The Basal Ganglia V pp 277-283 | Cite as
Metabolic Depression in the Striatum, Thalamus and Cerebral Cortex due to Lesions in the Globus Pallidus
Abstract
The functions and roles of the globus pallidus in the human brain are both unclear and difficult to examine. Data are predominantly available only from patients with localized lesions in the globus pallidus. Movement disorders and changes in mental activity have been reported in these patients (Rondolt and Bathien, 1994; Laplane, 1994). It is hypothesized that pallidal lesions influence functioning of the striatum and thalamus via afferent and efferent connections, respectively. Mental changes recognized in patients with bilateral lesions have suggested the concentration of information from the entire cortex in the globus pallidus (Percheron et al., 1984a, Laplane, 1994). Thus, the relationship between pallidal lesions and related areas may be important for understanding the roles of the globus pallidus. Metabolic studies in patients with pallidal lesions may help identify these related areas.
Keywords
Cerebral Cortex Basal Ganglion Globus Pallidus Striatal Neuron Bilateral LesionPreview
Unable to display preview. Download preview PDF.
References
- Frackowiak, R.S.J., Lenzi, G-L., Jones, T., Heather, J.D., 1980, Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values, J. Comput. Assist. Tomogr. 4:727–736.PubMedCrossRefGoogle Scholar
- Haber, S.N., Lynd-Balta, E., Spooren, W.P.J.M., Integrative aspects of basal ganglia circuitry, in: The Basal Ganglia IV, (G. Percheron, J.S. McKenzie, J. Feger, eds.), Plenum Press, New York, pp. 71–80.Google Scholar
- Hikosaka, O., 1994, Role of basal ganglia in control of innate movements, learned behavior and cognition-a hypothesis, in: The Basal Ganglia IV, (G. Percheron, J.S. McKenzie, J. Feger, eds.), Plenum Press, New York, pp. 589–596.CrossRefGoogle Scholar
- Inoue, H.K., Kobayashi, S., Nakamura, M., Horikoshi, S., 1991, Unilateral transneuronal damage, Adv. Neurotranma Res. 3:26–31.Google Scholar
- Inoue, H.K., Nakamura, M., Mouton, PR., Olson, L., 1992a, Transneuronal degeneration in a rat model of Alzheimer’s disease: Ultrastructural comparison with aged rats, J. Clin. Electron Microscopy 25:79–86.Google Scholar
- Inoue, H.K., Ohbayashi, K., Kobayashi, S., Nakamura, M., Horikoshi, S., Ohye, C., 1992b, Remote functional depression in the cerebrum and cerebellum: Reversible diaschisis and irreversible degeneration, Adv. Neurotrauma Res. 4:83–86.Google Scholar
- Inoue, H.K., Kobayashi, S., Nakamura, M., Horikoshi, S., Ohye, C., 1993a, Secondary damage of the cerebral cortex: Blood flow and metabolic studies, in: Recent Advances in Neurotrauma tology, (N. Nakamura, T. Hashimoto, M. Yasue, eds.), Springer-Verlag, Tokyo, pp. 256–259.CrossRefGoogle Scholar
- Inoue, H.K., Kobayashi, S., Kohga, H., Horikoshi, S., Ishihara, J., Nakamura, M., Ohye, C., 1993b, Neural damage in the cerebral cortex due to lesions of the globus pallidus including the basal nucleus: Mechanism of cell loss compared with an animal model, Adv. Neurotruama Res. 5:3–5.Google Scholar
- Inoue, H.K., Kobayashi, S., Hayashi, S., Ohbayashi, K., Kohga, H., Horikoshi, S., Ohye, C., 1994, Persistent transneuronal damage: Possibility of treatment based on clinical and experimental study results, Neurotraumatology 17:57–62.Google Scholar
- Laitinen, L.V., Bergenheim, A.T., Hariz, M.I., 1992, Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease, J. Neurosurg. 76:53–61.PubMedCrossRefGoogle Scholar
- Laplane, D., 1994, Function of the basal ganglia in mental activity, in: The Basal Ganglia IV, (G. Percheron, J.S. McKenzie, J. Feger, eds.), Plenum Press, New York, pp. 569–576.CrossRefGoogle Scholar
- Laplane, D., Desfontaines, B., Pillon, B., Deweer, B., Dubois, B., 1995, The mental and cognitive syndrome of patients with focal lasions of basal ganglia, International Basal Ganglia Society Vth International Triennial Meeting.Google Scholar
- Nakane, M., Teraoka, A., Asato, R., Tamura, A., 1992, Degeneration of the ipsilateral substantia nigra following cerebral infarction in the striatum, Stroke 23:328–332.PubMedCrossRefGoogle Scholar
- Percheron, G., Yelnik, J., Francois, C., 1984a, The primate strio-pallido-nigral system: an integrative system for cortical information, in: The Basal Ganglia Structure and Function, Advances in Behavioral Biology, Volume 27 (J.S. McKenzie, R.E. Kemm, L.N. Wilcock, eds.), Plenum Press, New York, pp. 87–105.CrossRefGoogle Scholar
- Percheron, G., Yelnik, J., Francois, C., 1984b, A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex, J. Comp. Neurol. 227:214–227.PubMedCrossRefGoogle Scholar
- Percheron, G., Francois, C., Yelnik, J., Fenelon, G., Talbi, B., 1994, The basal ganglia related system of primates: definition, description and informational analysis, in: The Basal Ganglia IV, (G. Percheron, J.S. McKenzie, J. Feger, eds.), Plenum Press, New York, pp. 3–20.CrossRefGoogle Scholar
- Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C.S., Sokoloff, L., Kuhl, D.E., 1979, Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: Validation of method, Ann. Neurol. 6:371–388.PubMedCrossRefGoogle Scholar
- Rondot, P., Bathien, N., 1994, Movement disorders in patients with striatal and/or pallidal lesions, in: The Basal Ganglia IV, (G. Percheron, J.S. McKenzie, J. Feger, eds.), Plenum Press, New York, pp. 519–523.CrossRefGoogle Scholar
- Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., Shinohara, M., 1977, The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28:897–916.PubMedCrossRefGoogle Scholar
- Tamura, A., Kirino, T., Sano, K., Takagi, K., Oka, H., 1990, Atrophy of ipsilateral substantia nigra following middle cerebral artery occlusion in the rat, Brain Res. 510:154–157.PubMedCrossRefGoogle Scholar