Phenotype and Function of T Cells in HIV Disease

  • Janis V. Giorgi


Phenotype refers to the unique collection of antigens expressed on the surface of a cell. For clinical and research purposes, phenotypic analyses on lymphocytes are typically done using flow cytometry on peripheral blood and can be done on lymphoid tissue. Flow cytometric measurements utilize monoclonal antibodies (mAb) against cell surface differentiation antigens to enumerate lymphocyte subsets that have distinct functional activities, lineages, and maturational states (Giorgi, 1992b; Giorgi et al., 1992). Major lymphocyte subtypes (CD4+ T, CD8+ T, natural killer, and B cells) as well as subsets of these populations can be discriminated.

Cell surface molecules recognized by mAb include those that react with maturation or activation antigens or receptors for cytokines. The close correlation of lymphocyte phenotype with function and differentiation state results from the fact that many cell surface molecules play a role in specific lymphocyte functions such as antigen recognition, lysis of virus-infected cells, and immune regulation. Lymphocyte function can be measured in vitro in assays designed to detect these activities.

Each lymphocyte subset has distinct functions that are reflected in its phenotype. In the past, most of our knowledge about which immune functions were mediated by phenotypically identified lymphocyte subsets came from studies on healthy control donors. Investigations of HIV infection have provided a unique opportunity to identify which cells produce cytokines or mediate effector functions in vivo during antigen stimulation. Consequently, insight into the association between lymphocyte function and cell surface marker expression has been extended significantly.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Human Immunodeficiency Virus Infection Acquire Immune Deficiency Syndrome Lymphocyte Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adleman, L. M., and Wofsy, D., 1993, T-cell homeostasis: Implications in HIV infection, J. AIDS 6:144–152.Google Scholar
  2. Autran, B., and Giorgi, J. V., 1992, Activated CD8+ cells in HIV-related diseases, in: Immunodeficiency in HIV Infection and AIDS (G. Janossy, B. Autran, and F. Miedema, eds.), Karger, Basel, pp. 171–184.Google Scholar
  3. Banda, N. K., Bernier, J., Kurahara, D. K., Kurrle, R., Haigwood, N., Sekaly, R.-R, and Finkel, T. H., 1992, Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis, J. Exp. Med. 176:1099–1106.PubMedCrossRefGoogle Scholar
  4. Bensussan, A., Rabian, C., Schiavon, V., Bengoufa, D., Leca, G., and Boumsell, L., 1993, Significant enlargement of a specific subset of CD3+CD8+ peripheral blood leukocytes mediating cytotoxic T-lymphocyte activity during human immunodeficiency virus infection, Proc. Natl. Acad. Sci. USA 90:9427–9430.PubMedCrossRefGoogle Scholar
  5. Bettens, F., Pichler, C. E., Herrmann, B., De Weck, A. L., and Pichler, W. J., 1991, Selective stimulation of CD4+ versus CD8+ T-cell subsets in symptomatic and asymptomatic HIV-1-infected individuals, AIDS Res. Hum. Retrovir. 7:773–780.PubMedCrossRefGoogle Scholar
  6. Bofill, M., Gombert, W., Borthwick, N. J., Akbar, A. N., McLaughlin, J. E., Lee, C. A., Johnson, M. A., Pinching, A. J., and Janossy, G., 1995, Presence of CD3+CD8+Bcl-2low lymphocytes undergoing apoptosis and activated macrophages in lymph nodes of HIV-1+ patients, Am. J. Pathol. 146:1542–1555.PubMedGoogle Scholar
  7. Bogner, J. R., Matuschke, A., Heinrich, B., Schreiber, M. A., Nerl, C., and Goebel, F., 1990, Expansion of activated T lymphocytes (CD3+HLA/DR+) detectable in early stages of HIV-1 infection, Klin. Wochenschr. 68:393–396.PubMedCrossRefGoogle Scholar
  8. Borthwick, N. J., Bofill, M., Gombert, W. M., Akbar, A. N., Medina, E., Sagawa, K., Lipman, M. C., Johnson, M. A., and Janossy, G., 1994, Lymphocyte activation in HIV-1 infection. II. Functional defects of CD28 T cells, AIDS 8:431–441.PubMedCrossRefGoogle Scholar
  9. Brinchmann, J. E., Dobloug, J. H., Heger, B. H., Haaheim, L. L., Sannes, M., and Egeland, T., 1994, Expression of costimulatory molecule CD28 on T cells in human immunodeficiency virus type 1 infection: Functional and clinical correlations, J. Infect. Dis. 169:730–738.PubMedCrossRefGoogle Scholar
  10. Camerini, D., James, S. P., Stamenkovic, I., and Seed, B., 1989, Leu-8/TQ1 is the human equivalent of the Mel-14 lymph node homing receptor, Nature 342:78–82.PubMedCrossRefGoogle Scholar
  11. Carmichael, A., Jin, X., Sissons, P., and Borysiewicz, L., 1993, Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: Differential CTL responses to HIV-1 and Epstein-Barr virus in late disease, J. Exp. Med. 177:249–256.PubMedCrossRefGoogle Scholar
  12. Caruso, A., Cantalamessa, A., Licenziati, S., Peroni, L., Prati, E., Martinelli, F., Canaris, A. D., Folghera, S., Gorla, R., Balsari, A., Cattaneo, R., and Turano, A., 1994, Expression of CD28 on CD8+ and CD4+ lymphocytes during HIV infection. Scand. J. Immunol. 40:485–490.PubMedCrossRefGoogle Scholar
  13. Cayota, A., Vuillier, F., Siciliano, J., and Dighiero, G., 1994, Defective protein tyrosine phosphorylation and altered levels of p59fyn and p56lck in CD4 T cells from HIV-1 infected patients, Int. Immunol. 6:611–621.PubMedCrossRefGoogle Scholar
  14. Centers for Disease Control and Prevention, 1992, 1993 Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults, MMWR 41(No. RR-17):1–19.Google Scholar
  15. Centers for Disease Control and Prevention, 1994, 1994 Revised guidelines for the performance of CD4+ T-cell determinations in persons with human immunodeficiency virus (HIV) infections, MMWR 43(No. RR-3):1–21.Google Scholar
  16. Chou, C.-C., Gudeman, V., O’Rourke, S., Isacescu, V., Detels, R., Williams, G. J., Mitsuyasu, R. T., and Giorgi, J. V., 1994, Phenotypically defined memory CD4+ cells are not selectively decreased in chronic HIV disease, J. AIDS 7:665–675.Google Scholar
  17. Clerici, M., Stocks, N. I., Zajac, R. A., Boswell, R. N., Bernstein, D. C., Mann, D. L., Shearer, G. M., and Berzofsky, J. A., 1989a, Interleukin-2 production used to detect antigenic peptide recognition by T-helper lymphocytes from asymptomatic HIV-seropositive individuals, Nature 339:383–385.PubMedCrossRefGoogle Scholar
  18. Clerici, M., Stocks, N. E., Zajac, R. A., Boswell, R. N., Lucey, D. R., Via, C. S., and Shearer, G. M., 1989b, Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients: Independence of CD4+ cell numbers and clinical staging, J. Clin. Invest. 84:1892–1899.PubMedCrossRefGoogle Scholar
  19. Dolan, M. J., Clerici, M., Blatt, S. P., Hendrix, C. W., Melcher, G. P., Boswell, R. N., Freeman, T. M., Ward, W., Hensley, R., and Shearer, G. M., 1995, In vitro T cell function, delayed-type hypersensitivity skin testing, and CD4+ T cell subset phenotyping independently predict survival time in patients infected with human immunodeficiency virus, J. Infect. Dis. 172:79–87.PubMedCrossRefGoogle Scholar
  20. Eyster, M. E., Gail, M. H., Ballard, J. O., Al-Mondhiry, H., and Goedert, J. J., 1987, Natural history of human immunodeficiency virus infections in hemophiliacs: Effects of T-cell subsets, platelet counts, and age, Ann. Intern. Med. 107:1–6.PubMedCrossRefGoogle Scholar
  21. Fahey, J. L., Prince, H., Weaver, M., Groopman, J., Visscher, B., Schwartz, K., and Detels, R., 1984, Quantitative changes in T helper or T suppressor/cytotoxic lymphocyte subsets that distinguish acquired immune deficiency syndrome from other immune subset disorders, Am. J. Med. 76:95–100.PubMedCrossRefGoogle Scholar
  22. Fan, J., Bass, H. Z., and Fahey, J. L., 1993, Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection, J. Immunol. 151:5031–5040.PubMedGoogle Scholar
  23. Ferbas, J., Kaplan, A. H., Hausner, M. A., Hultin, L. E., Matud, J. L., Liu, Z., Panicali, D. L., Ho, H.-N., Detels, R., and Giorgi, J. V., 1995, Viral burden in HIV-infected long-term survivors is a determinant of anti-HIV CD8+ lymphocyte activity, J. Infect. Dis. 172:329–339.PubMedCrossRefGoogle Scholar
  24. Fraser, J. D., Irving, B. A., Crabtree, G. R., and Weiss, A., 1991, Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28, Science 251:313–316.PubMedCrossRefGoogle Scholar
  25. Giorgi, J. V., 1992a, CD4 counts in relation to markers of immune activation, in: Immunodeficiency in HIV Infection and AIDS (G. Janossy, B. Autran, and F. Miedema, eds.), Karger, Basel, pp. 1–17.Google Scholar
  26. Giorgi, J. V., 1992b, Introduction to Section on Immune Cell Phenotyping by Flow Cytometry, in: Manual of Clinical Laboratory Immunology (N. R. Rose, E. C. deMacario, J. L. Fahey, H. Friedman, and G. M. Penn, eds.), American Society of Microbiology, Washington, DC., pp. 156.Google Scholar
  27. Giorgi, J. V., and Detels, R., 1989, T-cell subset alterations in HIV-infected homosexual men: NIAID Multicenter AIDS Cohort Study, Clin. Immunol. Immunopathol. 52:10–18.PubMedCrossRefGoogle Scholar
  28. Giorgi, J. V., and Janossy, G., 1994, Flow cytometry studies in HIV disease: Relevance to AIDS vaccine development, AIDS 8:s183–s193.CrossRefGoogle Scholar
  29. Giorgi, J. V., Fahey, J. L., Smith, D. C., Hultin, L. E., Cheng, H.-L., Mitsuyasu, R. T., and Detels, R., 1987a, Early effects of HIV on CD4 lymphocytes in vivo, J. Immunol. 138:3725–3730.PubMedGoogle Scholar
  30. Giorgi, J. V., Nishanian, P. G., Schmid, I., Hultin, L. E., Cheng, H.-L., and Detels, R., 1987b, Selective alterations in immunoregulatory lymphocyte subsets in early HIV (human T-lymphotropic virus type III/lymphadenopathy-associated virus) infection, J. Clin. Immunol. 7:140–150.PubMedCrossRefGoogle Scholar
  31. Giorgi, J. V., Kesson, A. M., and Chou, C. C., 1992, Immunodeficiency and infectious diseases, in: Manual of Clinical Laboratory Immunology (N. R. Rose, E. C. deMacario, J. L. Fahey, H. Friedman, and G. M. Penn, eds.), American Society of Microbiology, Washington, DC., pp. 174–181.Google Scholar
  32. Giorgi, J. V., Liu, Z., Hultin, L. E., Cumberland, W. G., Hennessey, K., and Detels, R., 1993, Elevated levels of CD38+CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: Results of 6 years of follow-up, J. AIDS 6:904–912.Google Scholar
  33. Giorgi, J. V., Ho, H.-N., Hirji, K., Chou, C.-C., Hultin, L. E., O’Rourke, S., Park, L., Margolick, J. B., Ferbas, J., Phair, J. P., and the Multicenter AIDS Cohort Study, 1994, CD8+ lymphocyte activation at HIV-1 seroconversion: Development of HLA-DR+CD38CD8+ cells is associated with subsequent stable CD4+ cell levels, J. Infect. Dis. 170:775–781.PubMedCrossRefGoogle Scholar
  34. Giorgi, J. V., Boumsell, L., and Autran, B., 1995, Reactivity of workshop T-cell section mAb with circulating CD4+ and CD8+ T cells in HIV disease and following in vitro activation, in: Leucocyte Typing V: White Cell Differentiation Antigens (S. F. Schlossman, L. Boumsell, W Gilks, J. M. Harlan, T. Kishimoto, C. Morimoto, J. Ritz, S. Shaw, R. Silverstein, T. Springer, T. F. Tedder, and R. F. Todd, eds.), Oxford University Press, London, pp. 446–461.Google Scholar
  35. Gougeon, M. L., Garcia, S., Heeney, J., Tschopp, R., Lecoeur, H., Guetard, D., Rame, V., Dauguet, C., and Montagnier, L., 1993, Programmed cell death in AIDS-related HIV and SIV infections, AIDS Res. Hum. Retrovir. 9:553–563.PubMedCrossRefGoogle Scholar
  36. Groux, H., Torpier, G., Monté, D., Mouton, Y., Capron, A., and Ameisen, J. C., 1992, Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals, J. Exp. Med. 175:331–340.PubMedCrossRefGoogle Scholar
  37. Gruters, R. A., Terpstra, F. G., De Jong, R., Van Noesel, C. J. M., Van Lier, R. A. W., and Miedema, F., 1990, Selective loss of T cell functions in different stages of HIV infection: Early loss of anti-CD3-induced T cell proliferation followed by decreased anti-CD3-induced cytotoxic T lymphocyte generation in AIDS-related complex and AIDS, Eur. J. Immunol. 20:1039–1044.PubMedCrossRefGoogle Scholar
  38. Gupta, S., 1986, Study of activated T cells in man. II. Interleukin 2 receptor and transferrin receptor expression on T cells and production of interleukin 2 in patients with acquired immune deficiency syndrome (AIDS) and AIDS-related complex, Clin. Immunol. Immunopathol. 38:93–100.PubMedCrossRefGoogle Scholar
  39. Gupta, S., 1987, Subpopulations of CD4+ (T4+) cells in homosexual/bisexual men with persistent generalized lymphadenopathy, Clin. Exp. Immunol. 68:1–4.PubMedGoogle Scholar
  40. Gupta, S., 1993, Signal transduction defect in the acquired immunodeficiency syndrome and AIDS related complex, Thymus 22:83–90.PubMedGoogle Scholar
  41. Gupta, S., and Safai, B., 1983, Deficient autologous mixed lymphocyte reaction in Kaposi’s sarcoma associated with deficiency of Leu-3+ responder T cells, J. Clin. Invest. 71:296–300.PubMedCrossRefGoogle Scholar
  42. Hannet, I., Erkeller-Yuksel, E., Lydyard, P., Deneys, V., and DeBruyére, M., 1992, Developmental and maturational changes in human blood lymphocyte subpopulations, Immunol. Today 13:215–218.PubMedCrossRefGoogle Scholar
  43. Hercend, T., Ritz, J., Schlossman, S. F., and Reinherz, E. L., 1981, Comparative expression of T9, T10, and Ia antigens on activated human T cell subsets, Hum. Immunol. 3:247–259.PubMedCrossRefGoogle Scholar
  44. Ho, H.-N., Hultin, L. E., Mitsuyasu, R. T., Matud, J. L., Hausner, M. A., Bockstoce, D., Chou, C.-C., O’Rourke, S., Taylor, J. M. G., and Giorgi, J. V., 1993, Circulating HIV-specific CD8+ cytotoxic T cells express CD38 and HLA-DR antigens, J. Immunol. 150:3070–3079.PubMedGoogle Scholar
  45. Hofmann, B., Nishanian, P., Baldwin, R. L., Insixiengmay, P., Nel, A., and Fahey, J. L., 1990, HIV inhibits the early steps of lymphocyte activation, including initiation of inositol phospholipid metabolism, J. Immunol. 145:3699–3705.PubMedGoogle Scholar
  46. Hofmann, B., Nishanian, P., Fahey, J. L., Esmail, I., Jackson, A. L., Detels, R., and Cumberland, W., 1991, Serum increases and lymphoid cell surface losses of IL-2 receptor CD25 in HIV infection: Distinctive parameters of HIV-induced change, Clin. Immunol. Immunopathol. 61:212–224.PubMedCrossRefGoogle Scholar
  47. Janossy, G., Borthwick, N., Lomnitzer, R., Medina, E., Squire, S. B., Phillips, A. N., Lipman, M., Johnson, M. A., Lee, C., and Bofill, M., 1993, Lymphocyte activation in HIV-1 infection. I. Predominant proliferative defects among CD45RO+ cells of the CD4 and CD8 lineages, AIDS 7:613–624.PubMedCrossRefGoogle Scholar
  48. Jung, L. K. L., Fu, S. M., Hara, T., Kapoor, N., and Good, R. A., 1986, Defective expression of T cell-associated glycoprotein in severe combined immunodeficiency, J. Clin. Invest. 77:940–946.PubMedCrossRefGoogle Scholar
  49. Jung, T., Schauer, U., Heusser, C., Neumann, C., and Rieger, C., 1993, Detection of intracellular cytokines by flow cytometry, J. Immunol. Methods 159:197–207.PubMedCrossRefGoogle Scholar
  50. Kalams, S. A., Johnson, R. P., Trocha, A. K., Dynan, M. J., Ngo, H. S., D’Aquila, R. T., Kurnick, J. T., and Walker, B. D., 1994, Longitudinal analysis of T cell receptor (TCR) gene usage by human immunodeficiency virus 1 envelope-specific cytotoxic T lymphocyte clones reveals a limited TCR repertoire, J. Exp. Med. 179:1261–1271.PubMedCrossRefGoogle Scholar
  51. Kestens, L., Vanham, G., Gigase, P., Young, G., Hannet, I., Vanlangendonck, F., Hulstaert, F., and Bach, B. A., 1992, Expression of activation antigens, HLA-DR and CD38, on CD8 lymphocytes during HIV-1 infections, AIDS 6:793–797.PubMedCrossRefGoogle Scholar
  52. Kestens, L., Vanham, G., Vereecken, C., Vandenbruaene, M., Vercauteren, G., Colebunders, R. L., and Gigase, P. L., 1994, Selective increase of activation antigens HLA-DR and CD38 on CD4+CD45RO+ T lymphocytes during HIV-1 infection, Clin. Exp. Immunol. 95:436–441.PubMedCrossRefGoogle Scholar
  53. Koup, R. A., Safrit, J. T., Cao, Y., Andrews, C. A., McLeod, G., Borkowsky, W., Farthing, C., and Ho, D. D., 1994, Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome, J. Virol. 68:4650–4655.PubMedGoogle Scholar
  54. Kumagai, M.-A., Coustan-Smith, E., Murray, D. J., Silvennoinen, O., Murti, K. G., Evans, W. E., Malavasi, F., and Campana, D., 1995, Ligation of CD38 suppresses human B lymphopoiesis, J. Exp. Med. 181:1101–1110.PubMedCrossRefGoogle Scholar
  55. Landay, A. L., Mackewicz, C. E., and Levy, J. A., 1993, An activated CD4+ T cell phenotype correlates with anti-HIV activity and asymptomatic clinical status, Clin. Immunol. Immunopathol. 69:106–116.PubMedCrossRefGoogle Scholar
  56. Lane, H. C., Depper, J. M., Greene, W. C., Whalen, G., Waldmann, T. A., and Fauci, A. S., 1985, Qualitative analysis of immune function in patients with the acquired immunodeficiency syndrome: Evidence for a selective defect in soluble antigen recognition, N. Engl. J. Med. 313:79–84.PubMedCrossRefGoogle Scholar
  57. Lees, O., Ramzaoui, S., Gilbert, D., Borsa, F., Humbert, G., Leblanc, D., Lagarde, M., and Tron, F., 1993, The impaired in vitro production of interleukin-2 in HIV infection is negatively correlated to the number of circulating CD4+DR+ T cells and is reversed by allowing T cells to rest in culture: Arguments for in vivo CD4+ T cell activation, Clin. Immunol. Immunopathol. 67:185–191.PubMedCrossRefGoogle Scholar
  58. Legac, E., Autran, B., Merle-Beral, H., Katlama, C., and Debré, P., 1992, CD4+CD7CD57+ T cells: A new T-lymphocyte subset expanded during human immunodeficiency virus infection, Blood 79:1746–1753.PubMedGoogle Scholar
  59. Levacher, M., Hulstaert, E., Tallet, S., Ullery, S., Pocidalo, J. J., and Bach, B. A., 1992, The significance of activation markers on CD8 lymphocytes in human immunodeficiency syndrome: Staging and prognostic value, Clin. Exp. Immunol. 90:376–382.PubMedCrossRefGoogle Scholar
  60. Lewis, D. E., Tang, D. S. N., Adu-Oppong, A., Schober, W., and Rodgers, J. R., 1994, Anergy and apoptosis in CD8+ T cells from HIV-infected person, J. Immunol. 153:412–420.PubMedGoogle Scholar
  61. Linsley, P. S., and Ledbetter, J. A., 1993, The role of the CD28 receptor during T cell responses to antigen, Annu. Rev. Immunol. 11:191–212.PubMedCrossRefGoogle Scholar
  62. Litton, M. J., Sander, B., Murphy, E., O’Garra, A. O., and Abrams, J. S., 1994, Early expression of cytokines in lymph nodes after treatment in vivo with Staphylococcus enterotoxin B, J. Immunol. Methods 175:47–58.PubMedCrossRefGoogle Scholar
  63. Liu, Z., Hultin, L. E., Cumberland, W. G., Hultin, P., Schmid, I., Matud, J. L., Detels, R., and Giorgi, J. V., 1996, Elevated relative fluorescence intensity of CD38 antigen expression on CD8+ T cells is a marker of poor prognosis in HIV infection: Results of 6 years of follow-up, Cytometry (Commun. Clin. Cytometry) 26:1–7.CrossRefGoogle Scholar
  64. McCloskey, T. W., Oyaizu, N., Kaplan, M., and Pahwa, S., 1995, Expression of the Fas antigen in patients infected with human immunodeficiency virus, Cytometry 22:111–114.PubMedCrossRefGoogle Scholar
  65. McGarry, R. C., Helfand, S. L., Quarles, R. H., and Roder, J. C., 1983, Recognition of myelin-associated glycoprotein by the monoclonal antibody HNK-1, Nature 306:376–378.PubMedCrossRefGoogle Scholar
  66. Mackewicz, C. E., Ortega, H. W., and Levy, J. A., 1991, CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual, J. Clin. Invest. 87:1462–1466.PubMedCrossRefGoogle Scholar
  67. McMichael, A. J., and Walker, B. D., 1994, Cytotoxic T lymphocyte epitopes: Implications for HIV vaccines, AIDS 8:S155–S173.Google Scholar
  68. Malavasi, F., Funaro, A., Roggero, S., Horenstein, A., Calosso, L., and Mehta, K., 1994, Human CD38: A glycoprotein in search of a function, Immunol. Today 15:95–97.PubMedCrossRefGoogle Scholar
  69. Margolick, J. B., Volkman, D. J., Folks, T. M., and Fauci, A. S., 1987, Amplification of HTLV-III/LAV infection by antigen-induced activation of T cells and direct suppression by virus of lymphocyte blastogenic responses, J. Immunol. 138:1719–1723.PubMedGoogle Scholar
  70. Margolick, J. B., Donnenberg, A. D., Munoz, A., Park, L. P., Bauer, K. D., Giorgi, J. V., Ferbas, J., Saah, A. J., and the Multicenter AIDS Cohort Study, 1993, Changes in T and non-T lymphocyte subsets following seroconversion to HIV-1: Stable CD3+ and declining CD3-populations suggest regulatory responses linked to loss of CD4 lymphocytes, J.AIDS 6:153–161.Google Scholar
  71. Margolick, J. B., Munoz, A., Donnenberg, A. D., Park, L. P., Galai, N., Giorgi, J. V., O’Gorman, M. R. G., Ferbas, J., and the Multicenter AIDS Cohort Study, 1995, Failure of T-cell homeostasis preceeding AIDS in HIV-1 infection, Nature Med. 1:674–680.PubMedCrossRefGoogle Scholar
  72. Martinez-Maza, O., Mitsuyasu, R. T., Miles, S. A., Giorgi, J. V., Heitjan, D. F., Sherwin, S. A., and Fahey, J. L., 1989, 7-interferon-induced monocyte major histocompatibility complex class II antigen expression in individuals with acquired immune deficiency syndrome, Cell. Immunol. 123:316–324.PubMedCrossRefGoogle Scholar
  73. Merkenschlager, M., Terry, L., Edwards, R., and Beverley, P. C. L., 1988, Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: Implications for differential CD45 expression in T cell memory formation, Eur. J. Immunol 18:1653–1661.PubMedCrossRefGoogle Scholar
  74. Meyaard, L., Otto, S. A., Jonker, R. R., Mijnster, M. J., Keet, R. P. M., and Miedema, F., 1992, Programmed death of T cells in HIV-1 infection, Science 257:217–219.PubMedCrossRefGoogle Scholar
  75. Miedema, E., Petit, A. J. C., Terpstra, F. G., Schattenkerk, J. K. M. E., De Wolf, F., Al, B. J. M., Roos, M., Lange, J. M. A., Danner, S. A., Goudsmit, J., and Schellekens, P. T. A., 1988, Immunological abnormalities in human immunodeficiency virus (HIV)-infected asymptomatic homosexual men: HIV affects the immune system before CD4+ T helper cell depletion occurs, J. Clin. Invest. 82:1908–1914.PubMedCrossRefGoogle Scholar
  76. Mittler, R. S., Rao, P. E., Talle, M. A., Look, R., and Goldstein, G., 1983, Cell membrane perturbation of resting T cells and thymocytes causes display of activation antigens, J. Exp. Med. 158:99–111.PubMedCrossRefGoogle Scholar
  77. Morimoto, C., Letvin, N. L., Boyd, A. W., Hagan, M., Brown, H. M., Kornacki, M. M., and Schlossman, S. F., 1985, The isolation and characterization of the human helper inducer T cell subset, J. Immunol. 134:3762–3769.PubMedGoogle Scholar
  78. Morimoto, C., Rudd, C. E., Letvin, N. L., and Schlossman, S. F., 1987, A novel epitope of the LFA-1 antigen which can distinguish killer effector and suppressor effector cells in human CD8 cells, Nature 330:479–480.PubMedCrossRefGoogle Scholar
  79. Nicholson, J. K. A., McDougal, J. S., Spira, T. J., Cross, G. D., Jones, B. M., and Reinherz, E. L., 1984, Immunoregulatory subsets of the T helper and T suppressor cell populations in homosexual men with chronic unexplained lymphadenopathy, J. Clin. Invest. 73:191–201.PubMedCrossRefGoogle Scholar
  80. O’Brien, W. A., Grovit-Ferbas, K., Namazi, A., Ovcak-Derzic, S., Wang, H. J., Park, J., Yeramian, C., Mao, S. H., and Zack, J. A., 1995, Human immunodeficiency virus-type 1 replication can be increased in peripheral blood of seropositive patients after influenza vaccination, Blood 86:1082–1089.PubMedGoogle Scholar
  81. Pantaleo, G., De Maria, A., Koenig, S., Butini, L., Moss, B., Baseler, M., Lane, H. C., and Fauci, A. S., 1990a, CD8+ T lymphocytes of patients with AIDS maintain normal broad cytolytic function despite the loss of human immunodeficiency virus-specific cytotoxicity, Proc. Natl. Acad. Sci. USA 87:4818–4822.PubMedCrossRefGoogle Scholar
  82. Pantaleo, G., Koenig, S., Baseler, M., Lane, H. C., and Fauci, A. S., 1990b, Defective clonogenic potential of CD8+ T lymphocytes in patients with AIDS: Expansion in vivo of a nonclonogenic CD3+CD8+DR+CD25 T cell population, 144:1696–1704.Google Scholar
  83. Pantaleo, G., Demarest, J. F., Soudeyns, H., Graziosi, C., Denis, F., Adelsberger, J. W., Borrow, P., Saag, M. S., Shaw, G. M., Sekaly, R. P., and Fauci, A. S., 1994, Major expansion of CD8+ T cells with a predominant Vβ usage during the primary immune response to HIV, Nature 370:463–467.PubMedCrossRefGoogle Scholar
  84. Phillips, A. N., Lee, C. A., Elford, J., Janossy, G., Timms, A., Bofill, M., and Kernoff, P. B. A., 1991, Serial CD4 lymphocyte counts and development of AIDS, Lancet 337:389–392.PubMedCrossRefGoogle Scholar
  85. Prince, H. E., and Czaplicki, C. D., 1989, Preferential loss of Leu 8, CD45R, HLA-DR+ CD8 cell subsets during in vitro culture of mononuclear cells from human immunodeficiency virus type I (HIV)-seropositive former blood donors, J. Clin. Immunol. 9:421–428.PubMedCrossRefGoogle Scholar
  86. Prince, H. E., and Jensen, E. R., 1991a, Three-color cytofluorometric analysis of CD8 cell subsets in HIV-1 infection, J. AIDS 4:1227–1232.Google Scholar
  87. Prince, H. E., and Jensen, E. R., 1991b, HIV-related alterations in CD8 cell subsets defined by in vitro survival characteristics, Cell. Immunol. 134:276–286.PubMedCrossRefGoogle Scholar
  88. Prince, H. E., Kleinman, S., Czaplicki, C., John, J., and Williams, A. E., 1990, Interrelationships between serologic markers of immune activation and T lymphocyte subsets in HIV infection, J. AIDS 3:525–530.Google Scholar
  89. Rabin, R. L., Roederer, M., Maldonado, Y., Petru, A., Herzenberg, L. A., and Herzenberg, L. A., 1995, Altered representation of naive and memory CD8 T cell subsets in HIV-infected children, J. Clin. Invest. 95:2054–2060.PubMedCrossRefGoogle Scholar
  90. Ramzaoui, S., Jouen-Beades, F., Michot, F., Borsa-Lebas, F., Humbert, G., and Tron, F., 1995, Comparison of activation marker and TCR Vβ gene product expression by CD4+ and CD8+ T cells in peripheral blood and lymph nodes from HIV-infected patients, Clin. Exp. Immunol. 99:182–188.PubMedCrossRefGoogle Scholar
  91. Reddy, M. M., and Grieco, M. H., 1991, Quantitative changes in T helper inducer (CD4+ CD45RA), T suppressor inducer (CD4+ CD45RA+), T suppressor (CD8+ CD11b+), and T cytotoxic (CD8+ CD11b) subsets in human immunodeficiency virus infection, J. Clin. Lab. Anal. 5:96–100.PubMedCrossRefGoogle Scholar
  92. Rocha, B., Grandien, A., and Freitas, A. A., 1995, Anergy and exhaustion are independent mechanisms of peripheral T cell tolerance, J. Exp. Med. 181:993–1003.PubMedCrossRefGoogle Scholar
  93. Roederer, M., Staal, F. J. T., Osada, H., Herzenberg, L. A., and Herzenberg, L. A., 1991, CD4 and CD8 T cells with high intracellular glutathione levels are selectively lost as the HIV infection progresses, Int. Immunol. 3:933–937.PubMedCrossRefGoogle Scholar
  94. Roederer, M., Dubs, J. G., Anderson, M. T., Raju, P. A., and Herzenberg, L. A., 1995, CD8 naive T cell counts decrease progressively in HIV-infected adults, J. Clin. Invest. 95:2061–2066.PubMedCrossRefGoogle Scholar
  95. Rosenberg, Y. J., Zack, P. M., White, B. D., Papermaster, S. F., and Lewis, M. G., 1993, Decline in the CD4+ lymphocyte population in the blood of SIV-infected macaques is not reflected in lymph nodes, AIDS Res. Hum. Retrovir. 9:639–646.PubMedCrossRefGoogle Scholar
  96. Sabbaj, S., Para, M. F., Fass, R. J., Adams, P. W., Orosz, C. G., and Whitacre, C. C., 1992, Quantitation of antigen-specific immune responses in human immunodeficiency virus (HIV)-infected individuals by limiting dilution analysis, J. Clin. Immunol. 12:216–224.PubMedCrossRefGoogle Scholar
  97. Sadat-Sowti, B., Debré, P., Idziorek, T., Guillon, J.-M., Hadida, R., Okzenhendler, E., Katlama, C., Mayaud, C., and Autran, B., 1991, A lectin-binding soluble factor released by CD8+CD57+ lymphocytes from AIDS patients inhibits T cell cytotoxicity, Eur. J. Immunol. 21:737–741.PubMedCrossRefGoogle Scholar
  98. Salazar-Gonzalez, J. R., Moody, D. J., Giorgi, J. V., Martinez-Maza, O., Mitsuyasu, R. T., and Fahey, J. L., 1985, Reduced ecto-5’-nucleotidase activity and enhanced OKT10 and HLA-DR expression on CD8 (T-suppressor/ cytotoxic) lymphocytes in the acquired immune deficiency syndrome: Evidence of CD8 cell immaturity, J. Immunol. 135:1778–1785.PubMedGoogle Scholar
  99. Saukkonen, J. J., Kornfeld, H., and Berman, J. S., 1993, Expansion of a CD8+CD28 cell population in the blood and lung of HIV-positive patients, J. AIDS 6:1194–1204.Google Scholar
  100. Schellekens, P. T. A., Roos, M. T. L., De Wolf, F., Lange, J. M. A., and Miedema, R., 1990, Low T-cell responsiveness to activation via CD3/TCR is a prognostic marker for acquired immunodeficiency syndrome (AIDS) in human immunodeficiency virus-1 (HIV-1)-infected men, J. Clin. Immunol. 10:121–127.PubMedCrossRefGoogle Scholar
  101. Schmid, I., Schmid, P., and Giorgi, J. V., 1988, Conversion of logarithmic channel numbers into relative linear fluorescence intensity, Cytometry 9:533–538.PubMedCrossRefGoogle Scholar
  102. Schnittman, S. M., Lane, H. C., Greenhouse, J., Justement, J. S., Baseler, M., and Fauci, A. S., 1990, Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: Evidence for a role in the selective T-cell functional defects observed in infected individuals, Proc. Natl. Acad. Sci. USA 87:6058–6062.PubMedCrossRefGoogle Scholar
  103. Schulick, R. D., Clerici, M., Dolan, M. J., and Shearer, G. M., 1993, Limiting dilution analysis of interleukin-2-producing T cells responsive to recall and alloantigens in human immunodeficiency virus-infected and uninfected individuals, Eur. J. Immunol. 23(2):412–417.PubMedCrossRefGoogle Scholar
  104. Schwartz, A., and Fernández-Repollet, E., 1993, Development of clinical standards for flow cytometry, in: Clinical Flow Cytometry (A. L. Landay, K. A. Ault, K. D. Bauer, and P. S. Rabinovitch, eds.), The New York Academy of Sciences, New York, pp. 28–39.Google Scholar
  105. Shearer, G. M., and Clerici, M., 1992, T helper cell immune dysfunction in asymptomatic, HIV-1-seropositive individuals: The role of TH1-TH2 cross regulation, in: Regulation and Functional Significance of T-Cell Subsets (R. L. Coffman, ed.), Karger, Basel, pp. 21–43.CrossRefGoogle Scholar
  106. Staal, F. J., Roederer, M., Israelski, D. M., Bubp, J., Mole, L. A., McShane, D., Deresinski, S. C., Ross, W., Sussman, H., Raju, P. A., Anderson, M. T., Moore, W., Ela, S. W., Herzenberg, L. A., and Herzenberg, L. A., 1992, Intracellular glutathione levels in T cell subsets decrease in HIV-infected individuals, AIDS Res. Hum. Retrovir. 8:305–311.PubMedCrossRefGoogle Scholar
  107. Stites, D. P., Moss, A. R., Bacchetti, P., Osmond, D., McHugh, T. M., Wang, Y. J., Hebert, S., and Colfer, B., 1989, Lymphocyte subset analysis to predict progression to AIDS in a cohort of homosexual men in San Francisco, Clin. Immunol. Immunopathol. 52:96–103.PubMedCrossRefGoogle Scholar
  108. Taylor, J. M. G., Fahey, J. L., Detels, R., and Giorgi, J. V., 1989, CD4 percentage, CD4 number, and CD4:CD8 ratio in HIV infection: Which to choose and how to use, J. AIDS 2:114–124.Google Scholar
  109. Taylor, J. M. G., Visscher, S. B., and Giorgi, J. V., 1995, CD4+ T-cell number at the time of acquired immunodeficiency syndrome, Am. J. Epidemiol. 141:645–651.PubMedGoogle Scholar
  110. Tedder, T. F., Cooper, M. D., and Clement, L. T., 1985, Human lymphocyte differentiation antigens HB-10 and HB-11. II. Differential production of B cell growth and differentiation factors by distinct helper T cell subpopulations, J. Immunol. 134:2989–2994.PubMedGoogle Scholar
  111. Vanham, G., Kestens, L., Penne, G., Goilav, C., Gigase, P., Colebunders, R., Vandenbruaene, M., Goeman, J., Van Der Groen, G., and Ceuppens, J. L., 1991, Subset markers of CD8+ cells and their relation to enhanced cytotoxic T-cell activity during human immunodeficiency virus infection, J. Clin. Immunol. 11:345–355.PubMedCrossRefGoogle Scholar
  112. Van Noesel, C. J. M., Gruters, R. A., Terpstra, F. G., Schellekens, P. T. A., Van Lier, R. A. W., and Miedema, F., 1990, Functional and phenotypic evidence for a selective loss of memory T cells in asymptomatic human immunodeficiency virus-infected men, J. Clin. Invest. 86:293–299.PubMedCrossRefGoogle Scholar
  113. Walker, B. D., and Plata, F., 1990, Cytotoxic T lymphocytes against HIV, AIDS 4:177–184.PubMedCrossRefGoogle Scholar
  114. Walker, C. M., and Levy, J. A., 1989, A diffusible lymphokine produced by CD8+ T lymphocytes suppresses HIV replication, J. Immunol. 66:628–630.Google Scholar
  115. Yagi, M. J., Chu, F.-N., Jiang, J. D., Wallace, J., Mason, P., Liu, Y., Carafa, J., and Bekesi, J. G., 1992, Increases in soluble CD8 antigen in plasma, and CD8+ and CD8+CD38+ cells in human immunodeficiency virus type-1 infection, Clin. Immunol. Immunopathol. 63:126–134.PubMedCrossRefGoogle Scholar
  116. Zack, J. A., Arrigo, S. J., Weitsman, S. R., Go, A. S., Haislip, A., and Chen, I. S. Y., 1990, HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure, Cell 61:213–222.PubMedCrossRefGoogle Scholar
  117. Zarling, J. M., Ledbetter, J. A., Sias, J., Fultz, P., Eichberg, J., Gjerset, G., and Moran, P. A., 1990, HIV-infected humans, but not chimpanzees, have circulating cytotoxic T lymphocytes that lyse uninfected CD4+ cells, J. Immunol. 144:2992–2998.PubMedGoogle Scholar
  118. Zaunders, J., Carr, A., McNally, L., Penny, R., and Cooper, D. A., 1995, Effects of primary HIV-1 infection on subsets of CD4+ and CD8+ T lymphocytes, AIDS 9:561–566.PubMedCrossRefGoogle Scholar
  119. Ziegler-Heitbrock, H. W. L., Stachel, D., Schlunk, T., Gürtler, L., Schramm, W., Fröschl, M., Bogner, J. R., and Riethmüller, G., 1988, Class II (DR) antigen expression on CD8+ lymphocyte subsets in acquired immune deficiency syndrome (AIDS), J. Clin. Immunol. 8:1–6.CrossRefGoogle Scholar
  120. Zola, H., Koh, L. Y., Mantzioris, B. X., and Rhodes, D., 1991, Patients with HIV infection have a reduced proportion of lymphocytes expressing the IL2 receptor p55 chain (TAC., CD25), Clin. Immunol. Immunopathol. 59:16–25.PubMedCrossRefGoogle Scholar
  121. Zupo, S., Rugari, E., Dono, M., Taborelli, G., Malavasi, F., and Ferrarini, M., 1994, CD38 signaling by agonistic monoclonal antibody prevents apoptosis of human germinal center B cells, Eur. J. Immunol. 24:1218–1222.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Janis V. Giorgi
    • 1
  1. 1.Department of Medicine, Jonsson Comprehensive Cancer CenterUCLA AIDS Institute and the Multicenter AIDS Cohort Study, UCLA Schools of Medicine and Public HealthLos AngelesUSA

Personalised recommendations