The Thalamostriatal Projection System in Rodents

A Single-Axon Labeling Study
  • André Parent
  • Jacques Bourassa
  • Martin Deschênes
Part of the Advances in Behavioral Biology book series (ABBI, volume 47)


The thalamostriatal projection arises principally from the intralaminar nuclei and, less abundantly from the midline nuclei and certain specific relay or association nuclei, such as the ventral anterior, ventral lateral, lateral posterior, mediodorsal and pulvinar (Beckstead, 1984; Royce, 1987; Groenewegen, 1994). Among the intralaminar nuclei, the centromedian and parafascicular (CM/Pf) complex is the most prominent source of input to the striatum and information on the organization of the thalamostriatal projection derives largely from studies of the efferent projections of this complex (Royce, 1987; Sadikot et al., 1992). Thalamostriatal fibers are topographically organized, terminate in a patchy manner, make asymmetric synapses principally upon distal parts of dendrites of medium spiny projection neurons, and most likely use glutamate as excitatory transmitter (see review by Parent and Hazrati, 1995).


Globus Pallidus Thalamic Nucleus Subthalamic Nucleus Thalamic Neuron Thalamic Reticular Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beckstead, R.M., 1984, The thalamostriatal projection in the cat, J. Comp. Neurol., 223: 313–346.PubMedCrossRefGoogle Scholar
  2. Côté, P.-Y., Sadikot, A.F., and Parent, A., 1991, Complementary distribution of calbindin-D28K and parval-bumin in the basal forebrain and midbrain of primates. Eur. J. Neurosci., 3: 1316–1329.PubMedCrossRefGoogle Scholar
  3. Deschênes, M., Bourassa, J., and Parent, A., 1995, Two different types of thalamic fibers innervate the striatum, Brain Res. (in press).Google Scholar
  4. Deschênes, M, Bourassa, J., Van Diep, D., and Parent, A., 1996, A single-cell study of the axonal projections arising from the parafascicular and ethmoid nuclei in the rat, Eur. J. Neurosci. 8:329–343.PubMedCrossRefGoogle Scholar
  5. Féger, J., Bevan, M., and Crossman, A. R., 1994, The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: A comparison with the corticostriatal and corticosubthalamic afferents in a retrograde fluorescent double-labelling study, Neuroscience, 60: 125–132.PubMedCrossRefGoogle Scholar
  6. Groenewegen, H. J. and Berendse, H.W., 1994, The specificity of the nonspecific midline and intralaminar thalamic nuclei, Trends in Neurosci., 17: 52–57.CrossRefGoogle Scholar
  7. Hazlett, J.C., Dutta, C.R., and Fox, C.A., 1976, The neurons in the centromedian-parafascicular complex of the monkey (Macaca mulatta): a Golgi study, J. Comp. Neurol., 168: 41–74.PubMedCrossRefGoogle Scholar
  8. Jahnsen, H. and Llinás, R., 1984, Electrophysiological properties of guinea pig thalamic neurones: an in vitro study, J. Physiol. (Lond.), 349: 205–226.Google Scholar
  9. Jinnai, K. and Matsuda, Y., 1981, Thalamocaudate projection neurons with a branching axon to the cerebral motor cortex, Neurosci. Lett., 26: 95–99.PubMedCrossRefGoogle Scholar
  10. Jones, E.G., 1985, The Thalamus, Plenum Press, New York.CrossRefGoogle Scholar
  11. Parent, A. and Hazrati, L.-N., 1995, Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop, Brain Res. Rev., 20: 91–127.PubMedCrossRefGoogle Scholar
  12. Paxinos, G. and Watson, C., 1986, The Rat Brain in Stereotaxic Coordinates, 2nd ed., Academic Press, Sydney.Google Scholar
  13. Pinault, D., 1994, Golgi-like labeling of a single neuron recorded extracellularly, Neurosci. Lett., 170: 255–260.PubMedCrossRefGoogle Scholar
  14. Royce, G.J., 1987, Recent research on the centromedian and parafascicular nuclei, in: The Basal Ganglia II, (M.B. Carpenter and A. Jayaraman, eds.), Plenum Press, New York, pp. 293–319.CrossRefGoogle Scholar
  15. Sadikot, A.F., Parent, A., and Franêois, C., 1992, Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections, J. Comp. Neurol., 315: 137–159.PubMedCrossRefGoogle Scholar
  16. Scheibel, M.E. and Scheibel, A.B., 1967, Structural organization of non-specific thalamic nuclei and their projection toward cortex, Brain Res., 6: 60–94.PubMedCrossRefGoogle Scholar
  17. Steriade, M. and Glenn, L.L., 1982, Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core, J. Neurophysiol., 48: 352–371.PubMedGoogle Scholar
  18. Tseng, G. and Royce, G.J., 1986, A Golgi and ultrastructural analysis of the centromedian nucleus of the cat, J. Comp. Neurol., 245: 359–378.PubMedCrossRefGoogle Scholar
  19. von Kölliker, A., 1896, Handbuch der Gewebelehre des Menschen, 6th ed., Vol. 2, Engelmann, Leipzig.Google Scholar
  20. Yamamoto, T., Noda, T., Samejima, A., and Oka, H., 1988, Electrophysiological and morphological features of thalamic neurons with special reference to the cerebellar and pallidal inputs, in: Cellular Thalamic Mechanisms, (M. Bentivoglio and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 239–260.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • André Parent
    • 1
  • Jacques Bourassa
    • 1
  • Martin Deschênes
    • 1
  1. 1.Centre de Recherche en NeurobiologieHôpital de l’Enfant-JésusQuébecCanada

Personalised recommendations