Biological Activities of HIV-Specific Peptides

  • Stanley A. Schwartz
  • Madhavan P. N. Nair
  • Linda B. Ludwig


Infection with different viruses may produce immunologic dysfunctions in the host ranging from immunodeficiency states to autoimmune disorders. Generally it was assumed that these actions were related to the direct effects, including infection, of whole virions on target cells. These concepts became more sharply focused with the identification of the human immunodeficiency virus type 1 (HIV-1) and the recognition that it can infect a critical cell involved in the regulation of the immune response of humans, namely, the CD4+ T lymphocyte. Earlier studies focused on the direct infection of CD4+ cells by HIV-1 as the primary mechanism underlying the pathogenesis of the acquired immunodeficiency syndrome (AIDS). With the isolation and purification of HIV-1, it was shown that whole virions and crude extracts therefrom could induce in vitro some of the immunologic phenomena that were observed in clinical disease. It has been well documented that AIDS patients manifest a variety of immune dysfunctions including decreased lymphocyte proliferative responses to mitogens and antigens, decreased cellular cytotoxic activities and polyclonal B-lymphocyte activation (for a review see de Martini and Parker, 1989). However, the earlier observation that there was a poor correlation of peripheral virus load with extent of disease suggested that other, extrainfectious mechanisms may be contributing to disease progression. This led to our hypothesis that soluble factors such as proteins encoded by the HIV genome and shed by infected cells may also be involved in the pathogenesis of AIDS. Through the important observations of Fauci and his colleagues, we now know that the major repository of HIV in the infected host is the lymph nodes (Pantaleo et al., 1991, 1993).


Human Immunodeficiency Virus Natural Killer Activity Human Immunodeficiency Virus Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albini, A., Fontanini, G., Masiello, L., Tacchetti, C., Bigini, D., Luzzi, P., Noonan, D. M., and Stetler-Stevenson, W. G., 1994, Angiogenic potential in vivo by Kaposi’s sarcoma cell-free supernatants and HIV-1 tat product: Inhibition of KS-like lesions by tissue inhibitor of metalloproteinase, AIDS 8:1237–1244.PubMedGoogle Scholar
  2. Albini, A., Barillari, G., Benelli, R., Gallo, R. C., and Ensoli, B., 1995a, Angiogenic properties of human immunodeficiency virus type 1 Tat protein, Proc. Natl. Acad. Sci. USA 92:4838–4842.PubMedGoogle Scholar
  3. Albini, A., Benelli, R., Masiello, L., Rusnati, M., Giunciuglio, D., Rubartelli, A., Ziche, M., Soldi, R., Bussolino, F., Presta, M., and Noonan, D., 1995b, HIV-1 Tat mimics heparin-binding angiogenic growth factors, AIDS Res. Hum. Retrovir. 11:S115.Google Scholar
  4. Allen, J. B., Wong, H. L., Guyre, P. M., Simon, G. L., and Wahl, S. M., 1991, Association of circulating receptor Fc7RIII-positive monocytes in AIDS patients with elevated levels of transforming growth factor-β, J. Clin. Invest. 87:1773–1779.PubMedGoogle Scholar
  5. Apostolski, S., McAlarney, T., Hays, A. P., and Latov, N., 1994, complement dependent cytotoxicity of sensory ganglion neurons mediated by gp120 glycoprotein of HIV-1, Immunol. Invest. 23:47–52.PubMedGoogle Scholar
  6. Arya, S. D., Guo, C., Josephs, S. F., and Wong-Staal, F., 1985, Trans-activator gene of human T-lymphotrophic virus type III (HTLV-III), Science 229:69–73.PubMedGoogle Scholar
  7. Barillari, G., Buonaguro, L., Fiorelli, V., Hoffman, J., Michaels, F., Gallo, R. C., and Ensoli, B., 1992, Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression; implications for AIDS-Kaposi’s sarcoma pathogenesis, J. Immunol. 149:3727–3734.PubMedGoogle Scholar
  8. Barillari, G., Gendelman, R., Gallo, R. C., and Ensoli, B., 1993, The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence, Proc. Natl. Acad. Sci. USA 90:7941–7945.PubMedGoogle Scholar
  9. Barks, J. D., Nair, M. P. N., Schwartz, S. A., and Silverstein, F. S., 1993, Potentiation of N-methyl-D-aspartate mediated brain injury by a human immunodeficiency virus-1-derived peptide in perinatal rodents, Pediatr. Res. 34:192–198.PubMedGoogle Scholar
  10. Berger, J., Aepinus, C., Dobrovnik, M., Fleckenstein, B., Hauber, J., and Bohnlein, E., 1991, Mutational analysis of functional domains in the HIV-1 Rev trans-regulatory protein, Virology 183:630–635.PubMedGoogle Scholar
  11. Berkhout, B., and Jeang, K. T., 1989, Trans-activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: A quantitative analysis, J. Virol. 63:5501–5504.PubMedGoogle Scholar
  12. Bernton, E. W., Bryant, H. U., Decoster, M. A., Orenstein, J. M., Ribas, J. L., Meltzer, M. S., and Gendeman, H. E., 1992, No direct neuronotoxicity by HIV-1 virions or culture fluids from HIV-1-infected T cells or monocytes, AIDS Res. Hum. Retrovir. 8:495–503.PubMedGoogle Scholar
  13. Braddock, M., Chambers, A., Wilson, W., Esnouf, M. P., Adam, S. E., Kingsman, A. J., and Kingsman, S. M., 1989, HIV-1 TAT “activates” presynthesized RNA in the nucleus, Cell 58:269–279.PubMedGoogle Scholar
  14. Brake, D. A., Debouch, C., and Biesecke, C., 1990, Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat, J. Cell Biol. 111:1275–1281.PubMedGoogle Scholar
  15. Branda, R. F., Moore, A. L., Mathews, L., McCormack, J. J., and Zon, G., 1993, Immune stimulation by an antisense oligomer complementary to the rev gene of HIV-1, Biochem. Pharmacol. 45:2037–2043.PubMedGoogle Scholar
  16. Brenneman, D. E., McCune, S. K., Mervis, R. E., and Hill, J. M., 1994, gp120 as an etiologic agent for neuroAIDS: Neurotoxicity and model systems, Adv. Neuroimmunol. 4:157–165.PubMedGoogle Scholar
  17. Brenner, B. G., Dascal, A., Margolese, R. G., and Wainberg, M. A., 1989, Natural killer cell function in patients with acquired immunodeficiency syndrome and related diseases, J. Leuk. Biol. 46:75–83.Google Scholar
  18. Buonaguro, L., Barillari, G., Chang, H. K., Bohan, C. A., Kao, V., Morgan, R., Gallo, R. C., and Ensoli, B., 1992, Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines, J. Virol. 66:7159–7167.PubMedGoogle Scholar
  19. Buonaguro, L., Buonaguro, F. M., Giraldo, G., and Ensoli, B., 1994, The human immunodeficiency virus type 1 tat protein transactivates tumor necrosis factor β gene expression through a TAR-like structure, J. Virol. 68:2667–2682.Google Scholar
  20. Certa, U., Bannwarth, W., Stuber, D., Gentz, B., Lanzer, M., LeGrice, B., Guillot, F., Wendler, L., Hunsmann, G., Bujard, H., and Mous, J., 1986, Subregions of a conserved part of the HIV gp41 transmembrane protein are differentially recognized by antibodies of infected individuals, EMBO J. 5:3051–3056.PubMedGoogle Scholar
  21. Chang, D. D., and Sharp, P. A., 1989, Regulation by HIV Rev depends upon recognition of splice sites, Cell 59:789–795.PubMedGoogle Scholar
  22. Chirmule, N., Kalyanaraman, V., Oyaizu, N., and Pahwa, S., 1988, Inhibitory influences of envelope glycoproteins of HIV-1 on normal immune responses, J. Acq. Immune Defic. Syndr. 1:425–430.Google Scholar
  23. Chirmule, N., Oyaizu, N., Saxinger, C., and Pahwa, S., 1994, Nef protein of HIV-1 has B-cell stimulatory activity, AIDS 8:733–734.PubMedGoogle Scholar
  24. Chirmule, N., Than, S., Khan, S.A., and Pahwa, S., 1995, Human immunodeficiency virus Tat induces functional unresponsiveness in T cells, J. Virol. 69:492–498.PubMedGoogle Scholar
  25. Cochrane, A. W., Chen, C. H., and Rosen, C., 1990a, Specific interaction of the HIV Rev transactivator protein with a structured region in the env mRNA, Proc. Natl. Acad. Sci. USA 87:1198–1201.PubMedGoogle Scholar
  26. Cochrane, A. W., Perkins, A., and Rosen, C. A., 1990b, Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: Relevance of nucleolar localization to function, J. Virol. 64:881–885.PubMedGoogle Scholar
  27. Crowl, R., Ganguly, K., Gordon, M., Conroy, R., Schaber, R., Corney, R., Schaber, M., Kramer, R., Shaw, G., Wong-Staal, R., and Reddy, R. P., 1985, HTLV-III env gene products synthesized in E. coli are recognized by antibodies present in the drts of AIDS patients, Cell 41:979–986.PubMedGoogle Scholar
  28. Cullen, B. R., 1986, Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism, Cell 46:973–982.PubMedGoogle Scholar
  29. Cullen, B. R., 1990, The HIV-1 Tat protein: An RNA sequence-specific processivity factor, Cell 63:655–657.PubMedGoogle Scholar
  30. Cullen, B. R., 1992, Mechanism of action of regulatory proteins encoded by complex retroviruses, Microbiol Rev. 56:375–394.PubMedGoogle Scholar
  31. Daly, T., Cook, K., Gray, G., Maione, T., and Rusche, J., 1989, Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro, Nature 342:816–819.PubMedGoogle Scholar
  32. Dawson, T. M., and Dawson, V L., 1994, gp120 neurotoxicity in primary cortical cultures, Adv. Neuroimmunol. 4:167–173.PubMedGoogle Scholar
  33. Dayton, A. L., Sodroski, J. G., Rosen, C. A., Goh, W. C., and Haseltine, W. A., 1986, The trans-activator gene of the human T cell lymphotropic virus type III is required for replication, Cell 44:941–947.PubMedGoogle Scholar
  34. de Martini, R. M., and Parker, J. W., 1989, Immunologic alterations in human immunodeficiency virus infection: A review, J. Clin. Lab. Anal. 3:56–70.PubMedGoogle Scholar
  35. Dingwall, C., Ernberg, I., Gait, M. J., Green, S. M., Heaphy, S., Karn, J., Lowe, A. D., Singh, M., and Skinner, M. A., 1990, HIV-1 Tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure, EMBO J. 9:4145–4153.PubMedGoogle Scholar
  36. Embretson, J., Zupancic, M., Ribas, J. L., Burke, A., Tenner-Racz, J., and Haase, A. T., 1993, Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS, Nature 362:359–362.PubMedGoogle Scholar
  37. Emerman, M., Vazeux, R., and Peden, K., 1989, The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization, Cell 57:1155–1165.PubMedGoogle Scholar
  38. Endo, S., Kubota, S., Siomi, H., Adachi, A., Oroszlan, S., Maki, M., and Hatanaka, M., 1989, A region of basic amino-acid cluster in HIV-1 Tat protein is essential for transacting activity and nuclear localization, Virus Genes 3:99–110.PubMedGoogle Scholar
  39. Ensoli, B., Barillari, G., Zaki Salahuddin, S. Z., Gallo, R. C., and Wong-Staal, R., 1990, Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients, Nature 345:84–86.PubMedGoogle Scholar
  40. Ensoli, B., Barillari, G., and Gallo, R. C., 1991, Pathogenesis of AIDS associated Kaposi’s sarcoma, Hematol. Oncol Clin. North Am. 5:281–295.PubMedGoogle Scholar
  41. Ensoli, B., Buonaguro, L., Barillari, G., Fiorelli, V., Gendelman, R., Morgan, R. A., Wingfield, P., and Gallo, R. C., 1993, Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation, J. Virol. 67:277–287.PubMedGoogle Scholar
  42. Ensoli, B., Gendelman, R., Markham, P., Fiorelli, V., Colombini, S., Raffeld, M., Cafaro, A., Chang, H.-K., Brady, J. N., and Gallo, R. C., 1994, Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma, Nature 371:674–680.PubMedGoogle Scholar
  43. Feinberg, M. B., Jarrett, R. R., Aldovini, A., Gallo, R. C., and Wong-Staal, R., 1986, HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA, Cell 46:807–817.PubMedGoogle Scholar
  44. Feinberg, M. B., Baltimore, D., and Frankel, A. D., 1991, The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation, Proc. Natl. Acad. Sci. USA 88:4045–4049.PubMedGoogle Scholar
  45. Felber, B. K., Hadzopoulou-Cladaras, M., Cladaras, C., Copeland, T., and Pavlakis, G. N., 1989, Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA, Proc. Natl. Acad. Sci. USA 86:1495–1499.PubMedGoogle Scholar
  46. Feng, S., and Holland, E. C., 1988, HIV-1 tat trans-activation requires the loop sequence within tar, Nature 334:165–167.PubMedGoogle Scholar
  47. Fiorelli, V., Gendelman, R., Samaniego, R., Markham, P. D., and Ensoli, B., 1995, Cytokines from activated T cells induce normal endothelial cells to acquire the phenotypic and functional features of AIDS-Kaposi’s sarcoma spindle cells, J. Clin. Invest. 95:1723–1734.PubMedGoogle Scholar
  48. Fisher, A. G., Feinberg, M. B., Josephs, S. R., Harper, M. E., Marselle, L. M., Reyes, G., Gonda, M. A., Aldovini, A., Debouk, C., Gallo, R. C., and Wong-Staal, R., 1986, The trans-activator gene of HTLV-III is essential for virus replication, Nature 320:367–371.PubMedGoogle Scholar
  49. Flores, S. C., Marecki, J. C., Harper, K. P., Bose, S. K., Nelson, S. K., and McCord, J. M., 1993, Tat protein of human immunodeficiency virus type 1 represses expression of magnanese Superoxide dismutase in HeLa cells, Proc. Natl. Acad. Sci. USA 90:7632–7636.PubMedGoogle Scholar
  50. Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors, Science 235:442–447.PubMedGoogle Scholar
  51. Frankel, A. D., and Pabo, C. O., 1988, Cellular uptake of the Tat protein from human immunodeficiency virus, Cell 55:1189–1193.PubMedGoogle Scholar
  52. Frankel, A. D., Bredt, D. S., and Pabo, C. O., 1988, Tat protein from human immunodeficiency virus forms a metal-linked dimer, Science 240:70–73.PubMedGoogle Scholar
  53. Garcia, J. V., and Miller, A. D., 1991, Serine phosphorylation-independent downregulation of cell-surface CD4 by nef, Nature 350:508–511.PubMedGoogle Scholar
  54. Garcia, J. A., Wu, R K., Mitsuyasu, R., and Gaynor, R. B., 1987, Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus, EMBO J. 6:3761–3770.PubMedGoogle Scholar
  55. Gatignol, K. A., Kumar, A., Rabson, A., and Jeang, K. T., 1989, Identification of cellular proteins that bind to the human immunodeficiency virus type 1 trans-activation-response TAR element RNA, Proc. Natl. Acad. Sci. USA 86:7828–7832.PubMedGoogle Scholar
  56. Giulian, D., Wendt, E., Vaea, K., and Noonan, C. A., 1993, The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotropins from monocytes, Proc. Natl. Acad. Sci. USA 90:2769–2773.PubMedGoogle Scholar
  57. Greenblatt, J., Nodwell, J. R., and Mason, S. W., 1993, Transcriptional antitermination, Nature 364:401.PubMedGoogle Scholar
  58. Greenway, A. L., McPhee, D. A., Grgacic, E., Hewish, D., Lucantoni, A., Macreadie, I., and Azad, A., 1994, Nef 27, but not the Nef 25 isoform of human immunodeficiency virus-type 1 pNL4.3 down-regulates surface CD4 and IL-2R expression in peripheral blood mononuclear cells and transformed T cells, Virology 198:245–256.PubMedGoogle Scholar
  59. Guy, B., Kieny, M. P., Riviere, Y., Peuch, C. L., Dott, K., Girard, M., Montagnier, L., and Lecocq, J. P., 1987, HIV F/3’orf encodes a phosphorylated GTP-binding protein resembling an oncogene product, Nature 330:266–269.PubMedGoogle Scholar
  60. Hammarskjold, J. L., Heimer, J., Hammarskjold, B., Sangwan, I., Albert, L., and Rekosh, D., 1989, Regulation of human immunodeficiency virus env expression by the rev gene product, J. Virol. 63:1959–1966.PubMedGoogle Scholar
  61. Hammes, S. R., Dixon, E. P., Malim, M. H., Cullen, B. R., and Greene, W. C., 1989, Nef protein in human immunodeficiency virus type 1: Evidence against its role as a transcriptional inhibitor, Proc. Natl. Acad. Sci. USA 86:9549–9553.PubMedGoogle Scholar
  62. Hanly, S. M., Rimsky, L. T., Malim, M. H., Kim, J. H., Hauber, J., Dodon, M. D., Lee, S. Y., Maizel, J. V., Cullen, B. R., and Greene, W. C., 1989, Comparative analysis of the HTLV-1 Rex and HIV-1 Rev trans-regulatory proteins and their RNA response elements, Genes Dev. 3:1534–1544.PubMedGoogle Scholar
  63. Harrich, D., Garcia, J., Mitsuyasu, R., and Gaynor, R. B., 1990, TAR independent activation of the human immunodeficiency virus in phorbol ester stimulated T lymphocytes, EMBO J. 9:4417–4423.PubMedGoogle Scholar
  64. Hauber, J., and Cullen, B., 1988, Mutational analysis of the transactivation-responsive region of the human immunodeficiency virus type 1 long terminal repeat, J. Virol. 62:673–679.PubMedGoogle Scholar
  65. Hauber, J., Malim, M. H., and Cullen, B. R., 1989, Mutational analysis of the conserved basic domain of the human immunodeficiency virus tat protein, J. Virol. 63:1181–1187.PubMedGoogle Scholar
  66. Heaphy, S., Dingwall, C., Emberg, I., Gait, M. J., Green, S. M. f Kam, J., Lowe, A. D., Singh, M., and Skinner, M. A., 1990, HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response element region, Cell 60:685–693.PubMedGoogle Scholar
  67. Horwitz, M. S., Boyce-Jacino, M. T., and Faras, A. J., 1992, Novel human endogenous sequences related to human immunodeficiency virus type I, J. Virol. 66:2170–2179.PubMedGoogle Scholar
  68. Howcroft, T., Strebel, K. K., Martin, M. A., and Singer, D. S., 1993, Repression of MHC class I gene promoter by two exon Tat of HIV, Science 260:1320–1322.PubMedGoogle Scholar
  69. Huang, X., Hope, T. J., Bond, B. L., McDonald, D., Grahl, K., and Parslow, T. G., 1991, Minimal Rev-response element for type 1 human immunodeficiency virus, J. Virol. 65:2131–2134.PubMedGoogle Scholar
  70. Jakobovits, A., Smith, D. H., Jakobovits, E. B., and Capon, D. J., 1988, A discrete element 3’ of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans-activator, Mol. Cell. Biol. 8:2555–2561.PubMedGoogle Scholar
  71. Kaiser, P. T., Offermann, J. T., and Lipton, S. A., 1990, Neuronal injury due to HIV-1 envelope protein is blocked by anti-gp120 antibodies but not by anti-CD43 antibodies, Neurology 40:1757–1761.PubMedGoogle Scholar
  72. Kao, S. Y., Caiman, A. F., Luciw, P. A., and Peterlin, B. M., 1987, Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product, Nature 330:489–493.PubMedGoogle Scholar
  73. Kekow, J., Wachsman, W., McCutchan, J. A., Cronin, M., Carson, D. A., and Lotz, M., 1990, Transforming growth factor bl and non-cytopathic mechanisms of immunodeficiency in human immunodeficiency virus infection, Proc. Natl. Acad. Sci. USA 87:8321–8325.PubMedGoogle Scholar
  74. Kessler, M., and Mathews, M. B., 1991, Tat transactivation of the human immunodeficiency virus type 1 promoter is influenced by basal promoter activity and the simian virus 40 origin of DNA replication, Proc. Natl. Acad. Sci. USA 88:10018–10022.PubMedGoogle Scholar
  75. Kim, S., Byrn, R., Groopman, J., and Baltimore, D., 1989a, Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: Evidence for differential gene expression, J. Virol 63:3708–3713.PubMedGoogle Scholar
  76. Kim, S., Ikeuchi, K., Byrn, R., Groopman, J., and Baltimore, D., 1989b, Lack of a negative influence on viral growth by the nef gene of human immuno-deficiency virus type 1, Proc. Natl. Acad. Sci. USA 86:9544–9548.PubMedGoogle Scholar
  77. Kimura-Kuroda, J., Nagashima, K., and Yasui, K., 1994, Inhibition of myelin formation by HIV-1 gp120 in rat cerebral cortex, J. Virol. 137:81–99.Google Scholar
  78. Laspia, K. M. F., Rice, A. P., and Mathews, M. B., 1989, HIV-1 Tat protein increases transcriptional initiation and stabilized elongation, Cell 59:283–292.PubMedGoogle Scholar
  79. Lazdins, J. K., Klimkait, T., Alten, E., Walker, M., Woods-Kook, K., Cox, D., Bilbe, G., Shipman, R., Cerletti, N., and McMaster, G., 1991a, TGF-β up regulator of HIV replication in macrophages, Res. Virol. 142:239–242.PubMedGoogle Scholar
  80. Lazdins, J. K., Klimkait, T., Woods-Kook, K., Walker, M., Altern, E., Cox, D., Cerletti, N., Shipman, R., Bilbe, G., and McMaster, G., 1991b, In vitro effect of transforming growth factor-β on progression of HIV-1 infection in primary mononuclear phagocytes, J. Immunol. 147:120–127.Google Scholar
  81. Lazinski, D., Grzadzielska, E., and Das, A., 1989, Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif, Cell 59:207–218.PubMedGoogle Scholar
  82. Liegler, T. J. and Stites, D. P., 1994, HIV-1 gp120 and anti-gp120 induce reversible unresponsiveness in peripheral CD4 T lymphocytes, J. Acq. Immune Defic. Syndr. 7:340–348.Google Scholar
  83. Lipton, S. A., 1992a, Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120, Neuroreport 3:913–915.PubMedGoogle Scholar
  84. Lipton, S. A., 1992b, Memantine prevents HIV coat protein-induced neuronal injury in vitro, Neurology 42:1403–1405.PubMedGoogle Scholar
  85. Lotz, M., Keckow, J., Cronin, M. T., McCutchan, J. A., Clark-Lewis, I., Carson, D. A., and Wachsman, W., 1990, Induction of transforming growth factor b (TGFb) by HIV-1 Tat: A noncytopathic pathway of immunodeficiency in HIV infection, FASEB J. 4:A1861.Google Scholar
  86. Malim, M. H., and Cullen, B. R., 1991, HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: Implications for HIV-1 latency, Cell 65:241–248.PubMedGoogle Scholar
  87. Malim, M. H., Hauber, J., Fenrick, R., and Cullen, B. R., 1988, Immuno-deficiency virus rev trans-activator modulates the expression of the viral regulatory genes, Nature 335:181–183.PubMedGoogle Scholar
  88. Malim, M. H., Hauber, J., Le, S.-Y, Maizel, J. V., and Cullen, B. R., 1989a, The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA, Nature 338:254–257.PubMedGoogle Scholar
  89. Malim, M. H., Bohnlein, S., Hauber, J., and Cullen, B. R., 1989b, Functional dissection of the HIV-1 Rev transactivator-derivation of a trans-dominant repressor of Rev function, Cell 58:205–214.PubMedGoogle Scholar
  90. Malim, M. H., Tiley, L. S., McCarn, D. F., Rusche, J. R., Hauber, J., and Cullen, B. R., 1990, HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence, Cell 60:675–683.PubMedGoogle Scholar
  91. Malim, M. H., McCarn, D. R., Tiley, L. S., and Cullen, B. R., 1991, Mutational definition of the human immunodeficiency type 1 Rev activation domain, J. Virol. 65:4248–4254.PubMedGoogle Scholar
  92. Mann, D. A., and Frankel, A. D., 1991, Endocytosis and targeting of exogenous HIV-1 Tat protein, EMBO J. 10:1733–1739.PubMedGoogle Scholar
  93. Marciniak, R. A., Calnan, B. J., Frankel, A. D., and Sharp, P. A., 1990a, HIV-1 Tat protein trans-activates transcription in vitro, Cell 63:791–802.PubMedGoogle Scholar
  94. Marciniak, R. A., Garcia-Blanco, M. A., and Sharp, P. A., 1990b, Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 87:3624–3628.PubMedGoogle Scholar
  95. Masood, R., Lunardi-Iskandar, Y., Zhang, M. T., Law, R. E., Huang, C. L., Puri, R. K., Levine, A. M., and Gill, P. S., 1994, IL-10 inhibits HIV-1 replication and is induced by tat, Biochem. Biophys. Res. Commun. 202:374–383.PubMedGoogle Scholar
  96. Muesing, M. A., Smith, D. H., and Capon, D. J., 1987, Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein, Cell 48:691–701.PubMedGoogle Scholar
  97. Myers, G., and Pavlakis, G. N., 1991, Evolutionary potential of complex retroviruses, in: Viruses: The Retroviridae, Volume 1 (R. R. Wagner, H. Fraenkel-Conrat, and J. Levy, eds.), Plenum Press, New York, pp 1–37.Google Scholar
  98. Nabel, G., and Baltimore, D., 1987, An inducible transcription factor activates expression of human immunodeficiency virus in T cells, Nature 326:711–713.PubMedGoogle Scholar
  99. Nair. M. P. N., Laign, T. J., and Schwartz, S. A., 1986, Decreased natural and antibody-dependent cellular cytotoxic activities in intravenous drug abusers, Clin. Immunol. Immunopathol. 38:68–78.PubMedGoogle Scholar
  100. Nair, M. P. N., Pottathil, R., Heimer, E. P., and Schwartz, S. A., 1988, Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes, Proc. Natl. Acad. Sci. USA 85:6498–6502.PubMedGoogle Scholar
  101. Nebreda, A. R., Bryan, T., Segade, F., Wingfield, P., Venkatesan, S., and Santos, E., 1991, Biochemical and biological comparison of HIV-1 NEF and ras gene product, Virology 183:151–159.PubMedGoogle Scholar
  102. Olsen, H. S., Cochrane, A. W., Dillon, P. J., Nalin, C. M., and Rosen, C. A., 1990, Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids, Genes Dev. 4:1357–1364.PubMedGoogle Scholar
  103. Oyaizu, N., Chirmule, N., Kalyanaraman, V S., Hall, W. W., Pahwa, R., Shuster, M., and Pahwa, S., 1990, Human immunodeficiency virus type 1 envelope glycoprotein gp120 produces immune defects in CD4+ T lymphocytes by inhibiting interleukin 2 mRNA, Proc. Natl. Acad. Sci. USA 87:2379–2387.PubMedGoogle Scholar
  104. Pahwa, S., Pahwa, R., Saxinger, C., Gallo, R. C., and Good, R. A., 1985, Influence of the human T-lymphotropic virus/lymphadenopathy-associated virus on functions of human lymphocytes: Evidence for immunosuppressive effects and polyclonal B-cell activation by banded viral preparations, Proc. Natl. Acad. Sci. USA 82:8198–8202.PubMedGoogle Scholar
  105. Pahwa, S., Pahwa, R., Good, R. A., Gallo, R. C., and Saxinger, C., 1986, Stimulatory and inhibitory influences of human immunodeficiency virus on normal B lymphocytes, Proc. Natl. Acad. Sci. USA 83:9124–9128.PubMedGoogle Scholar
  106. Pantaleo, G., Graziosi, C., Butini, L., Pizzo, P. A., Schnittman, S. M., Kotier, D. P., and Fauci, A. S., 1991, Lymphoid organs function as major reservoirs for human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 88:9838–9842.PubMedGoogle Scholar
  107. Pantaleo, G., Graziosi, C., Demarest, H. F., Butini, L., Montroli, M., Fox, C. H., Orenstein, J. M., Kotler, D., and Fauci, A. S., 1993, HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of the disease, Nature 362:355–358.PubMedGoogle Scholar
  108. Pulliam, L., West, D., Haigwood, N., and Swanson, R. A., 1993, HIV-1 envelope gp120 alters astrocytes in human brain cultures, AIDS Res. Hum. Retrovir. 9:439–444.PubMedGoogle Scholar
  109. Puri, R. K., Leland, P., and Aggarwal, B. B., 1995, Constitutive expression of human immunodeficiency virus type 1 tat gene inhibits interleukin 2 and interleukin 2-receptor expression in a human CD4+ T lymphoid (H9) cell line, AIDS Res. Hum. Retrovir. 11:31–40.PubMedGoogle Scholar
  110. Rappaport, J., Lee, S. J., Khalili, K., and Wong-Staal, F., 1989, The acidic amino-terminal region of the HIV-1 TAT protein constitutes an essential activating domain, New Biol. 1:101–110.PubMedGoogle Scholar
  111. Ratnasabapathy, R., Sheldon, M., Johal, L., and Hernandez, N., 1990, The HIV-1 long terminal repeat contains an unusual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters, Genes Dev. 64:2061–2074.Google Scholar
  112. Rautonen, J., Rautonen, N., Martin, N. L., and Wara, D. W., 1994, HIV type 1 Tat protein induces immunoglobulin and interleukin 6 synthesis by uninfected peripheral blood mononuclear cells, AIDS Res. Hum. Retrovir. 10:781–785.PubMedGoogle Scholar
  113. Rittner, K., Churcher, M. J., Gait, M. J., and Kam, J., 1995, The human immunodeficiency virus long terminal repeat includes a specialized initiator element which is required for tat-responsive transcription, J. Mol. Biol. 248:562–580.PubMedGoogle Scholar
  114. Robinson, W. E., Jr., Mitchell, W. M., Chambers, W. H., Schuffman, S. J., Montefiori, D. C., and Oeltmann, T. N., 1988, Natural killer cell infection and inactivation in vitro by the human immunodeficiency virus, Pathology 19:535–540.Google Scholar
  115. Rosen, C. A., Sodroski, I. G., and Haseltine, W. A., 1985, The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat, Cell 41:813–823.PubMedGoogle Scholar
  116. Rosen, C. A., Terwilliger, E., Dayton, A., Sodroski, J. G., and Haseltine, W. A., 1988, Intragenic cis-acting gene-responsive sequences of the human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 85:2071–2075.PubMedGoogle Scholar
  117. Roy, S., Delling, U., Chen, C. H., Rosen, C. A., and Sonenberg, N., 1990a, A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation, Genes Dev. 4:1365–1373.PubMedGoogle Scholar
  118. Roy, S., Parkin, N. T., Rosen, C. A., Itovitch, J., and Sonenberg, N., 1990b, Structural requirements for trans-activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by tat: Importance of base pairing, loop sequence, and bulges in the tat-responsive sequence, J. Virol. 64:1402–1406.PubMedGoogle Scholar
  119. Ruben, S., Perkins, A., Purcell, R., Joung, K., Sia, R., Burghoff, R., Haseltine, W. A., and Rosen, C. A., 1989, Structural and functional characterization of human immunodeficiency virus tat protein, J. Virol. 63:1–8.PubMedGoogle Scholar
  120. Ruscetti, F. W., Mikovits, J. A., Kalyanaraman, V. S., Overton, R., Stevenson, H., Stromberg, K., Herberman, R. B., Farrar, W. L., and Ortaldo, J. R., 1986, Analysis of effector mechanisms against HTLV-I-and HTLV-III/LAV-infected lymphoid cells, Immunology 136:3619–3624.Google Scholar
  121. Sastry, K. J., Reddy, H. R., Pandita, R., Totpal, K., and Aggarwal, B. B., 1990, HIV-1 tat gene induces tumor necrosis factor-b (lymphotoxin) in a human b-lymphoblastoid cell line, J. Biol. Chem. 265:20091–20093.PubMedGoogle Scholar
  122. Scala, G., Ruocco, M. R., Ambrosino, C., Mallardo, M., Giordano, V., Baldassarre, F., Dragonetti, E., Quinto, I., and Venuta, S., 1994, The expression of the interleukin 6 gene induced by the human immunodeficiency virus type 1 Tat protein, J. Exp. Med. 179:961–971.PubMedGoogle Scholar
  123. Schnittman, S. M., Lane, H. C., Higgins, S., Folks, T., and Fauci, A. S., 1986, Direct polyclonal activation of human B lymphocytes by acquired immunodeficiency virus, Science 233:1084–1086.PubMedGoogle Scholar
  124. Selby, M. J., Bain, E. S., Luciw, P. A., and Peterlin, B. M., 1989, Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat, Genes Dev. 3:547–558.PubMedGoogle Scholar
  125. Sharp, P. A., and Marciniak, R. A., 1989, HIV TAR: An RNA enhancer, Cell 59:229–230.PubMedGoogle Scholar
  126. Shoeman, R. L., Young, D., Pottathil, R., Victor, J., Conroy, R. R., Crowl, R. M., Coleman, T., Heimer, E., Lai, C. Y., and Ganguly, L., 1987, Comparison of recombinant human immunodeficiency virus gag precursor and gag/env fusion proteins and a synthetic env pepetide as diagnostic reagents, Anal. Biochem. 161:370–379.PubMedGoogle Scholar
  127. Sindou, P., Couratier, P., Esclaire, F., Yardin, C., Bousseau, A., and Hugon, J., 1994, Prevention of HIV coat protein (gp120) toxicity in cortical cell cultures by riluzole, J. Neurol. Sci. 126:133–137.PubMedGoogle Scholar
  128. Siomi, H., Shida, H., Maki, M., and Hatanaka, M., 1990, Effects of a highly basic region of human immunodeficiency virus Tat protein on nucleolar localization, J. Virol. 64:1803–1807.PubMedGoogle Scholar
  129. Siranni, M. C., Tagliaferri, F., and Aiuti, F., 1990, Pathogenesis of natural killer cell deficiency in AIDS, Immunol. Today 11:81–82.Google Scholar
  130. Sodroski, J. G., Rosen, C. A., and Haseltine, W. A., 1984, Trans-acting transcriptional activation of the long terminal repeat of human T lymphotropic viruses in infected cells, Science 225:381–421.PubMedGoogle Scholar
  131. Sodroski, J. R., Patarca, C., Rosen, C., Wong-Staal, F., and Haseltine, W., 1985, Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III, Science 229:74–77.PubMedGoogle Scholar
  132. Sodroski, J., Goh, W. C., Rosen, C., Dayton, A., Terwilliger, E., and Haseltine, W. A., 1986, A second post-transcriptional transactivator gene required for the HTLV-III replication, Nature 321:412–417.PubMedGoogle Scholar
  133. Southgate, C. D., and Green, M. R., 1991, The HIV-1 Tat protein activates transcription from an upstream DNA-binding site: Implications for Tat function, Genes Dev. 5:2496–2507.PubMedGoogle Scholar
  134. Sumner-Smith, M., Roy, S., Barnett, R., Reid, L. S., Kuperman, R., Delling, U., and Sonenberg, N., 1991, Critical chemical features in trans-acting-responsive RNA are required for interaction with human immunodeficiency virus type 1 TAT protein, J. Virol. 65:5196–5202.PubMedGoogle Scholar
  135. Taylor, J. P., Cupp, C., Diaz, A., Chowdhury, M., Khalili, K., Jimenez, S. A., and Amini, S., 1992a, Activation of expression of genes coding for extra-cellular matrix proteins in Tat-producing glioblastoma cells, Proc. Natl. Acad. Sci. USA 89:9617–9621.PubMedGoogle Scholar
  136. Taylor, J. P., Pomerantz, R., Bagasra, O., Chowdhury, M., Rappaport, J., Khalili, K., and Amini, S., 1992b, TAR-independent transactivation by Tat in cells derived from the CNS: A novel mechanism of HIV-1 gene regulation, EMBO J. 11:395–403.Google Scholar
  137. Taylor, J. P., Pomerantz, R. J., Oakes, J. W., Khalili, K., and Amini, S., 1995, A CNS-enriched factor that binds to NF-kappa B and is required for interaction with HIV-1 tat, Oncogene 10:395–400.PubMedGoogle Scholar
  138. Terwilliger, E., Sodroski, J. G., Rosen, C. A., and Haseltine, W. A., 1986, Effects of mutations with the 3’ orf open reading frame region of human T-cell lymphotrophic virus type III (HTLV-III/LAV) on replication and cytopathogenicity, J. Virol. 60:754–760.PubMedGoogle Scholar
  139. Terwilliger, E. F., Langhoff, E., Gabuzda, D., Zazopoulos, E., and Haseltine, W. A., 1991, Allelic variation in the effects of the nef gene on replication of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 88:10971–10975.PubMedGoogle Scholar
  140. Tiley, L. S., Malim, M. H., Tewary, H. K., Stockley, P. G., and Cullen, B. R., 1992, Identification of a high-affinity RNA-binding site for the human immunodeficiency virus type 1 Rev protein, Proc. Natl. Acad. Sci. USA 89:758–762.PubMedGoogle Scholar
  141. Ushijima, H., Ando, S., Kunisada, T., Schroder, H. C., Klocking, H. P., Kijjoa, A., and Muller, W. E., 1993, HIV-1 gp120 and MNDA induce protein kinase C translocation differentially in rat primary neuronal cultures, J. Acq. Immune Defic. Syndr. 6:339–343.Google Scholar
  142. Varmus, H., and Brown, P., 1989, Retroviruses, in: Mobile DNA (D. E. Berg and M. M. Howe, eds.), American Society for Microbiology, Washington, DC., pp. 53–108.Google Scholar
  143. Viscidi, R. P., Mayur, K., Lederman, H. M., and Frankel, A. D., 1989, Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1, Science 246:1606–1608.PubMedGoogle Scholar
  144. Vogel, B. F., Lee, S. S., Hildebrand, A., Craig, W., Pierschbacher, M. D., Wong-Staal, F., and Ruoslahti, E., 1993, A novel integrin specificity exemplified by binding of the avb5 integrin to the basic domain of the HIV tat protein and vitronectin, J. Cell Biol. 121:461–468.PubMedGoogle Scholar
  145. Weeks, K. M., and Crothers, D. M., 1991, RNA recognition by Tat-derived peptides: Interaction in the major groove, Cell 66:577–588.PubMedGoogle Scholar
  146. Westendorp, M. O., Li-Weber, M., Frank, R. W., and Krammer, P. H., 1994, Human immunodeficiency virus type 1 tat upregulates interleukin-2 secretion in activated T cells, J. Virol. 68:4177–4185.PubMedGoogle Scholar
  147. Zapp, M., and Green, M., 1989, Sequence-specific RNA binding by the HIV-1 Rev protein, Nature 342:714–716.PubMedGoogle Scholar
  148. Zauli, G., Re, M. C., Furlini, G., Giovannini, M., and La Placa, M., 1991, Evidence for an HIV-1 mediated suppression of in vitro growth of enriched (CD-34+) hematopoietic progenitors, J. AIDS 4:1251–1253.Google Scholar
  149. Zauli, G., Davis, B. R., Re, B. R., Visani, M. C., Furlini, G., and La Placa, M., 1992, Tat protein stimulates production of transforming growth factor-β by marrow macrophages: A potential mechanism for HIV-1 induced hematopoietic suppression, Blood 80:3036–3043.PubMedGoogle Scholar
  150. Zauli, G., Gibellini, D., Milani, D., Mazzoni, M., Borgatti, P., La Placa, M., and Capitani, S., 1993, Human immunodeficiency virus type 1 Tat protein protects lymphoid, epithelial and neuronal cell lines from death by apoptosis, Cancer Res. 53:4481–4485.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Stanley A. Schwartz
    • 1
  • Madhavan P. N. Nair
    • 1
  • Linda B. Ludwig
    • 1
  1. 1.Department of MedicineState University of New York at Buffalo, Buffalo General HospitalBuffaloUSA

Personalised recommendations