: Ascorbic acid/Fe2+ and L-arginine/NADPH, Ann. N Y. Acad. Sci. 738:141–152.PubMedCrossRefGoogle Scholar
  98. Rausch, W. D., Hirata, Y, Nagatsu, T., Riederer, R, and Jellinger, K., 1988, Tyrosine hydroxylase activity in caudate nucleus from Parkinson’s disease: Effects of iron and phosphorylating agents, J. Neurochem. 50:202–208.PubMedCrossRefGoogle Scholar
  99. Ribeiro, P., Wang, Y., Citron, B. A., and Kaufman, S., 1992, Regulation of recombinant rat tyrosine hydroxylase by dopamine, Proc. Natl. Acad. Sci. USA 89:9593–9597.PubMedCrossRefGoogle Scholar
  100. Richard, S., Brion, J. P., Couck, A. M., and Flament-Durand, J., 1989, Accumulation of smooth endoplasmic reticulum in Alzheimer’s disease: New morphological evidence of axoplasmic flow disturbances, J. Submicrosc. Cytol. Pathol 21:461–467.PubMedGoogle Scholar
  101. Richardt, G., Federolf, G., and Habermann, E., 1985, The interaction of aluminum and other metal ions with calcium-calmodulin-dependent phosphodiesterase, Arch. Toxicol. 57:257–259.PubMedCrossRefGoogle Scholar
  102. Rohn, T. T., Hinds, T. R., and Vincenzi, F. F., 1993, Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes, Biochem. Pharmacol. 46:525–534.PubMedCrossRefGoogle Scholar
  103. Rossi, M. A., Curzio, M., DiMauro, C., Fidale, F., Garramone, A., Esterbauer, H., Torrielli, M., and Dianzani, M. U., 1991, Experimental studies on the mechanism of action of 4-hydroxy-2,3-trans-nonenal, a lipid peroxidation product displaying chemotactic activity toward rat neutrophils, Cell Biochem. Funct. 9:163–170.PubMedCrossRefGoogle Scholar
  104. Rothman, R. B., Reid, A., Mahboubi, A., Kim, C. H., De Costa, B. R., Jacobson, A. E., and Rice, K. C., 1991, Labeling by [3H]1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands, Mol. Pharmacol. 39:222–232.PubMedGoogle Scholar
  105. Salmeron, A., Borroto, A., Fresno, M., Crumpton, M. J., Ley, S. C., and Alarcon, B., 1995, Transferrin receptor induces tyrosine phosphorylation in T cells and is physically associated with the TCR ξ-chain, J. Immunol. 154:1675–1683.PubMedGoogle Scholar
  106. Sanchez, C., Diaz-Nido, J., and Avila, J., 1995, Variations in in vivo phosphorylation at the proline-rich domain of the microtubule-associated protein 2 (MAP2) during rat brain development, Biochem. J. 306:481–487.PubMedGoogle Scholar
  107. Schimke, I., Haberland, A., Will-Shahab, L., Kuttner, I., and Papies, B., 1992, In vitro effect of reactive 02 species on the β-receptor-adenylyl cyclase system, Mol. Cell. Biochem. 110:41–46.PubMedCrossRefGoogle Scholar
  108. Schuman, E. M., Meffert, M. K., Schulman, H., and Madison, D. V, 1994, An ADP-ribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation, Proc. Natl. Acad. Sci. USA 91:11958–11962.PubMedCrossRefGoogle Scholar
  109. Seki, K., Chen, H. C., and Huang, K. P., 1995, Dephosphorylation of protein kinase C substrates, neurogranin, neuromodulin, and MARCKS by calcineurin and protein phosphatases 1 and 2A, Arch. Biochem. Biophys. 316:673–679.PubMedCrossRefGoogle Scholar
  110. Shao, Y, and McCarthy, K. D., 1993, Regulation of astroglial responsiveness to neuroligands in primary culture, Neuroscience 55:991–1001.PubMedCrossRefGoogle Scholar
  111. Shiota, A., Hiramatsu, M., and Mori, A., 1989, Amino acid neurotransmitters in iron-induced epileptic foci of rats, Res. Commun. Chem. Pathol. Pharmacol. 66:123–133.PubMedGoogle Scholar
  112. Shoham, S., Wertman, E., and Ebstein, R. P., 1992, Iron accumulation in the rat basal ganglia after excitatory amino acid injections—dissociation from neuronal loss, Exp. Neurol. 118:227–241.PubMedCrossRefGoogle Scholar
  113. Sinosich, M. J., Davey, M. W., Teisner, B., and Grudzinskas, J. G., 1983, Comparative studies of pregnancy associated plasma protein-A and alpha 2-macroglobulin using metal chelate chromatography, Biochem. Int. 7:33–42.PubMedGoogle Scholar
  114. Sirinathsinghji, D. J., Schuligoi, R., Heavens, R. P., Dixon, A., Iversen, S. D., and Hill, R. G., 1994, Temporal changes in the messenger RNS levels of cellular immediate early genes and neurotransmitter/receptor genes in the rat neostriatum and substantia nigra after acute treatment with eticlopride, a dopamine D2 receptor antagonist, Neuroscience 62:407–423.PubMedCrossRefGoogle Scholar
  115. Sitaramayya, A., Marala, R. B., Hakki, S., and Sharma, R. K., 1991, aInteractions of nucleotide analogues with rod outer segment guanylate cyclase, Biochemistry 30:6742–6747.PubMedCrossRefGoogle Scholar
  116. Smith, J. B., Smith, L., Pijuan, V., Zhuang, Y, and Chen, Y C., 1994, Transmembrane signals and protooncogene induction evoked by carcinogenic metals and prevented by zinc, Environ. Health Perspect. 102(Suppl 3): 181–189.PubMedGoogle Scholar
  117. Stohs, S. J., and Bagchi, D., 1995, Oxidative mechanisms in the toxicity of metal ions, Free Radic. Biol. Med. 18:321–336.PubMedCrossRefGoogle Scholar
  118. Swaiman, K. F., and Machen, V. L., 1985, The effect of iron on mammalian cortical neurons in culture, Neurochem. Res. 10:1261–1268.PubMedCrossRefGoogle Scholar
  119. Swope, S. L., Moss, S. J., Blackstone, C. D., and Huganir, R. L., 1992, Phosphorylation of ligand-gated ion channels: A possible mode of synaptic plasticity, FASEB J. 6:2514–2523.PubMedGoogle Scholar
  120. Taher, M. M., Garcia, J. G., and Natarajan, V, 1993, Hydroperoxide-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells, Arch. Biochem. Biophys. 303:260–266.PubMedCrossRefGoogle Scholar
  121. Taneja, V, Mishra, K., and Agarwal, K. N., 1986, Effect of early iron deficiency in rat on the gamma-aminobutyric acid shunt in brain, J. Neurochem. 46:1670–1674.PubMedCrossRefGoogle Scholar
  122. Tang, J., Rutishauser, U., and Landmesser, L., 1994, Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region, Neuron. 13:405–414.PubMedCrossRefGoogle Scholar
  123. Tian, W. N., and Deth, R. C., 1993, Precoupling of Gi/G(o)-linked receptors and its allosteric regulation by monovalent cations, Life Sci. 52:1899–1907.PubMedCrossRefGoogle Scholar
  124. Tiffany-Castiglioni, E., Zmudzki, J., Wu, J. N., and Bratton, G. R., 1987, Effects of lead treatment on intracellular iron and copper concentrations in cultured astroglia, Metab. Brain Dis. 2:61–79.PubMedCrossRefGoogle Scholar
  125. Tipper, J., Wollny, E., Fullilove, S., Kramer, G., and Hardesty, B., 1986, Interaction of the 56,000-dalton phosphoprotein from reticulocytes with regulin and inhibitor 2, J. Biol. Chem. 261:7144–7150.PubMedGoogle Scholar
  126. Tomsig, J. L., and Suszkiw, J. B., 1993, Intracellular mechanism of Pb2+-induced norepinephrine release from bovine chromaffin cells, Am. J. Physiol. 265:C1630–6.Google Scholar
  127. Tsuji, Y, Miller, L. L., Miller, S. C., Torti, S. V, and Torti, F. M., 1991, Tumor necrosis factor-alpha and interleukin 1-alpha regulate transferrin receptor in human diploid fibroblasts. Relationship to the induction of ferritin heavy chain, J. Biol. Chem. 266:7257–7261.PubMedGoogle Scholar
  128. Vartio, T., and Kuusela, P., 1991, Disulfide-bonded dimerization of fibronectin in vitro, Eur. J. Biochem. 202:597–604.PubMedCrossRefGoogle Scholar
  129. Velez Pardo, C., Jimenez del Rio, M., Pinxteren, J., De Potter, W., Ebinger, G., and Vauquelin, G., 1995, Fe2+-mediated binding of serotonin and dopamine to skeletal muscle actin: resemblance to serotonin binding proteins, Eur. J. Pharmacol. 288:209–218.PubMedCrossRefGoogle Scholar
  130. Vig, P. J., Ravi, K., and Nath, R., 1991, Interaction of metals with brain calmodulin purified from normal and cadmium exposed rats, Drug Chem. Toxicol. 14:207–218.PubMedCrossRefGoogle Scholar
  131. Vincent, J. B., and Averill, B. A., 1990, Sequence homology between purple acid phosphatases and phosphoprotein phosphatases. Are phosphoprotein phosphatases metalloproteins containing oxide-bridged dinuclear metal centers? FEBS Lett. 263:265–268.PubMedCrossRefGoogle Scholar
  132. Wade, R. S., and Castro, C. E., 1990, Redox reactivity of iron(III) porphyrins and heme proteins with nitric oxide. Nitrosyl transfer to carbon, oxygen, nitrogen, and sulfur, Chem. Res. Toxicol. 3:289–291.PubMedCrossRefGoogle Scholar
  133. Waldmeier, P. C., Buchle, A. M., and Steulet, A. F., 1993, Inhibition of catechol-O-methyltransferase (COMT) as well as tyrosine and tryptophan hydroxylase by the orally active iron chelator, 1,2-dimethyl-3-hydroxypyridin-4-one (L1, CP20), in rat brain in vivo, Biochem. Pharmacol. 45:2417–2424.PubMedCrossRefGoogle Scholar
  134. Wang, J., Rousseau, D. L., Abu-Soud, H. M., and Stuehr, D. J., 1994, Heme coordination of NO in NO synthase, Proc. Natl. Acad. Sci. USA 91:10512–10516.PubMedCrossRefGoogle Scholar
  135. Wang, L. Y, Taverna, F. A., Huang, X. P., MacDonald, J. F, and Hampson, D. R., 1993, Phosphorylation and modulation of a kainate receptor (GluR6) by cAMP-dependent protein kinase, Science 259:1173–1175.PubMedCrossRefGoogle Scholar
  136. Winegar, B. D., and Lansman, J. B., 1991, Block of current through single calcium channels by Fe, Co, and Ni. Location of the transition metal binding site in the pore, J. Gen. Physiol. 97:351–367.PubMedCrossRefGoogle Scholar
  137. Winrow, V. R., Winyard, P. G., Morris, C. J., and Blake, D. R., 1993, Free radicals in inflammation: Second messengers and mediators of tissue destruction, Br. Med. Bull. 49:506–522.PubMedGoogle Scholar
  138. You, G. F., Buccigross, J. M., and Nelson, D. J., 1990, Comparison of Ca(II), Cd(II), and Mg(II) titration of tyrosine-99 spin-labeled bovine calmodulin, J. Inorg. Biochem. 38:117–125.PubMedCrossRefGoogle Scholar
  139. Youdim, M. B. H., Ben-Shachar, D., and Yehuda, S., 1989, Putative biological mechanisms of the effect of iron deficiency on brain biochemistry and behavior, Am. J. Clin. Nutr. 50:607–617.PubMedGoogle Scholar
  140. Yu, M. J., McCowan, J. R., Phebus, L. A., Towner, R. D., Ho, P. P., Keith, P. T, Luttman, C. A., Saunders, R. D., Ruterbories, K. J., and Lindstrom, T. D., 1993, Benzylamine antioxidants: Relationship between structure, peroxyl radical scavenging, lipid peroxidation inhibition, and cytoprotection, J. Med. Chem. 36:1262–1271.PubMedCrossRefGoogle Scholar
  141. Zhang, Y, Tatsuno, T., Carney, J. M., and Mattson, M. P., 1993, Basic FGF, NGF, and IGFs protect hippocampal and cortical neurons against iron-induced degeneration, J. Cereb. Blood Flow Metab. 13:378–388.PubMedCrossRefGoogle Scholar
  142. Zhang, Z. H., Zuo, Q. H., and Wu, X. R., 1989, Effects of lipid peroxidation on GABA uptake and release in iron-induced seizures, Chin. Med. J. (Engl.) 102:24–27.Google Scholar
  143. Zorumski, C. F., and Thio, L. L., 1992, Properties of vertebrate glutamate receptors: Calcium mobilization and desensitization, Prog. Neurobiol. 39:295–336.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Yelena Glinka
    • 1
  • Michael Gassen
    • 1
  • Moussa B. H. Youdim
    • 1
  1. 1.Department of PharmacologyBruce Rappaport Family Research Institute, Faculty of Medicine, TechnionHaifaIsrael

Personalised recommendations