The Basal Ganglia V pp 119-122 | Cite as
The Role of Adenosine A2a Receptors in Regulating Gabaergic Synaptic Transmission in Striatal Medium Spiny Neurons
Abstract
There is growing evidence that adenosine is a potent inhibitor of neuronal activity in the central (CNS) and peripheral nervous systems. Four major subtypes of adenosine receptors, A1 A2a, A2b, and A3, have been characterized (see review by Abbracchio et al., 1993). Among them, only A1 receptors have been known to serve to modulate synaptic transmission in the mammalian CNS. In contrast to the widespread distribution of the A1 and A2b receptor in brain, A2a receptors appear to be confined to the striatum, nucleus accumbens and olfactory tubercle (Jarvis and Williams, 1989; Parkinson and Fredholm, 1990; Martinez-Mir et al., 1991).
Keywords
Medium Spiny Neuron Striatal Medium Spiny Neuron Receptor Selective Agonist GABAergic Synaptic Transmission IPSC AmplitudePreview
Unable to display preview. Download preview PDF.
References
- Abbraccino M.P., Flaminio C., Fredholm B.B., and Williams M. 1993, Purinoceptor nomenclature: a status report. Drug Dev. Res. 28: 207–213.CrossRefGoogle Scholar
- Ferre S., Rubio A., and Fuxe K. 1991, Stimulation of adenosine A2 receptors induces catalepsy. Neurosci. Lette. 130: 162–164CrossRefGoogle Scholar
- Gerfen C.R. 1992, The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Ann. Rev. Neurosci. 15: 285–320.PubMedCrossRefGoogle Scholar
- Jarvis M.F., and Williams M. 1989, Direct autoradiographic localization of adenosine A2 receptors in the rat brain using the A2-selective agonist, [3H]CGS21680. Eur. J. Pharmacol. 168: 243–246.PubMedCrossRefGoogle Scholar
- Jarvis M.F., Schulz R., Hutchison A.J., Do U.H., Sills M.A., and Williams M. 1989, [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J. Pharmacol. Exp. Then 251: 888–893.Google Scholar
- Kanda T., Shiozaki S., Shimada J., Suzuki F., and Nakamura J. 1994, KF17837: a novel selective adenosine A2a receptor antagonist with anticataleptic activity. Eur. J. Pharmacol. 256: 263–268.PubMedCrossRefGoogle Scholar
- Kita H. 1993, GABAergic circuits of the striatum. In: Progress in Brain Research 99 (Arbuthnott GW and Emson PC., ed.), p51-72, Elsevier Science Publishers B. V.Google Scholar
- Kirk I.P., and Richardson P.J. 1994, Adenosine A2a receptor-mediated modulation of striatal [3H]GABA and [3H]acetylcholine release. J. Neurochem. 62: 960–966.PubMedCrossRefGoogle Scholar
- Kurokawa M., Kirk I.P., Kirkpatrick K.A., Kase H., and Richardson P.J. 1994, Inhibition by KF17837 of adenosine A2A receptor-mediated modulation of striatal GABA and ACh release. Br. J. Pharmacol. 113: 43–48.PubMedCrossRefGoogle Scholar
- Martinez-Mir M.I., Probst A., and Palacios J.M. 1991, Adenosine A2 receptors: selective locariation in the human basal ganglia and alterations with disease. Neuroscience 42: 697–706.PubMedCrossRefGoogle Scholar
- Mori A., Takahashi T., Miyashita Y., and Kasai H. 1994, Two distinct glutamatergic synaptic inputs to striatal medium spiny neurones of neonatal rats and paired-pulse depression. J. Physiol (London). 476: 217–228.Google Scholar
- Mori A., Shindou T., Ichimura M., Nonaka H., and Kase H. The role of adenosine A2a receptors in regulating GABAergic synaptic transmission in striatal medium spiny neurons. J. Neuroscience. in press.Google Scholar
- Morelli M., Fenu S., Pinna A., and Di Chiara G, 1994, Adenosine A2 receptors interact negatively with dopamine D1 and D2 receptors in unilatereally 6-hydroxydopamine-lesioned rats. Eur. J. Pharmacol. 251:21–25.CrossRefGoogle Scholar
- Nonaka H., Ichimura M., Takeda M., Nonaka Y., Shimada J., Suzuki F., Yamaguchi K., and Kase H. 1994a, KF17837 ((E)-8-(3, 4-dimethoxystyryl)-1, 3-dipropyl-7-methylxanthine), a potent and selective adenosine A2 receptor antagonist. Eur. J. Pharmacol. 267: 335–341.PubMedCrossRefGoogle Scholar
- Nonaka H., Mori A., Ichimura M., Shindou T., Yanagawa K., Shimada J., and Kase H. 1994b, Binding of [3H]KF17837S, a selective adenosine A2 receptor antagonist, to rat brain membranes. Mol. Pharmacol. 46: 817–822.PubMedGoogle Scholar
- Parkinson F.E., and Fredholm B.B. 1990, Autoradiographic evidence for G-protein coupled A2-receptors in rat neostriatum using [3H]-CGS 21680 as a ligand. Naunyn Schmeidebergs Arch. Pharmac. 342: 85–89.Google Scholar
- Schiffmann S.N., Libert F., Vassart G., Dumont J.E., and Vanderhaeghen J.-J. 1990, A cloned G protein-coupled protein with a distribution restricted to striatal medium-sized neurons. Possible relationship with D1 dopamine receptor. Brain Res. 519: 333–337.PubMedCrossRefGoogle Scholar
- Schiffmann S.N., Jacobs O., and Vanderhaeghen J.-J. 1991a, Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: An in situ hybridization histochemistry=study. J. Neurochem. 57:1062–1067.PubMedCrossRefGoogle Scholar
- Schiffmann S.N., Libert F., Vassart G., and Vanderhaeghen J.-J. 1991b, Distribution of adenosine A2 receptor mRNA in the human brain. Neurosci. Lett. 130: 177–181.PubMedCrossRefGoogle Scholar
- Shindou T., Watanabe S., Kamata O., Yamamoto K., and Nakanishi H. 1994, Calucium-dependent hyperexcitability of hippocampal CAI pyramidal cells in an in vitro slice after ethanol withdrawal of the rats. Brain Res. 656: 432–436.PubMedCrossRefGoogle Scholar
- Vellucci S.V., Sirinathsinghji D.J.S., and Richardson P.J. 1993, Adenosine A2 receptor regulation of apomorphine-induced turning in rats with unilateral striatal dopamine denervation. Psychopharmacology 111: 383–388.PubMedCrossRefGoogle Scholar