Two Pathways Between the Cortex and the Basal Ganglia Output Nuclei and the Globus Pallidus

  • Hitoshi Kita
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)

Abstract

Two major pathways connect the cerebral cortex to the basal ganglia output nuclei: the entopeduncular nucleus (EP, homologous to the internal segment of the pallidum of the primate); and the substantia nigra pars reticulata (SNr)(Fig. 1). The output nuclei are referred to as EP/SNr in this paper. One pathway begins with cortico-striatal projections and the other begins with cortico-subthalamic projections. Both the neostriatum and the subthalamic nucleus project heavily to the globus pallidus (GP). This paper summarizes some recent anatomical and physiological findings on the two cortico-EP/SNr pathways and the GP which is located in the middle of the two sets of pathways.

Keywords

Basal Ganglion Globus Pallidus Projection Neuron Subthalamic Nucleus Axon Collateral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afsharpour, S., 1985, Topographical projections of the cerebral cortex to the subthalamic nucleus. J. Comp. Neurol., 236: 14–28.PubMedCrossRefGoogle Scholar
  2. Alexander, G.E., 1987, Selective neuronal discharge in monkey putamen reflects intended direction of planned limb movements, Exp. Brain Res., 67: 623–634.PubMedCrossRefGoogle Scholar
  3. Alexander, G.E., and Crutcher, M.D., 1990, Functional architecture of basal ganglia circuits: neural substrates of parallel processing, TINS, 13: 266–271.PubMedGoogle Scholar
  4. Bauswein, E., Fromm, C., and Preuss, A., 1989, Corticostriatal cells in comparison with pyramidal tract neurons: contrasting properties in the behaving monkey, Brain Res., 493: 198–203.PubMedCrossRefGoogle Scholar
  5. Bielchowsky, M., 1919, Einige Bemerkungen zur normalen und pathologischen histologie des Schweif-und Lisenkerns, J. Psychol. Neurol. (Lpz), 25: 1–11.Google Scholar
  6. Brown, L.L., 1992, Somatotropic organization in rat striatum: Evidence for a combinational map, Proc Nati Acad Sci USA, 89: 403–7407.Google Scholar
  7. Brown, L.L., and Sharp, F.R., 1995, Metabolic mapping of rat striatum: Somatotopic organization of sensori-motor activity, Brain Res., 686: 207–222.PubMedCrossRefGoogle Scholar
  8. Canteras, N. S., Shammah-Lagnado, S. J., Silva, B. A., and Ricardo, J. A., 1990, Afferent connections of the subthalamic nucleus: A combined retrograde and anterograde horseradish peroxidase study in the rat, Brain Res., 513: 43–59.PubMedCrossRefGoogle Scholar
  9. Celio, M.R., 1986, Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex, Science, 231: 995–997.PubMedCrossRefGoogle Scholar
  10. Celio, M.R., 1990, Calbindin D-28k and parvalbumin in the rat nervous system, Neurosci., 35: 375–475.CrossRefGoogle Scholar
  11. Chang, H.T., Wilson, C.J., and Kitai, S.T., 1981, Single neostriatal efferent axons in the globus pallidus: A light and electron microscopic study, Science, 213: 915–918.PubMedCrossRefGoogle Scholar
  12. Charara, A., Pinault, D., and Parent, A., 1995, Patterns of arborization of single striatofugal axons in primates, Soc. Neurosci. Abstr., 21: 677.Google Scholar
  13. Chevalier, G., Vacher, S., Deniau, J. M., and Desban, M., 1985, Disinhibition as a basic process in the expression of striatal functions. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons, Brain Res. 334: 215–226.PubMedCrossRefGoogle Scholar
  14. Cowan, R.L., Wilson, C.J., and Emson, P.C., 1990, Parvalbumin is present in GABA containing interneurons in the rat neostriatum, J. Comp Neurol., 302: 198–205.CrossRefGoogle Scholar
  15. DeLong, M. R., 1971, Activity of pallidal neurons during movement, J. Neurophysiol., 34: 414–427.PubMedGoogle Scholar
  16. DeLong, M.R., Crutcher, M.D., and Georgopoulos, A.P., 1985, Primate globus pallidus and subthalamic nucleus: Functional organization, J. Neurophysiol., 53: 530–543.PubMedGoogle Scholar
  17. DiFiglia, M., Pasik, P., and Pasik, T., 1982, A Golgi and ultrastructural study of the monkey globus pallidus, J. Comp. Neurol., 212: 53–75.PubMedCrossRefGoogle Scholar
  18. Falls, W.M., Park, M.R., and Kitai, S.T., 1982, An intracellular HRP study of the rat globus pallidus. II. Fine structural characteristics and synaptic connnections of medially located large GP neurons, J. Comp. Neurol., 220: 229–245.Google Scholar
  19. Flaherty, A.W., and Graybiel, A.M., 1994, Input-output organization of the sensorimotor striatum in the squirrel monkey, J. Neurosci., 14: 599–610.PubMedGoogle Scholar
  20. Flaherty, A.W., and Graybiel, A.M., 1993, Two input systems for body representations in the primate striatal matrix: Experimental evidence in the squirrel monkey, J. Neurosci., 13: 1120–1137.PubMedGoogle Scholar
  21. Fox, C.A., Andrade, A.N., Lu Qui, I.J., and Rafols, J.A., 1974, The primate globus pallidus: A Golgi and electron microscopic study, J. Hirnforschung, 15: 75–93.Google Scholar
  22. Francois, C., Percheron, G., Yelnik, J., and Heyner, S., 1984, A Golgi analysis of the primate globus pallidus I. Inconstant processes of large neurons, other neuronal types, and afferent axons, J. Comp. Neurol., 227: 182–199.PubMedCrossRefGoogle Scholar
  23. Fujimoto, K., and Kita, H., 1992, Responses of rat substantia nigra pars reticulata units to cortical stimulation, Neurosci. Lett., 142: 105–109.PubMedCrossRefGoogle Scholar
  24. Fujimoto, K., and Kita, H., 1993, Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat, Brain Res., 185: 185–192.CrossRefGoogle Scholar
  25. Georgopoulus, A.P., DeLong, M.R., and Crutcher, M.D., 1983, Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey, J. Neurosci., 3: 1586–1598.Google Scholar
  26. Giuffrida, R., Li Vilsi, G., Maugeri, G., and Perciavalle, V., 1985, Influences of pyramidal tract on the subthalamic nucleus in the cat, Neurosci. Lett., 54: 231–235.PubMedCrossRefGoogle Scholar
  27. Graybiel, A.M., and Ragsdale, C.W. Jr., 1979, Fiber sonnections of the basal ganglia, in: Development and chemical specificity of neurons, (M. Cuenod, G.W. Kreutzberg, and F.E. Bloom, eds.), Elsevier, Amsterdam, pp. 239–283.CrossRefGoogle Scholar
  28. Groenewegen, H.J., and Berendse, H.W., 1990, Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat, J. Comp. Neurol., 294: 607–622.PubMedCrossRefGoogle Scholar
  29. Hartmann-Von Monakow, K., Akert, K., and Künzle, H., 1979, Projections of precentrai and premotor cortex to the red nucleus and other midbrain areas in Macaca fasciccularis, Exp. Brain Res., 34: 91–105.Google Scholar
  30. Heizmann, C.W., 1984, Parvalbumin an intracellular calcium-binding protein: Distribution, properties and possible roles in mammalian cells, Experientia, 40: 910–921.PubMedCrossRefGoogle Scholar
  31. Hikosaka, O., Sakamoto, M., and Usui, S., 1989, Functional properties of monkey caudate neurons I. Activities related saccadic eye movements, J. Neurophysiol., 61: 780–798.PubMedGoogle Scholar
  32. Kato, M., and Hikosaka, O., 1992, Saccadic responses of external pallidal neurons in monkey, International Basal Ganglia Society Abstr. 4: 44.Google Scholar
  33. Kawaguchi, Y., Wilson, C. J., and Emson, P. C., 1990, Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin, J. Neurosci., 10: 3421–3438.PubMedGoogle Scholar
  34. Kelland, M.D., Sr., and Walters, J.R., 1992, Apomorphine-induced changes in the striatal and pallidal neuronal activity are modified by NMDA and muscarinic recptor blockade, Life Sci., 50: 179–184.CrossRefGoogle Scholar
  35. Kimura, M., Aosaki, T., Hu, Y., Ishida, A., and Watanabe, K., 1992, Activity of primate putamen neurons is selective to the mode of voluntary movement: Visually guided, self-initiated or memroy guided, Exp. Brain Res., 89: 473–477.PubMedCrossRefGoogle Scholar
  36. Kita, H., 1992, Responses of globus pallidus neurons to cortical stimulation; Intracellular study in the rat, Brain Res., 589: 84–90.PubMedCrossRefGoogle Scholar
  37. Kita, H., 1993, GABAergic circuits of the striatum, in: Chemical signalling in the basal ganglia, Progress in Brain Research, Volume 99 (G.W. Arbuthnott, and P.C. Emson, eds.), Elsevier, Amsterdam, pp. 51–72.CrossRefGoogle Scholar
  38. Kita, H., 1994a, Physiology of two disynaptic pathways from the sensorimotor cortex to the basal ganglia output nuclei, in: The basal ganglia IV. New ideas and data on structure and function, (G. Percheron., J. S. Mckenzie, and J. Feger, eds.), Plenum Press, New York, pp. 263–276.CrossRefGoogle Scholar
  39. Kita, H., 1994b, Parvalbumin-immunopositive neurons in rat globus pallidus: A light and electron microscopic study, Brain Res., 657: 31–41.PubMedCrossRefGoogle Scholar
  40. Kita, H., 1996, Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations, Neurosci., 70: 925–940.CrossRefGoogle Scholar
  41. Kita, H., and Kitai, S.T., 1987, Efferent projections of the subthalamic nucleus in the rat: Light and electron microscopic analysis with the PHA-L Method, J. Comp. Neurol., 260: 435–452.PubMedCrossRefGoogle Scholar
  42. Kita, H., and Kitai, S.T., 1991, Intracellular responses recorded in the globus pallidus after stimulation of the frontal cortex, the neostriatum, the subthalamic nucleus and the substantia nigra. Brain Res., 564: 296–305.PubMedCrossRefGoogle Scholar
  43. Kita, H., and Kitai, ST., 1994, The morphology of globus pallidus projection neurons in the rat: An intracellular staining study, Brain Res., 636: 308–319.PubMedCrossRefGoogle Scholar
  44. Kita, H., Kosaka, T., and Heizmann, C.W., 1990, Parvalbumin-immunoreactive neurons in the rat neostriatum: A light and electron microscopic study, Brain Res., 536: 1–15.PubMedCrossRefGoogle Scholar
  45. Kitai, S. T., and Deniau, J. M., 1981, Cortical inputs to the subthalamus: Intracellular analysis, Brain Res., 1981: 411–415.CrossRefGoogle Scholar
  46. Kubota, Y., and Kawaguchi, Y., 1995, Heterogeneity of neostriatal GABAergic interneurons, Intl. Basal Ganglia Society Abstr, 5: 46.Google Scholar
  47. Levine, M.S., Hull, C.D., and Buchwald, N.A., 1974, Pallidal and entopeduncular intracellular responses to striatal, cortical, thalamic, and sensory inputs, Exp. Neurol., 44: 448–460.PubMedCrossRefGoogle Scholar
  48. Matsumura, M., Kojima, J., Gardiner, T.W., and Hikosaka, O., 1992, Visual and oculomotor functions of monkey subthalamic nucleus, J. Neurophysiol., 67: 1615–1632.PubMedGoogle Scholar
  49. Matsumura, M., Tremblay, L., Richard, H., and Filion, M., 1995, Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum, Neurosci., 65: 59–70.CrossRefGoogle Scholar
  50. Mulhouse, O.E., 1986, Pallidal neurons in the rat, J. Comp. Neurol., 254: 209–227.CrossRefGoogle Scholar
  51. Mugnaini, E., and Oertel, W.H., 1985, An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry., in: Handbook of chemical neuroanatomy, GABA and neuropeptides in the CNS, (A. Bjorklund, and T. Hokfelt, eds.), Elsevier, Amsterdam, pp. 436–595.Google Scholar
  52. Nakanishi, H., Kita, H., and Kitai, ST., 1988, An N-Methyl-D-Aspartate receptor mediated excitatory postsynaptic potential evoked in subthalamic neurons in an invitro slice preparation of the rat, Neurosci. Lett., 95: 130–136.PubMedCrossRefGoogle Scholar
  53. Nakanishi, H., Kita, H., and Kitai, S.T., 1991, Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: Response to subthalamic stimulation, Brain Res., 549: 285–291.PubMedCrossRefGoogle Scholar
  54. Nambu, A., Takada, M., Tokuno, H., and Inase, M., 1995, Reversed somatotopical respresentations in the subthalamic nucleus revealed by cortical inputs from the primary motor cortex and the supplementary motor area, Intl. Basal Ganglia Society Abstr., 5: 63.Google Scholar
  55. Nambu, A., Yoshida, S., and Jinnai, K., 1990, Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey, Brain Res., 5519: 183–191.CrossRefGoogle Scholar
  56. Nambu, A., and Llinas, R., 1994, Electrophysiology of the globus pallidus neurons: An in vitro., J. Neurophysiol., 72: 1127–1139.PubMedGoogle Scholar
  57. Noda, T., and Oka, H., 1993, Projections of the anterior coronal gyrus to the subthalamic nucleus in the cat: A combined retrograde and anterograde tracing WGA-HRP study, Brain Res., 605: 305–308.PubMedCrossRefGoogle Scholar
  58. Parent, A., and Hazrati, L.N., 1995, Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitty, Brain Res. Rev., 20: 128–154.PubMedCrossRefGoogle Scholar
  59. Royce, G. J., 1982, Laminar origin of cortical neurons which project upon the caudate nucleus: A horseradish peroxidase investigation in the cat, J. Comp. Neur., 205: 8–29.PubMedCrossRefGoogle Scholar
  60. Ryan, L.J., and Sanders, D.J., 1994, Subthalamic nucleus and globus pallidus lesions alter activity in nigrothalamic neurons in rats, Brain Res., 34: 19–26.Google Scholar
  61. Schultz, W., and Romo, R., 1988, Neuronal activity in the monkey striatum during the initiation of movements, Exp. Brain Res., 71: 431–436.PubMedCrossRefGoogle Scholar
  62. Smith, W., Harati, L.N., and Parent, A., 1990, Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method, J. Comp. Neurol., 1990: 306–323.CrossRefGoogle Scholar
  63. Smith, Y., Parent, A., Seguela, P., and Descarries, L., 1987, Distibution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus), J. Comp. Neurol., 259: 50–64.PubMedCrossRefGoogle Scholar
  64. Wilson C.J., 1990, Basal Ganglia, in: The synaptic organization of the Brain (Shepherd GW, ed.), Oxford University Press, Oxford, pp. 279–316.Google Scholar
  65. Wilson, C.J., and Phelan, K.D., 1982, Dual topographic representation of neostriatum in the globus pallidus of rats, Brain Res., 243: 354–359.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Hitoshi Kita
    • 1
  1. 1.Department of Anatomy and Neurobiology, College of MedicineUniversity of Tennessee, MemphisMemphisUSA

Personalised recommendations