Skip to main content

Modulation of Glutamate Transmission in the Rodent and Primate Basal Ganglia by the Selective Kappa-Opioid Receptor Agonist, Enadoline

  • Chapter
The Basal Ganglia V

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 47))

Abstract

Glutamate is utilised as a transmitter in many pathways playing a key role in basal ganglia function i. e. the corticostriatal connections (Herrling, 1985) and the subthalamic nucleus efferents (Brotchie and Crossman, 1991a) to both pallidal segments and the substantia nigra pars reticulata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin, R.L., Young, A.B. and Penney, J.B., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci. 12: 366–375.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, H., Wichmann, T., Karmon, B. and DeLong, M.R., 1994, The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism, J Neurophysiol 72(2): 507–520.

    PubMed  CAS  Google Scholar 

  • Brotchie, J.M. and Crossman, A.R., 1991a, D-[3H]aspartate and [14C] GABA uptake in the basal ganglia of rats following lesions in the subthalamic region suggest a role for excitatory amino acid-but not GABA-mediated transmission in the subthalamic nucleus efferents, Exp. Neurol. 113: 171–181.

    Article  PubMed  CAS  Google Scholar 

  • Brotchie, J.M., Mitchell, I.J., Sambrook, M.A. and Crossman, A.R., 1991b, Alleviation of parkinsonism by antagonism of excitatory amino acid transmission in the medial segment of the globus pallidus in rat and primate, Movement Disorders 6: 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi, P., Pisani, A., Mercuri, N.B. and Bernadi, G., 1996, The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia, Trends Neurosci. 19: 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, K. and Bjorklund, A., 1994, Prefrontal corticostriatal afferents maintain increased enkephalin gene expression in dopamine-denervated rat striatum, Eur. J. Neurosci. 6: 1371–1383.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, C.B., Holloway, V., Brotchie, J.M. and Mitchell, I.J., 1995, Neurochemical and behavioral investigations of the NMDA receptor-associated glycine site in the rat striatum: functional implications for treatment of parkinsonian symptoms, Psychopharmacology 119(1): 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Chavkin, C., James, I.F. and Goldstein, A., 1982, Dynorphin is a specific endogenous ligand of the kappa opioid receptor, Science 215: 413–415.

    Article  PubMed  CAS  Google Scholar 

  • Engber,.M., Susel, Z., Kuo, S., Gerfen, C.R. and Chase, T.N., 1991, Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxy-dopamine lesioned rats, Brain Res. 552: 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.G. and Young III, W.S., 1988, Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridisation histochemistry and fluorescent retrograde tracing study, Brain Res. 460: 161–167

    Article  PubMed  CAS  Google Scholar 

  • Girault, J-A., Horiuchi, A., Gustafson, E.L., Rosen, N.L. and Greengard, P., 1990, Differential expression of cAMP-regulated phosphoproteins, one of which is specifically associated with dopamine-innervated brain regions, J. Neurosci. 10(4): 1124–1133.

    PubMed  CAS  Google Scholar 

  • Haber, S.N., and Watson, S.J., 1983, The comparison between enkephalin-like and dynorphin-like immunore-activity in both monkey and human globus pallidus, Life Sci. Suppl. 33: 162–165.

    Google Scholar 

  • Hazrati, L.N., Parent, A., Mitchell, S. and Haber, S.N., 1990, Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study, Brain Res. 533(1): 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Hemmings, H.C., Jr., Walaas, S.I., Ouimet, C.C. and Greengard, P., 1987, Dopaminergic regulation of protein phosphorylation in the striatum: DARPP-32, Trends Neurosci. 10: 377–383.

    Article  CAS  Google Scholar 

  • Herrling, P.L., 1985, Pharmacology of the corticocaudate excitatory postsynaptic potential in the cat: evidence for its mediation by quisqualate-or kainate-receptors, Neuroscience 14: 417–426.

    Article  PubMed  CAS  Google Scholar 

  • Hill, M.P. and Brotchie, J.B., 1995, Modulation of glutamate release by a K-opioid receptor agonist in rodent and primate striatum, Eur. J. Pharmacol. 281: R1–R2

    Article  PubMed  CAS  Google Scholar 

  • Hughes, N.R., McKnight, A., Woodruff, G.N., Crossman, A.R. and Brotchie, J.M., Anti-parkinsonian effects of K-opioid receptor agonists in the reserpine-treated rat, Movement Disorders: in press.

    Google Scholar 

  • Jiang, H.K., McGinty, J.F. and Hong, J.S., 1990, Differential modulation of striatonigral dynorphin and enkephalin by dopamine receptor subtypes, Brain Res. 507: 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Kincaid, A.E., Penney Jr., J.B. and Young, A.B., and Newman, S.W., 1991, Evidence for a projection from the globus pallidus to the entopeduncular nucleus in the rat, Neurosci. Lett. 128: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Klockgether, T. and Turski, L., 1990, NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats, Ann. Neurol. 28(4): 539–546.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, P.D., Woodruff, G.N., Hughes, J. and Hunter, J.C., 1991, Inhibition of L-glutamate release: a possible mechanism of action for the neuroprotective effects of the kappa-selective agonist CI-977, Mol. Neuropharm. 1: 77–82.

    Google Scholar 

  • Maneuf, Y.P., Mitchell, I.J., Crossman, A.R., Woodruff, G.N., and Brotchie, J.M., 1995, Functional implications of kappa opioid receptor-mediated modulation of glutamate transmission in the output regions of the basal ganglia in rodent and primate models of Parkinson’s disease, Brain Res. 683: 102–108.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, A., Fox, C. A., Akil, H., and Watson, S. J., 1995, Opioid receptor mRNA expression in the rat CNS: anatomical and functional implications, Trends Neurosci. 18: 22–29.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.C., and DeLong, M.R., 1987, Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism, in: The Basal Ganglia, Volume II (M.A. Carpenter and A. Jarayaman, eds.), Plenum Press, New York, pp. 395–413.

    Google Scholar 

  • Mitchell, I. J., Clark, C. E., Boyce, S., Robertson, S. G., Peggs, D., Sambrook, M. A., and Crossman, A. R., 1989, Neural mechanisms underlying Parkinsonian symptoms based upon regional uptake of 2-deoxy glucose in monkeys exposed to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine, Neuroscience 32: 213–226.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, I.J., Hughes, N. Carroll, C.B., and Brotchie, J.M., 1995, Reversal of parkinsonian symptoms by intrastriatal and systemic manipulations of excitatory amino acid and dopamine transmission in the bilateral 6-OHDA lesioned marmoset, Behavioural Pharamacol. 6: 492–507.

    CAS  Google Scholar 

  • Robertson, R.G., Farmery, S.M., Sambrook, M.A. and Crossman, A.R., 1989. Dyskinesia in the primate following injection of an excitatory amino acid antagonist into the medial segment of the globus pallidus, Brain Res. 476: 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Turski, L., Klockgether, T., Turski, W. A., Schwarz, M., and Sontag, K. H., 1990, Blockade of excitatory neurotransmission in the globus pallidus induces rigidity and akinesia in the rat: implications for excitatory neurotransmission in pathogenesis of Parkinson’s disease, Brain Res. 512(1): 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S.R., Hokfelt, T., Christensson, I., and Terenius, L., 1982, Immunohistochemical evidence or a dynorphin immunoreactive striatonigral pathway, Eur. J. Pharmacol. 85: 251–252.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, J.J., Terman, G.W., and Chavkin, C. 1993, Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus, Nature 363: 451–454.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hill, M.P., Hille, C.J., Maneuf, Y.P., Brotchie, J.M. (1996). Modulation of Glutamate Transmission in the Rodent and Primate Basal Ganglia by the Selective Kappa-Opioid Receptor Agonist, Enadoline. In: Ohye, C., Kimura, M., McKenzie, J.S. (eds) The Basal Ganglia V. Advances in Behavioral Biology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0194-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0194-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0196-5

  • Online ISBN: 978-1-4899-0194-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics