Neuropeptide and Dopamine Receptor Gene Expression in the Human Caudate-Putamen

A Focus on Schizophrenia and Early Grade Huntington’s Disease
  • Sarah J. Augood
  • Piers C. Emson
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)

Abstract

The mature human caudate-putamen is a neurochemically diverse structure (Graybiel 1990) comprising some 400 million cells of which approximately 82 × 106 are small striatal (Heinsen et al., 1994) projection neurones. The chemical diversity of these structures is paralleled by the complex array of morphological cell types so far identified (Dimova et al., 1980). Following the advent of non-invasive in vivo human brain imaging with sufficient resolution to allow discrete anatomical nuclei to be spatially resolved, credence has been given to the idea that the basal ganglia comprise several functionally segregated circuits (Alexander and Crutcher 1990) of which the motor circuits play a role in facilitating motor learning, planning and attention whether imagined, self-initiated or cued (see Brooks 1995; Robbins and Brown, 1990). Afferents from the supplementary motor area and primary motor cortex preferentially impinge upon cells within the putamen whilst the dorso-lateral prefrontal cortex impinges upon cells within the caudate nucleus (Alexander and Crutcher, 1990). A further degree of complexity is introduced when considering the compartmentalization of various neuroactive molecules within the mammalian neostriatum (see Graybiel 1990). At least three neurochemically demarcated compartments have been described termed (i) striosome/patch, (ii) matrix, which comprises some 80% of striatal volume: (Johnston et al., 1990) and (iii) annulus (Faull et al., 1989). Although the matrix stains uniformly for many neuroactive agents, the classical enzyme stain being acetylcholinesterase (Graybiel and Ragsdale, 1978), modular “non-striosomal” projection zones within this compartment have been described (Malach and Graybiel, 1986), consistent with the idea of discrete somatotopic cortical signalling and parallel processing.

Keywords

Caudate Nucleus Quinolinic Acid Disease Collaborative Research Group Dopamine Receptor Gene Expression Facilitate Motor Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbarian, S., Bunney, W.E., Potkin, S.G., Wigal, S.B., Hagman, J.O., Sandman, C.A. and Jones, E.G. 1993, Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch. Gen. Psychiatry 50: 169–177.PubMedCrossRefGoogle Scholar
  2. Akbarian, S., Smith, M.A. and Jones, E.G. 1995, Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia. Brain Res., 699:297–304.PubMedCrossRefGoogle Scholar
  3. Akbarian, S., Sucher, N.J., Bradley, D., Tafazzoli, A., Trinh, D., Hetrick, W.P., Potkin, S.G., Sandman, C.A., Bunney, W.E. and Jones, E.G. 1996, Selective alterations in gene-expression for NMDA receptor in subunits in prefrontal cortex of schizophrenics. J. Neurosci., 16: 19–30.PubMedGoogle Scholar
  4. Albin, R.L., Young, A.B. and Penney, J.B. 1989, The functional anatomy of basal ganglia disorders. Trends Neurosci. 12: 366–375.PubMedCrossRefGoogle Scholar
  5. Albin, R.L., Reiner, A., Anderson, K.D., Dure, L.S., Handelin, B., Balfour, R., Whetsell, W.O., Penney, J.B. and Young, A.B. 1992, Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s Disease. Ann Neurol. 31: 425–430.PubMedCrossRefGoogle Scholar
  6. Alexander, G.E. and Crutcher, M.D. 1990, Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13: 266–271.PubMedCrossRefGoogle Scholar
  7. Arbuthnott, G.W. and Ingham, C.A. 1993, The thorny problem of what dopamine does in psychiatric disease. In Chemical Signalling in the Basal Ganglia. (G.W. Arbuthnott and P.C. Emson, eds.). Progress in Brain Research vol 99, pp. 341–350. Elsevier, Amsterdam.CrossRefGoogle Scholar
  8. Augood, S.J., Westmore, K., Faull, R.L.M. and Emson, P.C. 1993, “Neuroleptics and striatal neuropeptide gene expression”. In: Progress in Brain Research Vol. 99 (Eds. PC. Emson & GW. Arbuthnott), Elsevier Science Publications, Netherlands, pp. 181–199.Google Scholar
  9. Augood, S.J., McGowan, E.M. and Emson, P.C. 1994, Expression of NMDA receptor subunit NR1 mRNA by identified striatal somatostatin cells. Neuroscience 59: 7–12.PubMedCrossRefGoogle Scholar
  10. Augood, S.J., Faull, R.L.M., Love, D.R. and Emson, P.C. 1996, Reduction in enkephalin and substance P mRNA in the striatum of early grade Huntington’s disease: a detailed cellular in situ hybridisation study. Neuroscience (in press).Google Scholar
  11. Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J. and Martin, J.B. 1986, Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321: 168–171.PubMedCrossRefGoogle Scholar
  12. Beal, M.F., Brouillet, E., Jenkins, B.G., Ferrante, R.J., Kowall, N.W., Miller, J.M., Storey, E., Srivastava, R., Rosen, B.R. and Hyman, B.T. 1993, Neurochemical and histological characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neuroscience 13: 4181–4192.Google Scholar
  13. Beal, M.F. 1995, Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol., 38(3): 357–366.PubMedCrossRefGoogle Scholar
  14. Benes, F.M., Vincent, S.L., Alsterberg, G., Bird, E.D. and SanGiovanni, J.P. 1992, Increased GABAa receptor binding in superficial layers of cingulate cortex in schizophrenics. J. Neurosci. 12(3): 924–929.PubMedGoogle Scholar
  15. Bevan, M.D. and Bolam, J.P. 1995, Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J. Neurosci. 15(11): 7105–7120.PubMedGoogle Scholar
  16. Brooks, D.J. 1995, The role of the basal ganglia in motor control: contributions from PET. J. Neurological Sci. 128: 1–13.CrossRefGoogle Scholar
  17. Chesselet, M-F. and Affolter, H-U. 1987, Preprotachykinin messenger RNA detected by in situ hybridisation in striatal neurons of the human brain. Brain Res., 410: 83–88.PubMedCrossRefGoogle Scholar
  18. Chua, S.E. and McKenna, P.J. 1995, Schizophrenia — a Brain Disease? A critical review of structural and functional cerebral abnormality in the disorder. British J. Psychiatry 166: 563–582.CrossRefGoogle Scholar
  19. Creese, I., Burt, D. and Snyder, S.H. 1978, Biochemical actions of neuroleptic drugs: focus on dopamine receptor, in: Handbook of Psychopharmacology Vol. 10. (L.L. Iversen, S.D. Iversen and S.H. Snyder, Eds.) Plenum Press, New York. Pp. 37–89.CrossRefGoogle Scholar
  20. Davies S.W. and Roberts P.J. 1987, No evidence for preservation of somatostatin-containing neurons after intrastriatal injections of quinolinic acid. Nature 327: 326–329.PubMedCrossRefGoogle Scholar
  21. Dawbarn, D., De Quidt, M.E. and Emson, P.C. 1985, Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s Disease. Brain Res., 340: 251–260.PubMedCrossRefGoogle Scholar
  22. Desban, M., Gauchy, C., Kernel, M.L., Besson, M.J. and Glowinski, J. 1989, Three-dimensional organization of the striosomal compartment and patchy distribution of striatonigral projections in the matrix of the cat caudate nucleus. Neuroscience 29: 551–566.PubMedCrossRefGoogle Scholar
  23. DiFiglia, M., Sapp, E., Chase, K., Schwarz, C., Meloni, A., Young, C., Martin, E., Vonsattel, J-P., Carraway, R., Reeves, S.A., Boyce, F.M. and Aronin, N. 1995, Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14: 1075–1081.PubMedCrossRefGoogle Scholar
  24. Dimova, R., Vuillet, J. and Seite, R. 1980, Study of the rat neostriataum using a combined golgi-electron microscope technique and serial sections. Neuroscience 5: 1581–1596.PubMedCrossRefGoogle Scholar
  25. Dure, L.S., Young, A.B. and Penney, J.B. 1991, Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington’s disease. Ann Neurol. 30: 785–793.PubMedCrossRefGoogle Scholar
  26. Eastwood, S.L., Burnet P.W.J. and Harrison P.J. 1995, Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 66: 309–319.PubMedCrossRefGoogle Scholar
  27. Ellison, G. 1994, Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Res. Rev., 19: 223–239.PubMedCrossRefGoogle Scholar
  28. Farde, L., Wiesel, F-A., Hal, I.H., Halldin, C., Stone-Elander, S. and Sedvall, G. 1987, No D2 receptor increase in PET study of schizophrenia. Arch Gen. Psychiatry 44: 671–673.PubMedCrossRefGoogle Scholar
  29. Faull, R.L.M., Dragunow, M. and Villiger, J.W. 1989, The distribution of neurotensin receptors and acetylcholinesterase in the human caudate nucleus: evidence for the existence of a third neurochemical compartment. Brain Res., 488: 381–386.PubMedCrossRefGoogle Scholar
  30. Ferrante, R.J., Kowall, N.W., Beal, M.F., Richardson, E.R and Martin, J.B. 1985, Selective sparing of a class of striatal neurons in Huntington’s Disease. Science 230: 561–563.PubMedCrossRefGoogle Scholar
  31. Garcia-Rill, E., Biedermann, J.A., Chambers, T., Skinner, R.D., Mrak, R.E., Husain, M. and Karson, C.N. 1995, Mesopontine neurons in schizophrenia. Neuroscience 66: 321–335.PubMedCrossRefGoogle Scholar
  32. Gaspar, P., Bloch, B. and Le Moine, C. 1995, D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur. J. Neurosci., 7: 1050–1063.PubMedCrossRefGoogle Scholar
  33. Gerfen, C.G. and Young, W.S. III, 1988, Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridisation histochemistry and fluorescent retrograde tracing study. Brain Res., 460: 161–167.PubMedCrossRefGoogle Scholar
  34. Geyer, M.A., Wilkinson, L.S., Humby, T. and Robbins, T.W. 1993, Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. Biol. Psychiatry 34: 361–372.PubMedCrossRefGoogle Scholar
  35. Goto, S. and Hirano, A. 1990, Synaptophysin expression in the striatum in Huntington’s disease. Acta Neuropathol., 80: 88–91.PubMedCrossRefGoogle Scholar
  36. Goto, S., Hirano, A. and Rojas-Corona, R.R. 1989, An immunohistochemical investigation of the human neo-striatum in Huntington’s disease. Ann Neurol., 25; 298–304.PubMedCrossRefGoogle Scholar
  37. Graybiel, A.M. 1990, Neurotransmitters and neuromodulators in the basal ganglia. Trends in Neurosciences 13: 244–254.PubMedCrossRefGoogle Scholar
  38. Gutekunst, C-A., Levey, A.I., Heilman, C.J., Whaley, W.L., Yi, H., Nash, N.R., Rees, H.D., Madden, J.J. and Hersch, S.M. 1995, Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc. Natl. Acad. Sci. USA 92: 8710–8714.PubMedCrossRefGoogle Scholar
  39. Harrington, K.A., Augood, S.J., Faull, R.L.M., McKenna, P.J. and Emson, P.C. 1995, Dopamine D1 receptor, D2 receptor, proenkephalin A and substance P gene expression in the caudate nucleus of control and schizophrenic tissue: a quantitative cellular in situ hybridisation study. Mol. Brain Res. 33: 333–342.PubMedCrossRefGoogle Scholar
  40. Hedreen, J.C. and Folstein, S.E. 1995, Early loss of neostriatal striosome neurons in Huntington’s disease. J. Neuropath. Exp. Neurol. 54: 105–120.PubMedCrossRefGoogle Scholar
  41. Heinsen, H., Strik, M., Bauer, M., Luther, K., Ulmar, G., Gangnus, D., Jungkunz, G., Eisenmenger, W. and Götz, M. 1994, Cortical and striatal neurones number in Huntington’s disease. Acta Neuropathol 88: 320–333.PubMedCrossRefGoogle Scholar
  42. Herkenham, M. and Pert C.B. 1981, Mosaic distribution of opiate receptors parafascicular projections and acetylcholinesterase in rat striatum. Nature 291: 415–418.PubMedCrossRefGoogle Scholar
  43. Herrero, M-T., Augood, S.J., Hirsch, E.C., Javoy-Agid, F., Luquin, M.R., Obeso, J.A. and Emson, P.C. 1995, Effects of 1-DOPA on pre-proenkephalin and pre-protachykinin gene expression in the MPTP-treated monkey striatum. Neuroscience 68: 1189–1198.PubMedCrossRefGoogle Scholar
  44. Holcomb, H.H., Cascella, N.G., Thaker, G.K., Medoff, D.R., Dannals, R.F. and Tamminga, C.A. 1996, Functional sites of neuroleptic drug-action in the human brain-PET/FDG studies with and without haloperidol. Am. J. Psychiatry 153: 41–49.PubMedGoogle Scholar
  45. Hoogeveen, A.T., Willemsen, R., Meyer, N., de Rooi, j K.E., Roos, R.A.C., van Ommen, G-J.B. and Galjaard, H. 1993, Characterization and localization of the Huntington disease gene product, Human Mol. Genetics 2: 2069–2073.CrossRefGoogle Scholar
  46. Huntington’s Disease Collaborative Research Group. 1993, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes, Cell 72: 971–983.CrossRefGoogle Scholar
  47. Hurd, Y.L. and Herkenham, M. 1993, Molecular alterations in the neostriatum of human cocaine addicts. Synapse 13: 357–369.PubMedCrossRefGoogle Scholar
  48. Hurd, Y.L. and Herkenham, M. 1995, The human neostriatum shows compartmentalization of neuropeptide gene expression in dorsal and ventral regions: an in situ hybridisation histochemical analysis. Neuroscience 64(3): 571–586.PubMedCrossRefGoogle Scholar
  49. Johnston, J.G., Gerfen C.R., Haber, S.N., van der Kooy, D. 1990, Mechanisms of striatal pattern formation: conservation of mammalian compartmentalization. Dev Brain Res 57: 93–102.CrossRefGoogle Scholar
  50. Joyce, J.N., Lexow, N., Bird, E. and Winokur, A. 1988, Organization of dopamine D1 and D2 receptors in human striatum: Receptor autoradiographic studies in Huntington’s disease and schizophrenia. Synapse 2: 546–557.PubMedCrossRefGoogle Scholar
  51. Karayiorgou, P., Morris, M.A., Morrow, B., Shprintzen, R.J., Goldberg, R., Borrow, J., Gos, A., Nestadt, G., Wolyniec, P.S., Lasseter, V.K., Eisen, H., Childs, B., Kazazian, H.H., Kucherlapati, R., Antonarakis, S.E., Pulver, A.E. and Housman, D.E. 1995, Scizophrenia susceptibility associated with interstitial deletions of chromosome 22Q11. Proc. Natl. Acad. Sci. USA 92(17): 7612–7616.PubMedCrossRefGoogle Scholar
  52. Kawaguchi, Y., Wilson, C.J., Augood, S.J. and Emson, P.C. 1995, Striatal interneurones: Chemical, physiological and morphological characterization. Trends Neurosci. 18: 527–535.PubMedCrossRefGoogle Scholar
  53. Kumar, U., Asotra, K., Patel, S.C. and Patel, Y.C. 1995, Colocalization of NMDA receptor (NR-1) in striatal neurons expressing somatostatin (SS), neuropeptide Y. (NPY) and NADPH-diaphorase. Soc. Neurosci. Abstr. 21:417.Google Scholar
  54. Le Moine, C., Normand, E., Guitteny, A.F., Fouque, B., Teoule, R. and Bloch, B.1990, Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc. Natl. Acad. Sci USA 87, 230–234.PubMedCrossRefGoogle Scholar
  55. Le Moine, C., Normand, E. and Bloch, B.1991, Phenotypical characterisation of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc. Natl. Acad. Sci USA 88: 4205–4209.PubMedCrossRefGoogle Scholar
  56. Lee, T., Seeman, P., Tourtellotte, W.W., Farley, I.J. and Hornykeiwicz, O. 1978, Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brains. Nature 274: 897–900.PubMedCrossRefGoogle Scholar
  57. Li, X-J., Li, S-H., Sharp, A.H., Nucifora, F.C., Schilling, G., Lanahan, A., Worley, P., Snyder, S.H. and Ross, C.A. 1995, A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378: 398–402.PubMedCrossRefGoogle Scholar
  58. Malach, R. and Graybiel, A.M. 1986, Mosaic architecture of the somatic sensory-recipient sector of the cat’s striatum. J. Neurosci. 6(12): 3436–3457.PubMedGoogle Scholar
  59. Manley, M.S., Young, S.J. and Groves, P.M. 1994, Compartmental organization of the peptide network in the human caudate nucleus. J Chem Neuroanat 7: 191–201.PubMedCrossRefGoogle Scholar
  60. Morton, A.J., Nicholson, L.F.B. and Faull, R.L.M. 1993, Compartmental loss of NADPH diaphorase in the neuropil of the human striatum in Huntington’s Disease. Neuroscience 53: 159–168.PubMedCrossRefGoogle Scholar
  61. Nordstrom, A.L., Farde, L., Eriksson, L. and Halldin, C. 1995, No elevated D2 dopamine receptors in neuroleptic naive schizophrenic patients revealed by positron emission tomography and [C-11] n-methylspiperone. Psychiatric Research-Neuroimaging 61: 67–83.CrossRefGoogle Scholar
  62. Reiner, A., Albin, R.L., Anderson, K.D., D’Amato, C.J., Penney, J.B. and Young A.B. 1988, Differential loss of striatal projection neurones in Huntington disease, Proc Natl Acad Sci USA 85: 5733–5737.CrossRefGoogle Scholar
  63. Reynolds, G.P. 1992, Developments in the drug treatment of schizophrenia. Trends Phar. Sci. 13: 116–122CrossRefGoogle Scholar
  64. Richfield, E.K., O’Brien, CF., Eskin, T. and Shoulson, I. 1991, Heterogeneous dopamine receptor changes in early and late Huntington’s disease. Neurosci. Letts., 132: 121–126.CrossRefGoogle Scholar
  65. Robbins, T.R. and Brown, V.J. 1990, The role of the striatum in the mental chronometry of actions: A theoretical review. Reviews in the Neurosciences 2(4): 181–213.PubMedCrossRefGoogle Scholar
  66. Roberts, D.A., Balderson, D., Pickering-Brown, S.M., Deakin, J.F.W. and Owen, F. 1994, The abundance of mRNA for dopamine D2 receptor isoforms in brain tissue from controls and schizophrenics. Mol. Brain Res., 25: 173–175.PubMedCrossRefGoogle Scholar
  67. Ross, C.A., Mclnnis, M.G., Margolis, R.L. and Li, S-H. 1993, Genes with triplet repeats: candidate mediators of neuropsychiatric disorders. Trends Neurosci. 16: 254–260.PubMedCrossRefGoogle Scholar
  68. Selemon, L.D. and Golman-Rakic, P.S. 1990, Topographical intermingling of striatonigral and striato-pallidal neurons in the Rhesus monkey. J. Comp. Neurol., 297: 359–376.PubMedCrossRefGoogle Scholar
  69. Selemon, L.D., Rajkowska, G. and Goldman-Rakic, P.S. 1995, Abnormally high neuronal density in the schizophrenic cortex. Arch. Gen. Psychiatry 52: 805–818.PubMedCrossRefGoogle Scholar
  70. Sharp, A.H., Loev, S.J., Schilling, G., Li, S-H., Li, X-J., Bao, J., Wagster, M.V., Kotzuk, J.A., Steiner, J.P., Lo, A., Hedreen, J., Sisodia, S., Snyder, S.H., Dawson, T.M., Ryugo, D.K. and Ross, C.A. 1995, Widespread expression of Huntington’s disease gene (IT 15) protein product. Neuron 14: 1065–1074.PubMedCrossRefGoogle Scholar
  71. Trottier, Y., Devys, D., Imbert, G., Saudou, F., An, I., Lutz, Y., Weber, C., Agid, Y., Hirsch, E.C. and Mandel, J-L. 1995, Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nature Genetics 10: 104–110.PubMedCrossRefGoogle Scholar
  72. Vonsattel, J-P., Myers, R.H., Stevens, T.J., Ferrante, R.J., Bird, E.D. and Richardson, E.P. Jr. 1985 Neuropathological classification of Huntington’s disease. J. Neuropath. Exp. Neurol. 44; 559–577.PubMedCrossRefGoogle Scholar
  73. Wang, S., Sun, C-e., Walczak, C.A., Ziegle, J.S., Kipps, B.R., Goldin, L.R. and Diehl, S.R. 1995, Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22. Nature Genetics 10: 41-?.PubMedCrossRefGoogle Scholar
  74. Warner, J.P., Barron, L.H. and Brock, D.J.H. 1993, A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington’s disease chromosomes. Mol & Cell Probes 7, 235–239.CrossRefGoogle Scholar
  75. Wong, D.F., Wagner, H.N., Tune, L.E., Dannals, R.G., Pearlson, G.D., Links, J.M., Tamminga, CA., Broussolle, E.P., Ravert, H.T., Wilson, A.A., Toung, J.K.T., Malat, J., Williams, J.A., O’Tuama, L.A., Snyder, S.H., Kuhar, M.J. and Gjedde, A. 1986, Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234: 1558–1563.PubMedCrossRefGoogle Scholar
  76. Yung, K.K.L., Bolam, J.P., Smith, A.D., Hersch, S.M., Ciliax, B.J. and Levey, A.I. 1995, Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65: 709–730.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Sarah J. Augood
    • 1
  • Piers C. Emson
    • 1
  1. 1.Department of Neurobiology, Babraham InstituteMRC Molecular Neuroscience GroupCambridgeUK

Personalised recommendations