The Relationships Between Subthalamic Nucleus, Globus Pallidus and Thalamic Parafascicular Nucleus

Getting Flaws in the Dual Circuit Model
  • Jean Féger
  • Oum-Kaltoum Hassani
  • Mireille Mouroux
Chapter
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)

Abstract

The current functional relationships between the basal ganglia in normal and pathological conditions, introduced in 1989 (Albin et al., 1989; Alexander and Crutcher, 1990; DeLong, 1990) supports an obvious identification of the input and the outputs of this group of structures. The input is the striatum. The outputs are the pars reticulata of the substantia nigra and the internal segment of the globus pallidus in primates designated the entopeduncular nucleus in rodents. The inputs and ouputs are linked through two circuits in this fonctionnai model. The first one is monosynaptic and is named the direct circuit. The second one is a polysynaptic pathway involving a succession of two structures, the external segment of the globus pallidus, simply labelled globus pallidus in the rodent, and the subthalamic nucleus. This pathway was named the indirect circuit. The main postulate is that the neuronal activity in each of the successive relay structures is plainly related to the changes of activity of the neurons localized in the preceeding structure according to a hierarchical diagram. The discharge rate of the neurons localized in the globus pallidus of rodents or the external segment of the pallidum in the primates, would be determined only by changes in the activity of the striatopallidal afferents. Similarly, the activity of the subthalamic neurons would be related only to the changes in the inhibitory control provided through the pallidosubthalamic afferents. The function of the corticosubthalamic projection was not taken into account though present in this diagrammatic representation. Such an organisation was recently questionned. One of the first attempts was due to Mink and Thach (1993) who proposed that the corticosubthalamic pathway could provide a faster and excitatory input through the subthalamic efferents to the two parts of the globus pallidus and to the substantia nigra.

Keywords

Basal Ganglion Globus Pallidus Subthalamic Nucleus Excitatory Input Ibotenic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, R. L., A. B. Youg and J. B. Penney (1989). The functionnal anatomy of basal ganglia disorders. Trends Neurosci. 12:366–375.PubMedCrossRefGoogle Scholar
  2. Albin, R. L., A. B. Young and J. B. Penney (1995). The functional anatomy of disorders of the basal ganglia. Trends Neurosci 18:63–64.PubMedCrossRefGoogle Scholar
  3. Aldridge, J. W. and S. Gilman (1991). The temporal structure of spike trains in the primate basal ganglia: afferent regulation of bursting demonstrated with precentrai cerebral cortical ablation. Brain Res. 543:123–138.PubMedCrossRefGoogle Scholar
  4. Alexander, G. E. and M. D. Crutcher (1990). Functionnal architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13:266–271.PubMedCrossRefGoogle Scholar
  5. Bergman, H., T. Wichmann, B. Karmon and M. R. Delong (1994). The primate subthalamic nucleus II. neuronal activity in the MPTP model of parkinsonism. J. Neurophysiol. 72:507–520.PubMedGoogle Scholar
  6. Bourassa, J., A. Parent and M. Deschênes (1995). Striatal and cortical projections of single cells from the parafascicular nucleus in the rat. Soc. Neurosci. Abs. 21:1189.Google Scholar
  7. Chesselet, M. F., M. Mercugliano, J. J. Soghomonian, P. Salin, Y. Qin and C. Gonzales (1993): Regulation of glutamic acid decarboxylase gene expression in efferent neurons of the basal ganglia. In: Chemical Signalling in the Basal Ganglia, edited by G.W. Arbuthnott and P.C. Emson, pp. 143–154. Elsevier, Amsterdam.CrossRefGoogle Scholar
  8. Delfs, J. M., V. M. Ciaramitaro, T. J. Parry and M. F. Chesselet (1994). Glutamic acid decarboxylase (GAD67) mRNA levels in the globus pallidus: 6-OHDA-induced increases are abolished by lesions of the subthalamic nucleus. Soc. Neurosci. Abs. 20:988.Google Scholar
  9. DeLong, M. (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13:281–285.PubMedCrossRefGoogle Scholar
  10. Féger, J., M. Bevan and A. R. Crossman (1994). The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations — a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience 60:125–132.PubMedCrossRefGoogle Scholar
  11. Féger, J. and M. Mouroux (1991). Mise en évidence de l’effet excitateur de l’efférence thalamo-subthalamique issue du noyau parafasciculaire. C.R.Acad.Sci.Paris 313 série III: 447–452.PubMedGoogle Scholar
  12. Filion, M. (1979). Effects of interruption of the nigrostriatal pathway and of dopaminergic agents on the spontaneous activity of globus pallidus neurons in the awake monkey. Brain Res. 178:425–441.PubMedCrossRefGoogle Scholar
  13. Filion, M. and L. Tremblay (1991). Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 547: 142–151.PubMedGoogle Scholar
  14. Gerfen, C. R. (1992). The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu. Rev. Neurosci. 15:285–320.PubMedCrossRefGoogle Scholar
  15. Gerfen, C. R., T. M. Engber, L. C. Mahan, Z. Susel, T. N. Chase, F. J. Monsma and R. S. Sibley (1990). Dl and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432.PubMedCrossRefGoogle Scholar
  16. Hammond, C., J. M. Deniau, B. Rouzaire-Dubois and J. Féger (1978). Peripheral input to the rat subthalamic nucleus, an electrophysiological study. Neurosci. Lett. 9:171–176.PubMedCrossRefGoogle Scholar
  17. Hammond, C., B. Rouzaire-Dubois, J. Féger, A. Jackson and A. R. Crossman (1983). Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and the nucleus tegmenti pedonculopontinus in the rat nucleus. Neuroscience 9:41–55.PubMedCrossRefGoogle Scholar
  18. Hassani, O.-K., M. Mouroux and J. Féger (1996). Increased subthalamic neuronal activity after nigral lesion independent of disinhibition via the globus pallidus. Neuroscience, accepted for publication.Google Scholar
  19. Kawaguchi, Y., Wilson C.J., Augood S.J. and Emson P.C. (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 18: 527–535.PubMedCrossRefGoogle Scholar
  20. Kincaid, A. E., R. L. Albin, S. W. Newman, J. B. Penney and A. B. Young (1992). 6-Hydroxydopamine lesions of the nigrostriatal pathway alter the expression of glutamate decarboxylase messenger RNA in rat globus pallidus projection neurons. Neuroscience 51:705–718.PubMedCrossRefGoogle Scholar
  21. Kincaid, A. E., J. B. Penney, A. B. Young and S. W. Newman (1991). The globus pallidus receives a projection from the parafascicular nucleus in the rat. Brain Res. 553:18–26.PubMedCrossRefGoogle Scholar
  22. Kitai, S. T. and J. M. Deniau (1981). Cortical inputs to the subthalamic nucleus: intracellular analysis. Brain Res. 214:411–415.PubMedCrossRefGoogle Scholar
  23. Lapper, S.R. and Bolam, J.P. (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–545.PubMedCrossRefGoogle Scholar
  24. Miller, W. C. and M. DeLong (1987): Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of Parkinsonism. In: The Basal Ganglia II: Structure and Function-Current concepts, edited by M. B. Carpenter and A. Jayarman, pp. 415–427. Plenum Press, New York.Google Scholar
  25. Mink, J. W. and W. T. Thach (1993). Basal ganglia intrinsic circuits and their role in behavior. Cur. Op. Neurobiol. 3:950–957.CrossRefGoogle Scholar
  26. Mouroux, M. and J. Féger (1993). Evidence that the parafascicular projection to the subthalamic nucleus is glutamatergic. Neuroreport 4:613–615.PubMedCrossRefGoogle Scholar
  27. Mouroux, M., O. K. Hassani and J. Feger (1995). Electrophysiological study of the excitatory parafascicular projection to the subthalamic nucleus and evidence for ipsi-and contralateral controls. Neuroscience 67:399–407.PubMedCrossRefGoogle Scholar
  28. Nauta, H. J. W. and W. R. Mehler (1966). Projections of the lentiform nucleus in the monkey. Brain Res. 1:3–42.PubMedCrossRefGoogle Scholar
  29. Pan, H. S. and J. R. Walters (1988). Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat. Synapse 2:650–656.PubMedCrossRefGoogle Scholar
  30. Parent, A. and L. N. Hazrati (1995a). Functional anatomy of the basal ganglia.1. the cortico-basal ganglia-thalamo-cortical loop. Brain Res. Rev. 20:91–127.PubMedCrossRefGoogle Scholar
  31. Parent, A. and L. N. Hazrati (1995b). Functional anatomy of the basal ganglia.2. the place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res. Rev. 20:128–154.PubMedCrossRefGoogle Scholar
  32. Robledo, P. and J. Féger (1991). Acute monoaminergic depletion in the rat potentiates the excitatory effect of the subthalamic nucleus in the substantia nigra par reticulata but not in the pallidal complex. J. Neural Transm. (GenSect) 86:115–126.CrossRefGoogle Scholar
  33. Sachdev, R. N. S., S. Gilman and J. W. Aldridge (1989). Effects of excitotoxic striatal lesions on single unit activity in globus pallidus and entopeduncular nuleus of the cat. Brain Res. 501:295–306.PubMedCrossRefGoogle Scholar
  34. Smith, Y., L.-N. Hazrati and A. Parent (1990). Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J. comp. Neurol. 294:306–323.PubMedCrossRefGoogle Scholar
  35. Soghomonian, J.-J. and M.-F. Chesselet (1992). Effects of nigrostriatal lesions on the levels of messenger RNAs encoding two isoforms of glutamate decarboxylase in the globus pallidus and entopeduncular nucleus of the rat. Synapse 11:124–133.PubMedCrossRefGoogle Scholar
  36. Tossman, U., J. Segovia and U. Ungerstedt (1986). Extracellular levels of amino acids in striatimi and globus pallidus of 6-hydroxydopamine-lesionned rats measured with microdialysis. Acta Physiol. Scand. 127:547–551.PubMedCrossRefGoogle Scholar
  37. Vila, M., M.-T. Herrero, B. Faucheux, J. A. Obeso, Y. Agid and E. C. Hirsch (1996). Metabolic activity of the basal ganglia in parkinsonian syndromes in human and non human primates: a cytochrome oxidase histochemistry study. Neuroscience, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jean Féger
    • 1
  • Oum-Kaltoum Hassani
    • 1
  • Mireille Mouroux
    • 1
  1. 1.Laboratoire de Pharmacologie, Faculté des Sciences Pharmaceutiques et BiologiquesUniversité R. DescartesParisFrance

Personalised recommendations