Skip to main content

Electrophysiological Consequences of D2 and/or D3 Receptor Knockout by Antisense Oligonucleotides in Nigrostriatal Dopaminergic Neurons

  • Chapter
Book cover The Basal Ganglia V

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 47))

  • 102 Accesses

Abstract

Mesencephalic dopaminergic neurons possess receptors for their own neurotransmitter, dopamine, at both somatodendritic as well as axon terminal regions. These receptors are termed autoreceptors and act to modulate dopaminergic synaptic transmission in two ways. Activation of the somatodendritic autoreceptors produces a membrane hyperpolarization by increasing a potassium conductance (Lacey, 1993) which leads to an inhibition of spontaneous activity (Groves et al., 1975). Activation of the terminal autoreceptors produces a decrease in terminal excitability which is presumed to reflect a membrane hyperpolarization (Tepper et al., 1985) which leads to a reduction in dopamine synthesis and in calcium- and impulse-dependent release of dopamine from nerve terminals (Starke et al., 1989; Wolf and Roth, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaoka, H., Charléty, P., Saunier, C.-F., Buda, M., & Chouvet, G. (1992) Inhibition of nigral dopaminergic neurons by systemic and local apomorphine: possible contribution of dendritic autoreceptors. Neuroscience 49:879–892.

    Article  PubMed  CAS  Google Scholar 

  2. Boyar, W.C., & Altar, C.A. (1987) Modulation of in vivo dopamine release by D2 but not D1 receptor agonists and antagonists. J. Neurochem. 48:824–831.

    Article  PubMed  CAS  Google Scholar 

  3. Diaz, J., Lévesque, D., Lammers, C.H., Griffon, N., Martres, M.-P., Schwartz, J.-C., & Sokoloff, P. (1995) Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 65:731–795.

    Article  PubMed  CAS  Google Scholar 

  4. Giros, B., Sokoloff, P., Martres, M.-P., Riou, J.-F., Emorine, L.J., & Schwartz, J.C. (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature (Lond.) 342:923–926.

    Article  CAS  Google Scholar 

  5. Groves, P.M., Wilson, C.J., Young, S.J., & Rebec, G.V. (1975) Self-inhibition by dopaminergic neurons. Science 190:522–529.

    Article  PubMed  CAS  Google Scholar 

  6. Kebabian, J.W., & Calne, D.B. (1979) Multiple receptors for dopamine. Nature (Lond.) 277:93–96.

    Article  CAS  Google Scholar 

  7. Kreiss, D.S., Bergstron, D.A., Gonzalez, A.M., Huang, K-.X., Sibley, D.R., & Walters, J.R. (1995). Dopamine receptor agonist potencies for inhibition of cell firing correlate with dopamine D3 receptor binding affinities. Eur. J. Pharmacol. 277:209–214.

    Article  PubMed  CAS  Google Scholar 

  8. Lacey, M.G. (1993) Neurotransmitter receptors and ionic conductances regulating the activity of neurones in substantia nigra pars compacta and ventral tegmental area. In: G.W. Arbuthnott and P.C. Emson (Eds.) Chemical Signalling in the Basal Ganglia, Progress in Brain Research, Volume 99, pp. 251–276.

    Article  CAS  Google Scholar 

  9. Lejeune, F., & Millan, M.J. (1995) Activation of dopamine D3 autoreceptors inhibits firing of ventral tegmental dopaminergic neurones in vivo. Eur. J. Phamacol. 275:R7–R9.

    Article  CAS  Google Scholar 

  10. Martin, L.P., Kita, H., Sun, B.-C., Zhang, M., Creese, I., & Tepper, J.M. (1994) Electrophysiological consequences of D2 receptor antisense knockout in nigrostriatal neurons. Soc. Neurosci. Abstr. 20:908.

    Google Scholar 

  11. Matsuda, Y., & Jinnai, K. (1980) Afferent inputs to caudate output neurons as monitored by antidromic spike invasion of the cell soma. Brain Res. 188: 560–565

    Article  PubMed  CAS  Google Scholar 

  12. Meller, E., Bohmaker, K., Goldstein, M., & Basham, D.A. (1993) Evidence that striatal synthesis-inhibiting autoreceptors are dopamine D3 receptors. Eur. J. Pharmacol. 249:R5–R6.

    Article  PubMed  CAS  Google Scholar 

  13. Monsma, F.J., Jr., McVittie, L.D., Gerfen, C.R., Mahan, L.C., & Sibley, D.R. (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature (Lond.) 342:926–929.

    Article  CAS  Google Scholar 

  14. Morelli, M., Mennini, T., & Di Chiara, G. (1988) Nigral dopamine autoreceptors are exclusively of the D2 type: Quantitative autoradiography of [125I]iodosulpiride and [125I]SCH23892 in adjacent brain sections. Neuroscience 27:865–870.

    Article  PubMed  CAS  Google Scholar 

  15. Nissbrandt, H., Ekman, A., Eriksson, E., & Heilig, M. (1995) Dopamine D3 receptor antisense influences dopamine synthesis in rat brain. Neuroreport 6:573–576.

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz, J.C., Giros B., Martres, M.P., Sokoloff, P. (1992) The dopamine receptor family: molecular biology and pharmacology. Seminars in The Neurosciences 4:99–108

    Article  Google Scholar 

  17. Sibley, D.R., & Monsma Jr., F.J. (1992) Molecular biology of dopamine receptors. Trends Pharmacol. Sci. 13:61–69.

    Article  PubMed  CAS  Google Scholar 

  18. Skirboll, L.R., Grace, A.A., & Bunney, B.S. (1979) Dopamine auto-and postsynaptic receptors: Electro-physiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82.

    Article  PubMed  CAS  Google Scholar 

  19. Sokoloff, P., Giros, B., Martres, M.-R, Bouthenet, M.-L., & Schwartz, J.-C. (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature (Lond.) 347:146–151.

    Article  CAS  Google Scholar 

  20. Starke, K., Gothert, M. & Kilbinger, H. (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 59:864–989.

    Google Scholar 

  21. Sun, B.-C., Creese, I., & Tepper, J.M. (1995) Electrophysiology of antisense knockout of D2 and D3 dopamine receptors in nigrostriatal dopamine neurons. Soc. Neurosci. Abstr. 21:1661.

    Google Scholar 

  22. Sun, B.-C., Martin, L.P., Creese, I., & Tepper, J.M. (1996) Functional roles of dopamine D2 autoreceptors in nigrostriatal neurons analyzed by antisense knockout in vivo. (submitted).

    Google Scholar 

  23. Tang, L., Todd, R.D., & O’Malley, K.L. (1994) Dopamine D2 and D3 receptors inhibit dopamine release. J. Pharmacol. Exp. Then 270:415–479.

    Google Scholar 

  24. Tepper, J.M., Groves, P.M., & Young, S.J. (1985) The neuropharmacology of the autoinhibition of monoamine release. Trends Pharmacol. Sci. 6:251–256.

    Article  CAS  Google Scholar 

  25. Tepper, J.M., Martin, L.R. & Anderson, D.R. (1995) GABAA receptor-mediated inhibition of nigrostriatal dopaminergic neurons by pars reticulata projection neurons. J. Neurosci. 5:3092–3103.

    Google Scholar 

  26. Tepper, J.M., Nakamura, S., Young, S.J., & Groves, P.M. (1984) Autoreceptor-mediated changes in dopaminergic terminal excitability: Effects of striatal drug infusions. Brain Res. 309:311–333.

    Google Scholar 

  27. Trent, F., & Tepper, J.M. (1991) Dorsal raphé stimulation modifies striatal-evoked antidromic invasion of nigral dopaminergic neurons in vivo. Exp. Brain Res. 84:620–630.

    Article  PubMed  CAS  Google Scholar 

  28. Wolf, M.E., & Roth, R.H. (1990) Autoreceptor regulation of dopamine synthesis. In: S. Kalsner and T.C. Westfall, (Eds.) Presynaptic Autoreceptors and the Question of the Autoregulation of Neurotransmitter Release. Ann. New York Acad. Sci. 604:323–343.

    Article  CAS  Google Scholar 

  29. Zhang, M., & Creese, I. (1993) Antisense oligodeoxynucleotide reduces brain dopamine D2 receptors: behavioral correlates. Neurosci. Lett. 161:223–226.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang, M., Ouagazzal, A., & Creese, I. (1996) Regulation of motor behavior by dopamine receptor subtypes: an antisense knockout approach. In: K. Neve and R. Neve (Eds.), The Dopamine Receptors, Humana Press, In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tepper, J.M., Sun, BC., Martin, L.P., Creese, I. (1996). Electrophysiological Consequences of D2 and/or D3 Receptor Knockout by Antisense Oligonucleotides in Nigrostriatal Dopaminergic Neurons. In: Ohye, C., Kimura, M., McKenzie, J.S. (eds) The Basal Ganglia V. Advances in Behavioral Biology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0194-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0194-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0196-5

  • Online ISBN: 978-1-4899-0194-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics