Electrophysiological Consequences of D2 and/or D3 Receptor Knockout by Antisense Oligonucleotides in Nigrostriatal Dopaminergic Neurons

  • James M. Tepper
  • Bao-Cun Sun
  • L. P. Martin
  • Ian Creese
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)


Mesencephalic dopaminergic neurons possess receptors for their own neurotransmitter, dopamine, at both somatodendritic as well as axon terminal regions. These receptors are termed autoreceptors and act to modulate dopaminergic synaptic transmission in two ways. Activation of the somatodendritic autoreceptors produces a membrane hyperpolarization by increasing a potassium conductance (Lacey, 1993) which leads to an inhibition of spontaneous activity (Groves et al., 1975). Activation of the terminal autoreceptors produces a decrease in terminal excitability which is presumed to reflect a membrane hyperpolarization (Tepper et al., 1985) which leads to a reduction in dopamine synthesis and in calcium- and impulse-dependent release of dopamine from nerve terminals (Starke et al., 1989; Wolf and Roth, 1987).


Dopaminergic Neuron Dopamine Receptor Electrophysiological Consequence Dopamine Synthesis Spontaneous Firing Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akaoka, H., Charléty, P., Saunier, C.-F., Buda, M., & Chouvet, G. (1992) Inhibition of nigral dopaminergic neurons by systemic and local apomorphine: possible contribution of dendritic autoreceptors. Neuroscience 49:879–892.PubMedCrossRefGoogle Scholar
  2. 2.
    Boyar, W.C., & Altar, C.A. (1987) Modulation of in vivo dopamine release by D2 but not D1 receptor agonists and antagonists. J. Neurochem. 48:824–831.PubMedCrossRefGoogle Scholar
  3. 3.
    Diaz, J., Lévesque, D., Lammers, C.H., Griffon, N., Martres, M.-P., Schwartz, J.-C., & Sokoloff, P. (1995) Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 65:731–795.PubMedCrossRefGoogle Scholar
  4. 4.
    Giros, B., Sokoloff, P., Martres, M.-P., Riou, J.-F., Emorine, L.J., & Schwartz, J.C. (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature (Lond.) 342:923–926.CrossRefGoogle Scholar
  5. 5.
    Groves, P.M., Wilson, C.J., Young, S.J., & Rebec, G.V. (1975) Self-inhibition by dopaminergic neurons. Science 190:522–529.PubMedCrossRefGoogle Scholar
  6. 6.
    Kebabian, J.W., & Calne, D.B. (1979) Multiple receptors for dopamine. Nature (Lond.) 277:93–96.CrossRefGoogle Scholar
  7. 7.
    Kreiss, D.S., Bergstron, D.A., Gonzalez, A.M., Huang, K-.X., Sibley, D.R., & Walters, J.R. (1995). Dopamine receptor agonist potencies for inhibition of cell firing correlate with dopamine D3 receptor binding affinities. Eur. J. Pharmacol. 277:209–214.PubMedCrossRefGoogle Scholar
  8. 8.
    Lacey, M.G. (1993) Neurotransmitter receptors and ionic conductances regulating the activity of neurones in substantia nigra pars compacta and ventral tegmental area. In: G.W. Arbuthnott and P.C. Emson (Eds.) Chemical Signalling in the Basal Ganglia, Progress in Brain Research, Volume 99, pp. 251–276.CrossRefGoogle Scholar
  9. 9.
    Lejeune, F., & Millan, M.J. (1995) Activation of dopamine D3 autoreceptors inhibits firing of ventral tegmental dopaminergic neurones in vivo. Eur. J. Phamacol. 275:R7–R9.CrossRefGoogle Scholar
  10. 10.
    Martin, L.P., Kita, H., Sun, B.-C., Zhang, M., Creese, I., & Tepper, J.M. (1994) Electrophysiological consequences of D2 receptor antisense knockout in nigrostriatal neurons. Soc. Neurosci. Abstr. 20:908.Google Scholar
  11. 11.
    Matsuda, Y., & Jinnai, K. (1980) Afferent inputs to caudate output neurons as monitored by antidromic spike invasion of the cell soma. Brain Res. 188: 560–565PubMedCrossRefGoogle Scholar
  12. 12.
    Meller, E., Bohmaker, K., Goldstein, M., & Basham, D.A. (1993) Evidence that striatal synthesis-inhibiting autoreceptors are dopamine D3 receptors. Eur. J. Pharmacol. 249:R5–R6.PubMedCrossRefGoogle Scholar
  13. 13.
    Monsma, F.J., Jr., McVittie, L.D., Gerfen, C.R., Mahan, L.C., & Sibley, D.R. (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature (Lond.) 342:926–929.CrossRefGoogle Scholar
  14. 14.
    Morelli, M., Mennini, T., & Di Chiara, G. (1988) Nigral dopamine autoreceptors are exclusively of the D2 type: Quantitative autoradiography of [125I]iodosulpiride and [125I]SCH23892 in adjacent brain sections. Neuroscience 27:865–870.PubMedCrossRefGoogle Scholar
  15. 15.
    Nissbrandt, H., Ekman, A., Eriksson, E., & Heilig, M. (1995) Dopamine D3 receptor antisense influences dopamine synthesis in rat brain. Neuroreport 6:573–576.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwartz, J.C., Giros B., Martres, M.P., Sokoloff, P. (1992) The dopamine receptor family: molecular biology and pharmacology. Seminars in The Neurosciences 4:99–108CrossRefGoogle Scholar
  17. 17.
    Sibley, D.R., & Monsma Jr., F.J. (1992) Molecular biology of dopamine receptors. Trends Pharmacol. Sci. 13:61–69.PubMedCrossRefGoogle Scholar
  18. 18.
    Skirboll, L.R., Grace, A.A., & Bunney, B.S. (1979) Dopamine auto-and postsynaptic receptors: Electro-physiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Sokoloff, P., Giros, B., Martres, M.-R, Bouthenet, M.-L., & Schwartz, J.-C. (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature (Lond.) 347:146–151.CrossRefGoogle Scholar
  20. 20.
    Starke, K., Gothert, M. & Kilbinger, H. (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 59:864–989.Google Scholar
  21. 21.
    Sun, B.-C., Creese, I., & Tepper, J.M. (1995) Electrophysiology of antisense knockout of D2 and D3 dopamine receptors in nigrostriatal dopamine neurons. Soc. Neurosci. Abstr. 21:1661.Google Scholar
  22. 22.
    Sun, B.-C., Martin, L.P., Creese, I., & Tepper, J.M. (1996) Functional roles of dopamine D2 autoreceptors in nigrostriatal neurons analyzed by antisense knockout in vivo. (submitted).Google Scholar
  23. 23.
    Tang, L., Todd, R.D., & O’Malley, K.L. (1994) Dopamine D2 and D3 receptors inhibit dopamine release. J. Pharmacol. Exp. Then 270:415–479.Google Scholar
  24. 24.
    Tepper, J.M., Groves, P.M., & Young, S.J. (1985) The neuropharmacology of the autoinhibition of monoamine release. Trends Pharmacol. Sci. 6:251–256.CrossRefGoogle Scholar
  25. 25.
    Tepper, J.M., Martin, L.R. & Anderson, D.R. (1995) GABAA receptor-mediated inhibition of nigrostriatal dopaminergic neurons by pars reticulata projection neurons. J. Neurosci. 5:3092–3103.Google Scholar
  26. 26.
    Tepper, J.M., Nakamura, S., Young, S.J., & Groves, P.M. (1984) Autoreceptor-mediated changes in dopaminergic terminal excitability: Effects of striatal drug infusions. Brain Res. 309:311–333.Google Scholar
  27. 27.
    Trent, F., & Tepper, J.M. (1991) Dorsal raphé stimulation modifies striatal-evoked antidromic invasion of nigral dopaminergic neurons in vivo. Exp. Brain Res. 84:620–630.PubMedCrossRefGoogle Scholar
  28. 28.
    Wolf, M.E., & Roth, R.H. (1990) Autoreceptor regulation of dopamine synthesis. In: S. Kalsner and T.C. Westfall, (Eds.) Presynaptic Autoreceptors and the Question of the Autoregulation of Neurotransmitter Release. Ann. New York Acad. Sci. 604:323–343.CrossRefGoogle Scholar
  29. 29.
    Zhang, M., & Creese, I. (1993) Antisense oligodeoxynucleotide reduces brain dopamine D2 receptors: behavioral correlates. Neurosci. Lett. 161:223–226.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang, M., Ouagazzal, A., & Creese, I. (1996) Regulation of motor behavior by dopamine receptor subtypes: an antisense knockout approach. In: K. Neve and R. Neve (Eds.), The Dopamine Receptors, Humana Press, In press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • James M. Tepper
    • 1
  • Bao-Cun Sun
    • 1
  • L. P. Martin
    • 1
  • Ian Creese
    • 1
  1. 1.Center for Molecular and Behavioral Neuroscience, Aidekman Research CenterRutgers, The State University of New JerseyNewarkUSA

Personalised recommendations