Electrical Stimulation of the Subthalamic Nucleus in Fully Parkinsonian (MPTP) Monkeys

Effects on Clinical Signs and Pallidal Activity
  • Nobuaki Hayase
  • Michel Filion
  • Hélène Richard
  • Thomas Boraud
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)


In Parkinson’s disease, the neuronal activity in the internal segment of the globus pallidus (GPi), a major output structure of the basal ganglia, is abnormally fast, synchronized and bursty. The anomaly has been demonstrated in monkeys rendered parkinsonian by midbrain electrolytic lesion (Filion, 1979) or by systemic injection of the neurotoxin l-methyl-4-phenyl-l, 2, 3, 6-tetra-hydropyridine (MPTP) (Miller and DeLong, 1987; Filion and Tremblay, 1991; Bergman et al., 1994), and recently in patients with idiopathic Parkinson’s disease (Vitek et al., 1993; Hutchison et al., 1994; Sterio et al., 1994).


Subthalamic Nucleus High Frequency Stimulation Depolarization Block Parkinsonian Sign Pallidal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aziz, T.Z., Peggs, D., Sambrook, M.A., and Crossman, A.R., 1991, Lesion of the subthalamic nucleus for the alleviation of l-methyl-4-phenyl-1, 2, 3, 6-tetra-hydropyridine (MPTP)-induced parkinsonism in the primate, Mov. Disord. 6: 288–292.PubMedCrossRefGoogle Scholar
  2. Benabid, A.L., Pollak, P., Louveau, A., Hommel, M., Perret, J., and De Rougemenont, J., 1988, Chronic Vim-thalamic stimulation in movement disorders, in: Neural Mechanisms in Disorders of Movement, Current Problems in Neurology, Volume 9 (A.R. Crossman and M.A. Sambrook, eds.), John Libbey, London, pp. 413–415.Google Scholar
  3. Benazzouz, A., Gross, C., Féger, J., Boraud, T., and Bioulac, B., 1993, Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys, Eur. J. Neurosci. 5: 382–389.PubMedCrossRefGoogle Scholar
  4. Benazzouz, A., Piallat, B., Pollak, P., and Benabid, A.L., 1995, Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data, Neurosci. Lett. 189: 77–80PubMedCrossRefGoogle Scholar
  5. Bergman, H., Wichmann, T., and DeLong, M.R., 1990, Reversal of experimental parkinsonism by lesion of subthalamic nucleus, Science 249: 1436–1438.PubMedCrossRefGoogle Scholar
  6. Bergman, H., Wichmann, T., Karmon, B., and De Long, M.R., 1994, The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism, J. Neurophysiol. 72: 507–520.PubMedGoogle Scholar
  7. Brotchie, J.M., Mitchell, I.J., Sambrook, M.A., and Crossman, A.R., 1991, Alleviation of parkinsonism by antagonism of excitatory amino acid transmission in the medial segment of the globus pallidus in rat and primate, Mov. Disord. 6: 133–138.CrossRefGoogle Scholar
  8. Burbaud, P., Gross, Ch., and Bioulac, B., 1995, Effect of subthalamic high frequency stimulation on substantia nigra pars reticulata and globus pallidus neurons in normal rats, J. Physiology (Paris) 88: 359–361.CrossRefGoogle Scholar
  9. DeLong, M.R., 1990, Primate models of movement disorders of basal ganglia origin, Trends Neurosci. 13: 281–285.PubMedCrossRefGoogle Scholar
  10. Féger, J., and Robledo, P., 1991, The effects of activation or inhibition of the subthalamic nucleus on the metabolic and electrophysiological activities within the pallidal complex and substantia nigra in the rat, Eur. J. Neurosci. 3: 947–952.PubMedCrossRefGoogle Scholar
  11. Féger, J., Robledo, P., and Renwart, N., 1991, The subthalamic nucleus: New data, new questions, in: The Basal Ganglia III, Advances in behavioral biology, Volume 39 (G. Bernardi, M.B. Carpenter, G. Dichiara, M. Morelli, and P. Stanzione, eds.), Plenum Press, New York, pp. 99–108.CrossRefGoogle Scholar
  12. Filion M, Tremblay L., and Bédard, P.J., 1991, Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism, Brain Res. 547: 152–161.PubMedGoogle Scholar
  13. Filion M. and, Tremblay L., 1991, Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism, Brain Res. 547: 142–151.PubMedGoogle Scholar
  14. Filion, M., 1979, Effects of interruption of the nigrostriatal pathway and of dopaminergic agents on the spontaneous activity of globus pallidus neurons in the awake monkey, Brain Res. 178: 425–441.PubMedCrossRefGoogle Scholar
  15. Graham, W.C., Robertson, R.G., Sambrook, M.A., and Crossman, A.R., 1990, Injection of excitatory amino acid antagonists into the medial pallidal segment of a l-methyl-4-phenyl-1, 2, 3, 6-tetra-hydropyridine (MPTP) treated primate reverses motor symptoms of parkinsonism, Life Sci. 47: 91–97.CrossRefGoogle Scholar
  16. Hamada, I., and DeLong, M.R., 1992, Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding, J. Neurophysiol. 68: 1859–1866.PubMedGoogle Scholar
  17. Hazrati, L.N., Parent, A., Mitchell, S., and Haber, S.N., 1990, Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study, Brain Res. 533: 171–175.PubMedCrossRefGoogle Scholar
  18. Hull, C.D., Levine, M.S., Buchwald, N.A., Heller, A., and Browning, R.A., 1974, The spontaneous firing pattern of forebrain neurons. I. The effects of dopamine and non-dopamine depleting lesions on caudate unit firing patterns, Brain Res. 73: 241–262.PubMedCrossRefGoogle Scholar
  19. Hutchison, W.D., Lozano, A.M., Davis, K.D., Saint-Cyr, J.A., Lang, A.E., and Dostrovsky, J.O., 1994, Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients, NeuroReport 5: 1533–1537.PubMedCrossRefGoogle Scholar
  20. Kita, H., and Kitai, S.T., 1994, The morphology of globus pallidus projection neurons in the rat: an intracellular staining study, Brain Res. 636: 308–319.PubMedCrossRefGoogle Scholar
  21. Kitai, S.T., and Kita, H., 1987, Anatomy and physiology of the subthalamic nucleus: A driving force of the basal ganglia, in: The Basal Ganglia II, Advances in behavioral biology, Volume 32 (M.B. Carpenter and A. Jayaraman, eds.), Plenum Press, New York, pp. 357–373.CrossRefGoogle Scholar
  22. Limousin, P., Pollak, P., Benazzouz, A., Hoffman, D., and LeBas, J.F., 1995, Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation, Lancet 345: 91–95.PubMedCrossRefGoogle Scholar
  23. Matsumura, M., Tremblay, L., Richard, H., and Filion, M., 1995, Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum, Neuroscience 65: 59–70.PubMedCrossRefGoogle Scholar
  24. Miller, W.C., and DeLong, M.R., 1987, Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism, in: The Basal Ganglia II, Advances in behavioral biology, Volume 32 (M.B. Carpenter and A. Jayaraman, eds.), Plenum Press, New York, pp. 415–427.CrossRefGoogle Scholar
  25. Mitchell, I.J., Clarke, C.E., Boyce, S., Robertson, R.G., Peggs, D., Sambrook, M.A., and Crossman, A.R., 1989, Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-de-oxyglucose in monkeys exposed to l-methyl-4-phenyl-1, 2, 3, 6-tetra-hydropyridine (MPTP), Neuroscience 32: 213–226.PubMedCrossRefGoogle Scholar
  26. Paquet, M., and Smith, Y., 1996, Differential localization of AMPA glutamate receptor subunits in the two segments of the globus pallidus and the substantia nigra pars reticulata in the squirrel monkey, Eur. J. Neurosci. (in press).Google Scholar
  27. Parent A., Smith Y., Filion M., and Dumas J., 1989, Distinct afférents to internal and external pallidal segments in the squirrel monkey, Neurosci Lett 96:140–4.PubMedCrossRefGoogle Scholar
  28. Poirier, L.J., Giguère, M., and Marchand R., 1983, Comparative morphology of the substantia nigra and ventral tegmental area in the monkey, cat and rat, Brain Res. Bull, 11: 371–397.PubMedCrossRefGoogle Scholar
  29. Pollak, P., Benabid, A.L., Gross, C., Gao, D.M., Laurent, A., Benazzouz, A., Hoffmann, D., Gentil, M., and Perret, J., 1993, Effets de la stimulation du noyau sous-thalamique dans la maladie de Parkinson, Rev. Neurol. (Paris) 149: 175–176.Google Scholar
  30. Robertson, R.G., Clarke, C.E., Boyce, S., Sambrook, M.A., and Crossman, A.R., 1990, The role of striopallidal neurones utilizing gamma-aminobutyric acid in the pathophysiology of MPTP-induced parkinsonism in the primate: evidence from [3H]flunitrazepam autoradiography, Brain Res. 531: 95–104.PubMedCrossRefGoogle Scholar
  31. Robledo, P., and Féger, J., 1990, Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and pallidal complex: Electrophysiological data, Brain Res. 518: 47–54.PubMedCrossRefGoogle Scholar
  32. Sellai, F., Hirsh, E., Lisovoski, F., Mutshler, V, Collard, M., and Marescaux, C, 1992, Contralateral disap-pearence of parkinsonian signs after subthalamic hematoma, Neurology 42: 255–256.CrossRefGoogle Scholar
  33. Smith, Y., and Parent, A., 1988, Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity, Brain Res. 453: 353–356.PubMedCrossRefGoogle Scholar
  34. Smith, Y., Sidibé, M., and Shink, E., 1994a, A light and electron microscopic analysis of the interconnections between the two pallidal segments and the subthalamic nucleus in the squirrel monkey, Soc. Neurosci. Abstr. 20: 332.Google Scholar
  35. Smith, Y., Wichmann, T., and DeLong, M.R., 1994b, Synaptic innervation of neurons in the internal pallidal segment by the subthalamic nucleus and the external pallidum in monkeys, J. Comp. Neurol. 343: 297–318.PubMedCrossRefGoogle Scholar
  36. Sterio, D., Beric, A., Dogali, M., Fazzini, E., Alfaro, G., and Devinski, O., 1994, Neurophysiological properties of pallidal neurons in Parkinson’s disease, Ann. Neurol. 35: 586–591.PubMedCrossRefGoogle Scholar
  37. Vitek, J., Kaneoke, Y., Turner, R., Baron, M., Bakay, R., and DeLong, M.R., 1993, Neuronal activity in the internal (GPi) and external (GPe) segments of the globus pallidus (GP) of parkinsonian patients is similar to that in the MPTP-treated primate model of parkinsonism, Soc. Neurosci. Abstr. 19: 1584.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Nobuaki Hayase
    • 1
  • Michel Filion
    • 1
  • Hélène Richard
    • 1
  • Thomas Boraud
    • 2
  1. 1.Centre de recherche en neurobiologieUniversité Laval et Hôpital de l’Enfant-JésusQuébecCanada
  2. 2.Laboratoire de NeurophysiologieCNRS URA 1200Bordeaux CedexFrance

Personalised recommendations