Chronic FRAs

Novel Transcription Factors Regulated in the Basal Ganglia by Chronic Neuronal Perturbations
  • N. Hiroi
  • J. S. Chen
  • H. E. Nye
  • E. J. Nestler
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)

Abstract

It is becoming increasingly clear that the basal ganglia are involved not only in motor disorders but also in learning and memory. Striatal neurons show dynamic changes in response to reward-related motor learning (see Graybiel et al., 1994) and the caudoputamen in the rat seems to mediate a certain type of motor learning (McDonald and White, 1993). Striosomes/patches, a subregion of the striatum, seem to be critical for reward-related learning (White and Hiroi, 1995). The nucleus accumbens, a ventral extension of the caudate-putamen (Heimer et al., 1985), regulates learning elicited by drug-induced reward (Nestler, 1992; Koob and Bloom, 1988; White and Hiroi, 1993).

Keywords

Basal Ganglion Striatal Neuron RNase Protection Assay Electroconvulsive Shock Supershift Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, J. S., Nye, H. E., Kelz, M. B., Hiroi, N., Nakabeppu, Y., Hope, B. T., Nestler, E. J. (1995) Regulation of deltaFosB and FosB-like proteins by electroconvulsive seizure and cocaine treatments. Mol. Pharmacol. 48, 880–889.PubMedGoogle Scholar
  2. Dobrzanski, P., Noguchi, T., Kovary, K., Rizzo, C. A., Lazo, P. S. and R. Bravo, R. (1991) Both products of the fosB gene, FosB and its short form, FosB/SF, are transcriptional activators in fibroblasts. Mol. Cell. Biol. 11(11): 5470–5478Google Scholar
  3. Gerfen, C. R. (1992) The neostriatal mosaic: multiple levels of compartmental organizations. Trends Neurosci. 15, 133–139PubMedCrossRefGoogle Scholar
  4. Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma Jr, F., Sibly, D. R. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.Google Scholar
  5. Gerfen, C. R. and Young III, W. S. (1988) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescence retrograde tracing study. Brain Res. 460, 161–167.PubMedCrossRefGoogle Scholar
  6. Gonzalez-Martin, C., DeDiego, I., Crespo, D., Fairen, A. (1992) Transient c-fos expression accompanies naturally occurring cell death in the developing interhemispheric cortex of the rat. Dev. Brain Res. 68, 83–95.CrossRefGoogle Scholar
  7. Grassilli, E., Cacereri der Prati, A., Monti, D., Troiano, L., Menegazzi, M., Barbieri, D., Francheschi, C., Suzuki, H. (1992) Studies of the relationship between cell proliferation and cell death. II. early gene expression during concanavalin A-induced proliferation or dexamethasone-induced apoptosis of rat thymocytes. Biochem. Biophys. Res. Commun 188, 1261–1266.PubMedGoogle Scholar
  8. Graybiel, A.M. (1990) Neurotransmitter and neuromodulators in the basal ganglia. Trends Neurosci. 13: 244–254.PubMedCrossRefGoogle Scholar
  9. Graybiel, A. M., Aosaki, T., Flaherty, A. W., Kimura, M. (1994) The basal ganglia and adaptive motor control. Science 265, 1826–1831.PubMedCrossRefGoogle Scholar
  10. Heimer, L., Alheid, G. F., Zaborszky, L. (1985) Basal ganglia. In: The Rat Nervous System, vol. 1, Forebrain and midbrain. (Paxinos, G, ed.), page 37–86, Academic Press, Washington, DC.Google Scholar
  11. Hong, J. S., Gillin, J. C., Yang, H. Y. T., Costa, E. (1979) Repeated electroconvulsive shocks and the brain content of endorphins. (1979) Brain Res. 177, 273–278.PubMedCrossRefGoogle Scholar
  12. Hope, B. T., Kosofsky, B., Hyman, S. E., Nestler, E. J. (1992) Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc. Natl. Acad. Sci. USA 89, 5764–5768.PubMedCrossRefGoogle Scholar
  13. Hope, B.T., Nye, H.E., Kelz, M., Self, D. W., Iadarola, M. J., Nakabeppu, Y., Duman, R. S. and Nestler, E. J. ( 1994a) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13: 1235–1244.PubMedCrossRefGoogle Scholar
  14. Hope, B. T., Kelz, M. B., Duman, R. S., Nestler, E. J. (1994b) Chronic electroconvulsive seizure (ECS) treatment results in expression of a long-lasting AP-1 complex in brain with altered composition and characteristics. J. Neurosci. 14, 4318–4328.PubMedGoogle Scholar
  15. Hurd, Y. L., Brown, E. E., Finlay, J. M., Fibiger, H. C., Gerfen, C. R. (1992) Cocaine self-administration differentially alters mRNA expression of striatal peptides. Mol. Brain Res. 13, 165–170.PubMedCrossRefGoogle Scholar
  16. Jian, M., Staines, W. A., Iadarola, M. J., Robertson, G. S. (1993) Destruction of the nigrostriatal pathway increases Fos-like immunoreactivity predominantly in striatopallidal neurons. Mol. Brain Res. 19, 156–160.PubMedCrossRefGoogle Scholar
  17. Kaminska, B., Mosieniak, G., Gierdalski, M., Kossut, M., Kaczmarek, L. (1995) Elevated AP-1 transcription factor DNA binding activity at the onset of functional plasticity during development of rat sensory cortical areas. Mol. Brain Res. 33, 295–304.PubMedCrossRefGoogle Scholar
  18. Kanamatsu, T., McGinty, J. F., Mitchell, C. L., Hong, J. S. (1986) Dynorphin-and enkephalin-like immunoreactivity is altered in limbic-basal ganglia regions of rat brain after repeated electroconvulsive shock. J. Neuroscie. 6, 644–649.Google Scholar
  19. Koob, G.F. and Bloom, F. (1988) Cellular and molecular mechanisms of drug dependence. Science 242: 715–723.PubMedCrossRefGoogle Scholar
  20. McDonald, R. J. and White, N. M. (1993) A triple dissociation of memory systems: hippocampus, amygdala and dorsal striatum. Behav. Neurosci. 107, 3–22.PubMedCrossRefGoogle Scholar
  21. Mumberg, D., Lucibello, F. C., Schuerman, M. and Muller, R. (1991) Alternative splicing of fosB transcripts results in differentially expressed mRNAs encoding functionally antagonistic proteins. Genes and Development 5: 1212–1223.PubMedCrossRefGoogle Scholar
  22. Nakabeppu, Y. and Nathans, D. (1991) A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity. Cell 64: 751–759.PubMedCrossRefGoogle Scholar
  23. Naranjo, J. R., Mellstrom, B., Achaval, M., Sassone-Corsi, P. (1991) Molecular pathways of pain: Fos-Jun mediated activation of a noncanonical AP-1 site in prodynorphin gene. Neuron 6, 607–617.PubMedCrossRefGoogle Scholar
  24. Nestler, E. J. (1992) Molecular mechanisms of drug addiction. J. Neuroscie. 12, 2439–2450.Google Scholar
  25. Nye, H. E., Hope, B. T., Kelz, M. B., Iadarola, M., Nestler, E. J. (1995) Pharmacological studies of the regulation of chronic Fos-related antigen by cocaine in the striatum and nucleus accumbens. J. Pharmacol. Exp. Ther. 275, 1–10.Google Scholar
  26. Nye, H. E. and Nestler, E. J. Induction of chronic Fras (Fos-related antigens) in rat brain by chronic morphine administration. Mol. Pharmacol, (in press).Google Scholar
  27. Paterson, J. M., Mendelson, S. C., McAllister, J., Morrison, C. F., Dobson, S., Grace, C., Quinn, J. P. (1995) Three immediate early gene response elements in the proximal preprotachykinin-A promoter in two functionally distinct domains. Neuroscience 66, 921–932.PubMedCrossRefGoogle Scholar
  28. Penny, G. R., Afsharpour, S., Kitai, S. T. (1986) The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin-and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap. Neuroscie. 17, 1011–1045.CrossRefGoogle Scholar
  29. Pennypacker, K. R., Thai, L., Hong, J.-S., McMillian, M. K. (1994) Prolonged expression of AP-1 transcription factors in the rat hippocampus after systemic kainate treatment. J. Neurosci. 14, 3998–4006.PubMedGoogle Scholar
  30. Sivam, S. P. (1989) Cocaine selectively increases striatonigral dynorphin levels by a dopaminergic mechanism. J. Pharmacol. Exp. Ther. 250, 818–824.PubMedGoogle Scholar
  31. Smiley, P. L., Johnson, M., Bush, L., Gibb, J. W., Hanson, G. R. (1990) Effects of cocaine on extrapyramidal and limbic dynorphin systems. J. Pharmacol. Exp. Ther. 253, 938–943.PubMedGoogle Scholar
  32. White, N.M. and Hiroi, N. (1993) Amphetamine conditioned cue preference and the neurobiology of drugseeking. Seminars in the Neurosciences 5(5): 329–336.CrossRefGoogle Scholar
  33. White, N. M. and Hiroi, N. (1995) Preferential localization of self-stimulation sites in striosomes/patches of rat caudate-putamen. Soc. Neuroscie. Abstr. 21, 2079.Google Scholar
  34. Xie, C. W, Lee, P. H. K., Takeuchi, K., Owyang, V., Li, S. J., Douglass, J., Hong, J. S. (1989) Single and repeated electroconvulsive shocks alter the levels of prodynorphin and proenkephalin mRNAs in rat brain. Mol. Brain Res. 6, 11–19.PubMedCrossRefGoogle Scholar
  35. Zhang, W. Q., Pennypacker, K. R., Ye, H., Merchanthaler, I. J., Grimes, L., Iadarola, M. J., Hong, J. S. (1992) A 35 kDa Fos-related antigen is colocalized with substance P and dynorphin in striatal neurons. Brain Res. 577, 312–317.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • N. Hiroi
    • 1
  • J. S. Chen
    • 1
  • H. E. Nye
    • 1
  • E. J. Nestler
    • 1
  1. 1.Department of Psychiatry, Division of Molecular PsychiatryYale University School of MedicineNew HavenUSA

Personalised recommendations