Lymphocyte Adhesion Coreceptors and their Roles in HIV-1 Replication

  • Jeffrey A. Ledbetter


T cells recognize and respond to antigen during contact with B cells and other antigen-presenting cells (APC) (for review see Clark and Ledbetter, 1994). The specificity of the T-cell response is determined when the T-cell receptor (TCR) recognizes peptide antigens bound to MHC class I or class II molecules on the APC. However, engagement of the TCR alone is not sufficient for induction of a T-cell response (Bretscher and Cohn, 1970; Mueller et al., 1989; Tan et al., 1993). The affinity of the TCR for peptide/MHC complexes is low (Matsui et al., 1991), and APCs may express only small numbers of each immunogenic peptide. Although the low affinity and high off rate of TCR binding may allow multiple interactions with a restricted number of antigens (Valitutti et al., 1995), additional adhesion interactions are required to stabilize the T cell/APC cellular conjugates (Clark and Ledbetter, 1994). These accessory adhesion events also supplement and modify the intracellular signals that are transmitted to both the T cell and the APC. Altered signals to T cells that may lead to inactivation or anergy can occur either by specific blocking of adhesion receptors (Ledbetter et al., 1995) or via presentation of modified peptide antigens (Madrenas et al., 1995; Sloan-Lancaster et al., 1994). Our understanding of these accessory receptor interactions that make critical contributions to the T cell and APC activation response continues to grow rapidly. Here I will review some of the better-characterized adhesion and signaling molecules of T cells and APC., including CD4, CD8, CD2, CD28, CD40, and β2 integrins. These molecules and their counterreceptors are important for replication of HIV-1, since the signals they provide have dramatic effects on the amounts of virus released from stimulated T cells (Diegel et al., 1993; Smithgall et al., 1995; Pinchuk et al., 1994; Moran et al., 1993).


Tyrosine Phosphorylation Severe Combine Immune Deficiency Cell Antigen Receptor Leukocyte Adhesion Deficiency Antigen Receptor Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. C., Armitage, R. J., Conley, M. E., Rosenblatt, H., Jenkins, N. A., Copeland, N. G., Bedell, M. A., Edelhoff, S., Disteche, C. M., Simoneaux, D. K., Fanslow, W. C., Belmont, J., and Spriggs, M. K., 1993, CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome, Science 259:990–993.PubMedGoogle Scholar
  2. Arpaia, E., Shahar, M., Dadi, H., Cohen, A., and Roifman, C. M., 1994, Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase, Cell 76:947–958.PubMedGoogle Scholar
  3. Aruffo, A., Farrington, M., Hollenbaugh, D., Li, X., Milatovich, A., Nonoyama, S., Bajorath, J., Grosmaire, L. S., Stenkamp, R., Neubauer, M., Roberts, R. L., Noelle, R. J., Ledbetter, J. A., Francke, U., and Ochs, H. D., 1993, The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-Igm syndrome, Cell 72:291–300.PubMedGoogle Scholar
  4. August, A., and Dupont, B., 1994, Activation of src family kinase lck following CD28 crosslinking in the Jurkat leukemic cell line, Biochem. Biophys. Res. Commun. 199:1466–1473.PubMedGoogle Scholar
  5. August, A., and Dupont, B., 1995, Activation of extracellular signal-regulated protein kinase (ERK/MAP kinase) following CD28 cross-linking: Activation in cells lacking p561ck, Tissue Antigens 46:155–162.PubMedGoogle Scholar
  6. August, A., Gibson, S., Kawakamis, Y., Kawakamis, T., Mills, G. B., and Dupont, B., 1994, CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the tec family kinase itk/tsk/emt in the Jurkat leukemic T-cell line, Proc. Natl. Acad. Sci. USA 91:9347–9351.PubMedGoogle Scholar
  7. Baldari, C. T., Macchia, G., and Telford, J. L., 1995, Interleukin-2 promoter activation in T-cells expressing activated Ha-ras, J. Biol. Chem. 267:4289–4291.Google Scholar
  8. Banda, N. K., Bernier, J., Kurahara, D. K., Kurrle, R., Haigwood, N., Sekaly, R. P., and Finkel, T. H., 1992, Crosslinking CD4 by human immunodeficiency virus gp120 prime cells for activation-induced apoptosis, J. Exp. Med. 176:1099–1106.PubMedGoogle Scholar
  9. Beadling, C., Guschin, D., Witthuhn, B. A., Ziemiecki, A., Ihle, J. N., Kerr, I. M., and Cantrell, D. A., 1994, Activation of JAK kinases and STAT proteins by interleukin-2 and interferon alpha, but not the T cell antigen receptor, in human T lymphocytes, EMBO J. 13:5605–5615.PubMedGoogle Scholar
  10. Bowen, T. J., Ochs, H. D., Altman, L. C., Price, T. H., Van Epps, D. E., Brautigan, D. L., Rosin, R. E., Perkins, W. D., Babior, B. M., Klebanoff, S. J., and Wedgwood, R. J., 1982, Severe recurrent bacterial infections associated with defective adherence and chemotaxis in two patients with neutrophils deficient in a cell-associated glycoprotein, J. Pediatr. 101:932–940.PubMedGoogle Scholar
  11. Bowtell, D., Fu, P., Simon, M., and Senior, P., 1992, Identification of murine homologues of the Drosophila son of sevenless gene: Potential activators of ras, Proc. Natl. Acad. Sci. USA 89:6511–6515.PubMedGoogle Scholar
  12. Bretscher, P., and Cohn, M., 1970, A theory of self-nonself discrimination, Science 169:1042–1049.PubMedGoogle Scholar
  13. Buday, L., Egan, S. E., Rodriquez, V. P., Cantrell, D. A., and Downward, J., 1994, A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells, J. Biol. Chem. 269:9019–9023.PubMedGoogle Scholar
  14. Bustelo, X. R., Suen, K. L., Leftheris, K., Meyers, C. A., and Barbacid, M., 1994, Vav cooperates with Ras to transform rodent fibroblasts but is not a Ras GDP/GTP exchange factor, Oncogene 9:2405–2413.PubMedGoogle Scholar
  15. Chan, A. C., Irving, B. A., Fraser, J. D., and Weiss, A., 1991, The zeta chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein, Proc. Natl. Acad. Sci. USA 88:9166–9170.PubMedGoogle Scholar
  16. Chan, A. C., Kadlecek, T. A., Elder, M. E., Filipovich, A. H., Kuo, W. L., Iwashima, M., Parslow, T. G., and Weiss, A., 1994, ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264:1599–1601.PubMedGoogle Scholar
  17. Chan, G., and Ochi, A., 1995, Sphingomyelin-ceramide turnover in CD28 costimulatory signaling, Eur. J. Immunol 25:1999–2004.PubMedGoogle Scholar
  18. Clark, E. A., and Ledbetter, J. A., 1994, How B and T cells talk to each other, Nature 367:425–429.PubMedGoogle Scholar
  19. Danielian, S., Fagard, R., Alcover, A., Acuto, O., and Fischer, S., 1991, The tyrosine kinase activity of p561ck is increased in human T cells activated va CD2, Eur. J. Immunol. 21:1967–1970.PubMedGoogle Scholar
  20. Diegel, M. L., Moran, P. A., Gilliland, L. K., Damle, N. K., Hayden, M. S., Zarling, J. M., and Ledbetter, J. A., 1993, Regulation of HIV production by blood mononuclear cells from HIV-infected donors: IL HIV-1 production depends on T cell-monocyte interaction, AIDS Res. Hum. Retrovir. 9:465–473.PubMedGoogle Scholar
  21. DiSanto, J. P., Bonnefoy, J. Y., Gauchat, J. R., Fischer, A., and de Saint-Basile, G., 1993, CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM., Nature 361:541–543.PubMedGoogle Scholar
  22. Fischer, K.-D., Zmuidzinas, A., Gardner, S., Barbacid, M., Bernstein, A., and Guidos, C., 1995, Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes, Nature 374:474–476.PubMedGoogle Scholar
  23. Flescher, E., Ledbetter, J. A., Schieven, G. L., Vela-Roch, N., Fossum, D., Dang, H., Ogawa, N., and Tralal, N., 1994, Longitudinal exposure of human T lymphocytes to weak oxidative stress suppresses transmembrane and nuclear signal transduction, J. Immunol. 153:4880–4889.PubMedGoogle Scholar
  24. Gilliland, L. K., Teh, H. S., Uckun, F. M., Norris, N. A., Schieven, G. L., and Ledbetter, J. A., 1991, CD4 and CD8 are positive regulators of T cell receptor signal transduction in early T cell differentiation, J. Immunol. 146:1759–1765.PubMedGoogle Scholar
  25. Gilliland, L. K., Schieven, G. L., Norris, N. A., Kanner, S. B., Aruffo, A., and Ledbetter, J. A., 1992, Lymphocyte lineage-restricted tyrosine-phosphorylated proteins that bind PLC-gamma-1 SH2 domains, J. Biol. Chem. 267:13610–13616.PubMedGoogle Scholar
  26. Graf, D., Korthauer, U., Mages, H. W., Senger, G., and Kroczek, R. A., 1992, Cloning of TRAP, a ligand for CD40 on human T cells, Eur. J. Immunol. 22:3193.Google Scholar
  27. Graves, J. D., Downward, J., Rayter, S., Warne, P., Tutt, A. L., Glennie, M., and Cantrell, D. A., 1991, CD2 antigen mediated activation of the guanine nucleotide binding proteins p21ras in human T lymphocytes, J. Immunol. 146:3709–3712.PubMedGoogle Scholar
  28. Graves, J. D., Downward, J., Izquierdo-Pastor, M., Rayter, S., Warne, P. H., and Cantrell, D. A., 1992, The growth factor IL-2 activates p21ras proteins in normal human T lymphocytes, J. Immunol. 148:2417–2422.PubMedGoogle Scholar
  29. Gulbins, E., Coggeshall, K. M., Gottfried, B., Katzav, S., Burn, P., and Altman, A., 1993, Tyrosine kinase-stimulated guanine nucleotide exchange activity of vav in T cell activation, Science 260:822–825.PubMedGoogle Scholar
  30. Gupta, S., Campbell, D., Derijard, B., and Davis, R. J., 1995, Transcription factor ATF2 regulation by the JNK signal transduction pathway, Science 267:389–393.PubMedGoogle Scholar
  31. Hatada, M. H., Lu, X., Laird, E. R., Green, J., Morgenstern, J. P., Lou, M., Marr, C. S., Phillips, T. B., Ram, M. K., Theriault, K., Zoller, M. J., and Karas, J. L., 1995, Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor, Nature 377:32–38.PubMedGoogle Scholar
  32. Heath, S. L., Tew, J. G., Szakal, A. K., and Burton, G. F., 1995, Follicular dendritic cells and human immunodeficiency virus infectivity, Nature 377:740–744.PubMedGoogle Scholar
  33. Howe, L. R., Leevers, S. J., Gomez, N., Nakielny, S., Cohen, P., and Marshall, C. J., 1992, Activation of the MAP kinase pathway by the protein kinase raf, Cell 71:335–342.PubMedGoogle Scholar
  34. Hutchcroft, J. E., and Bierer, B. E., 1994, Activation-dependent phosphorylation of the T-lymphocyte surface receptor CD28 and associated proteins, Proc. Natl. Acad. Sci. USA 91:3260–3264.PubMedGoogle Scholar
  35. Ihle, J. N., Witthuhn, B. A., Quelle, F. W., Yamamoto, K., Thierfelder, W. E., Kreider, B., and Silvennoinen, O., 1994, Signaling by the cytokine receptor superfamily: JAKs and STATs, Trends Biochem. Sci. 19:222–227.PubMedGoogle Scholar
  36. Iwashima, M., Irving, B. A., van Oers, N. S., Chan, A. C., and Weiss, A., 1994, Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases, Science 263:1136–1139.PubMedGoogle Scholar
  37. Izquierdo, M., Leevers, S. J., Marshall, C. J., and Cantrell, D., 1993, p21ras couples the T cell antigen receptor to extracellular signal-regulated kinase 2 in T lymphocytes, J. Exp. Med. 178:1199–1208.PubMedGoogle Scholar
  38. June, C. H., Ledbetter, J. A., Gillespie, M. M., Lindsten, T., and Thompson, C. B., 1987, T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression, Mol. Cell. Biol. 7:4472–4481.PubMedGoogle Scholar
  39. Kanner, S. B., Damle, N. K., Blake, J., Aruffo, A., and Ledbetter, J. A., 1992, CD2/LFA-3 ligation induces phospholipase-C gamma-1-tyrosine phosphorylation and regulates CD3 signaling, J. Immunol. 148:2023–2029.PubMedGoogle Scholar
  40. Kanner, S. B., Grosmaire, L. S., Ledbetter, J. A., and Damle, N. K., 1993, Beta2-integrin LFA-1 signaling through phospholipase C-gammal activation, Proc. Natl. Acad. Sci. USA 90:7099–7103.PubMedGoogle Scholar
  41. Kavahagh, T. J., Grossmann, A., Jinneman, J. C., Kanner, S. B., White, C. C., Eaton, D. L., Ledbetter, J. A., and Rabinovitch, P. S., 1993, The effect of l-chloro-2,4-dinitrobenzene exposure on antigen receptor (CD3)-stimulated transmembrane signal transduction in purified subsets of human peripheral blood lymphocytes, Toxicol. Appl. Pharmacol. 119:91–99.Google Scholar
  42. Kishimoto, T. K., Hollander, N., Roberts, T. M., Anderson, D. C., and Springer, T. A., 1987, Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency, Cell 50:193–202.PubMedGoogle Scholar
  43. Kobayashi, N., Kono, T., Hatakeyama, M., Minami, Y., Miyazaki, T., Perlmutter, R. M., and Taniguchi, T., 1993, Functional coupling of the sre-family protein tyrosine kinases p59fyn and p53/561yn with the interleukin 2 receptor: Implications for redundancy and pleiotropism in cytokine signal transduction, Proc. Natl. Acad. Sci. USA 90:4201–4205.PubMedGoogle Scholar
  44. Koide, H., Satoh, T., Nakafuku, M., and Kaziro, Y., 1993, GTP-dependent association of Raf-1 with Ha-Ras: Identification of Raf as a target downstream of Ras in mammalian cells, Proc. Natl. Acad. Sci. USA 90:8683–8686.PubMedGoogle Scholar
  45. Kupfer, A., Singer, S. J., Janeway, C. A. J., and Swain, S. L., 1987, Coclustering of CD4 (L3T4) molecule with the T-cell receptor is induced by specific direct interaction of helper T cells and antigen-presenting cells, Proc. Natl. Acad. Sci. USA 84:5888–5892.PubMedGoogle Scholar
  46. Ledbetter, J. A., and Linsley, P. S., 1992, CD28 receptor crosslinking induces tyrosine phosphorylation of PLCy-1, Adv. Exp. Med. Biol. 323:23–27.PubMedGoogle Scholar
  47. Ledbetter, J. A., Martin, P. J., Spooner, C. E., Wofsy, D., Tsu, T. T., Beatty, P. G., and Gladstone, P., 1985, Antibodies to Tp67 and Tp44 augment and sustain proliferative responses of activated T cells, J. Immunol. 135:2331–2336.PubMedGoogle Scholar
  48. Ledbetter, J. A., June, C. H., Rabinovitch, P. S., Grossmann, A., Tsu, T. T., and Imboden, J. B., 1988, Signal transduction through CD4 receptors: Stimulatory vs. inhibitory activity is regulated by CD4 proximity to the CD3/T cell receptor, Eur. J. Immunol. 18:525–532.PubMedGoogle Scholar
  49. Ledbetter, J. A., Norris, N. A., Grossmann, A., Grosmaire, L. S., June, C. H., Uckun, F. M., Cosand, W. L., and Rabinovitch, P. S., 1989, Enhanced transmembrane signalling activity of monoclonal antibody heteroconjugates suggests molecular interactions between receptors on the T cell surface, Mol. Immunol. 26:137–145.PubMedGoogle Scholar
  50. Ledbetter, J. A., Schieven, G. L., and Linsley, P. S., 1995, Biological inhibitors of lymphocyte co-receptors for antigen-specific immunosuppression, in: Graft-versus-Host Disease, 2nd ed. (J. Ferrara and J. Deeg, eds.), Dekker, New York, in press.Google Scholar
  51. Lim, W. A., Richards, F. M., and Fox, R. O., 1994, Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains, Nature 372:375–379.PubMedGoogle Scholar
  52. Linsley, P. S., and Ledbetter, J. A., 1993, The role of the CD28 receptor during T cell responses to antigen, Annu. Rev. Immunol 11:191–212.PubMedGoogle Scholar
  53. Los, M., Schenk, H., Hexel, K., Baeuerle, P. A., Droge, W., and Schulze-Osthoff, K., 1995, IL-2 gene expression and NF-kappaB activation through CD28 requires reactive oxygen production by 5-lipoxygenase, EMBO J. 14:3731–3740.PubMedGoogle Scholar
  54. Lu, Y., Granelli-Piperno, A., Bjorndahl, J. M., Phillips, C. A., and Trevillyan, J. M., 1992, CD28-induced T cell activation. Evidence for a protein-tyrosine kinase signal transduction pathway, J. Immunol. 149:24–29.PubMedGoogle Scholar
  55. Macchi, P., Villa, A., Giliani, S., Sacco, M. G., Frattini, A., Porta, F., Ugazio, A. G., Johnston, J. A., Candotti, F., O’Shea, J. J., Vezzoni, P., and Notarangelo, L. D., 1995, Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID), Nature 377:65–68.PubMedGoogle Scholar
  56. Madrenas, J., Wange, R. L., Wang, J. L., Isakov, N., Samelson, L. E., and Germain, R. N., 1995, Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists, Science 267:515–518.PubMedGoogle Scholar
  57. Marais, R., Wynne, J., and Treisman, R., 1993, The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain, Cell 73:381–393.PubMedGoogle Scholar
  58. Martin, P. J., Ledbetter, J. A., Morishita, Y., June, C. H., Beatty, P. J., and Hansen, J. A., 1986, A 44 kDa cell surface homodimer regulates interleukin 2 production by activated human T lymphocytes, J. Immunol. 136:3282–3287.PubMedGoogle Scholar
  59. Matsui, K., Boniface, J. J., Reay, P. A., Schild, H., Fazekas de St Groth, B., and Davis, M. M., 1991, Low affinity interaction of peptide-MHC complexes with T cell receptors, Science 254:1788–1791.PubMedGoogle Scholar
  60. Migone, T.-S., Lin, J.-X., Cereseto, A., Mulloy, J. C., O’Shea, J. J., Franchini, G., and Leonard, W. J., 1995, Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-1, Science 269:79–85.PubMedGoogle Scholar
  61. Miller, G., Hochman, P. S., Meier, W., Tizard, R., Bixler, S., Rosa, M., and Wallner, B. P., 1993, Specific interaction of LFA-3 with CD2 can inhibit T cell responses, J. Exp. Med. 178:211–222.PubMedGoogle Scholar
  62. Mills, G. B., Stewart, D. J., Mellors, A., and Gelfand, E. W., 1986, Interleukin 2 does not induce phosphatidylinositol hydrolysis in activated T cells, J. Immunol 136:3019–3024.PubMedGoogle Scholar
  63. Moran, P. A., Diegel, M. L., Sias, J. C., Ledbetter, J. A., and Zarling, J. M., 1993, Regulation of HIV production by blood mononuclear cells from HIV-infected donors: I. Lack of correlation between HIV-1 production and T cell activation, AIDS Res. Hum. Retrovir. 9:455–464.PubMedGoogle Scholar
  64. Moretta, A., Pantaleo, G., Lopez-Botet, M., and Moretta, L., 1985, Involvement of T44 molecules in an antigen-independent pathway of T cell activation, J. Exp. Med. 162:823–838.PubMedGoogle Scholar
  65. Mueller, D. L., Jenkins, M. K., and Schwartz, R. H., 1989, Clonal expansion vs functional clonal inactivation: A costimulatory pathway determines the outcome of T cell receptor occupancy, Annu. Rev. Immunol. 7:445–489.PubMedGoogle Scholar
  66. Nagata, S., and Suda, T., 1995, Fas and Fas ligand: lpr and gld mutations, Immunol. Today 16:39–43.PubMedGoogle Scholar
  67. Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A., 1995, The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue, Nature 375:554–560.PubMedGoogle Scholar
  68. Nel, A. E., Gupta, S., Lee, L., Ledbetter, J. A., and Kanner, S. B., 1995, Ligation of the T-cell antigen receptor (TCR) induces association of hSosl, AZP-70, PLC-gammal and other phosphoproteins with Grb2 and the zeta-chain of the TCR, J. Biol. Chem. 270:18428–18436.PubMedGoogle Scholar
  69. Noguchi, M., Yi, H., Rosenblatt, H. M., Filipovich, A. H., Adelstein, S., Modi, W. S., McBride, O. W., and Leonard, W. J., 1993, Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans, Cell 73:147–157.PubMedGoogle Scholar
  70. Nunes, J. A., Collette, Y., Truneh, A., Olive, D., and Cantrell, D. A., 1995, The role of p21ras in CD28 signal transduction: Triggering of CD28 with antibodies, but not the ligand B7-1, activates p21ras, J. Exp. Med. 180:1067–1076.Google Scholar
  71. Ohno, H., Nakamura, T., Yagita, H., Okumura, K., Taniguchi, M., and Saito, T., 1991, Induction of negative signal through CD2 during antigen-specific T cell activation, J. Immunol. 147:2100–2106.PubMedGoogle Scholar
  72. Owaki, H., Varma, R., Gillis, B., Bruder, J. T., Rapp, U. R., Davis, L. S., and Geppert, T. D., 1993, Raf-1 is required for T cell IL2 production, EMBO J. 12:4367–4373.PubMedGoogle Scholar
  73. Pages, F., Ragueneau, M., Rottapel, R., Truneh, A., Nunes, J., Imbert, J., and Olive, D., 1994, Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling, Nature 369:327–329.PubMedGoogle Scholar
  74. Pastor, M. L., Reif, K., and Cantrell, D., 1995, The regulation and function of p21ras during T-cell activation and growth, Immunol. Today 16:159–164.Google Scholar
  75. Pawson, T., and Gish, G. D., 1992, SH2 and SH3 domains: From structure to function, Cell 71:359–362.PubMedGoogle Scholar
  76. Pinchuk, L. M., Polacino, P. S., Agy, M. B., Klaus, S. J., and Clark, E. A., 1994, The role of CD40 and CD80 accessory cell molecules in dendritic cell-dependent HIV-1 infection, Immunity 1:317–325.PubMedGoogle Scholar
  77. Poli, G., and Fauci, A. S., 1992, The effect of cytokines and pharmacologic agents on chronic HIV infection, AIDS Res. Hum. Retrovir. 8:191–197.PubMedGoogle Scholar
  78. Prasad, K. V., Cai, Y. C., Raab, M., Duckworth, B., Cantley, L., Shoelson, S. E., and Rudd, C. E., 1994, T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif, Proc. Natl. Acad. Sci. USA 91:2834–2838.PubMedGoogle Scholar
  79. Rao, A., 1994, NF-ATp: A transcription factor required for the co-ordinate induction of several cytokine genes, Immunol. Today 15:274–281.PubMedGoogle Scholar
  80. Ravichandran, K. S., and Burakoff, S. J., 1994, The adapter protein Shc interacts with the interleukin-2 (IL-2) receptor upon IL-2 stimulation, J. Biol. Chem. 269:1599–1602.PubMedGoogle Scholar
  81. Ren, R., Mayer, B. J., Cicchetti, P., and Baltimore, D., 1993, Identification of a ten-amino acid proline-rich SH3 binding site, Science 259:1157–1161.PubMedGoogle Scholar
  82. Roederer, M., Staal, F. J. T., Anderson, M., Rabin, R., Raju, P. A., and Herzenberg, L. A., 1993, Disregulation of leukocyte glutathione in AIDS, Ann. NY. Acad. Sci. 677:113–125.PubMedGoogle Scholar
  83. Rudd, C. E., Trevillyan, J. M., Dasgupta, J. D., Wong, L. L., and Schlossman, S. F., 1988, The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes, Proc. Natl. Acad. Sci. USA 85:5190–5194.PubMedGoogle Scholar
  84. Sancho, J., Ledbetter, J. A., Choi, M. S., Kanner, S. B., Deans, J. P., and Terhorst, C., 1992, CD3-zeta surface expression is required for CD4-p561ck-mediated upregulation of T cell antigen receptor-CD3 signaling in T cells, J. Biol. Chem. 267:7871–7879.PubMedGoogle Scholar
  85. Schieven, G. L., and Ledbetter, J. A., 1995, Activation of tyrosine kinase signal pathways by radiation and oxidative stress, Trends Endocrinol. Metab. 5:383–388.Google Scholar
  86. Schieven, G. L., Kirihara, J. M., Burg, D. L., Geahlen, R. L., and Ledbetter, J. A., 1993, p72syk tyrosine kinase is activated by oxidizing conditions which induce lymphocyte tyrosine phosphorylation and Ca2+ signals, J. Biol. Chem. 268:16688–16692.PubMedGoogle Scholar
  87. Schieven, G. L., Mittler, R. S., Nadler, S. G., Kirihara, J. M., Bolen, J. B., Kanner, S. B., and Ledbetter, J. A., 1994, ZAP-70 tyrosine kinase, CD45 and T cell receptor involvement in UV and H2O2 induced T cell signal transduction, J. Biol. Chem. 269:20718–20726.PubMedGoogle Scholar
  88. Sigal, N. H., and Dumont, F. J., 1992, Cyclosporin A., FK506, and rapamycin: Pharmacologic probes of lymphocyte signal transduction, Anna. Rev. Immunol. 10:519–560.Google Scholar
  89. Sloan-Lancaster, J., Shaw, A. S., Rothbard, J. B., and Allen, P. M., 1994, Partial T cell signaling: Altered phosphozeta and lack of ZAP70 recruitment in APL-induced T cell anergy, Cell 79:913–922.PubMedGoogle Scholar
  90. Smithgall, M. D., Wong, J. G. P., Linsley, P. S., and Haffar, O. K., 1995, Costimulation of CD4+ T cells via CD28 modulates human immunodeficiency virus type 1 infection and replication in vitro, AIDS Res. Hum. Retrovir. 11:885–892.PubMedGoogle Scholar
  91. Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., Birge, R. B., Fajardo, J. E., Chou, M. M., Hanafusa, H., Schaffhausen, B., and Cantley, L. C., 1994, SH2 domains recognize specific phosphopeptide sequences, Cell 72:767–778.Google Scholar
  92. Stein, P. H., Fraser, J. D., and Weiss, A., 1994, The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3’-kinase, Mol. Cell. Biol. 14:3392–3402.PubMedGoogle Scholar
  93. Su, B., Jacinto, E., Hibi, M., Kallunki, T., Karin, M., and Ben-Neriah, Y., 1994, JNK is involved in signal integration during costimulation of T lymphocytes, Cell 71:121–136.Google Scholar
  94. Suzuki, H., Kundig, T. M., Furlonger, C., Wakeham, A., Timms, E., Matsuyama, T., Schmits, R., Simard, J. J. L., Ohashi, P. S., Griesser, H., Taniguchi, T., Paige, C. J., and Mak, T. W., 1995, Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta, Science 268:1472–1480.PubMedGoogle Scholar
  95. Tan, P., Anasetti, C., Hansen, J. A., Melrose, J., Brunvand, M., Bradshaw, J., Ledbetter, J. A., and Linsley, P. S., 1993, Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1, J. Exp. Med. 177:165–173.PubMedGoogle Scholar
  96. Tarakhovsky, A., Turner, M., Schaal, S., Mee, P. J., Duddy, L. P., Rajewsky, K., and Tybulewicz, V. L. J., 1995, Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav, Nature 374:467–470.PubMedGoogle Scholar
  97. Terai, C., Kombluth, R. S., Pauza, C. D., Richman, D. D., and Carson, D. A., 1991, Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1, J. Clin. Invest. 87:1710–1715.PubMedGoogle Scholar
  98. Thompson, P. A., Gutkind, J. S., Robbins, K. C., Ledbetter, J. A., and Bolen, J. B., 1992, Identification of distinct populations of PI-3 kinase activity following T cell activation, Oncogene 7:719–725.PubMedGoogle Scholar
  99. Timson Gauen, L. K., Kong, A. N., Samelson, L. E., and Shaw, A. S., 1992, p59fyn tyrosine kinase associates with multiple T-cell receptor subunits through its unique amino-terminal domain, Mol. Cell. Biol. 12:5438–5446.PubMedGoogle Scholar
  100. Timson Gauen, L. K., Zhu, Y., Letourneur, F., Hu, Q., Bolen, J. B., Matis, L. A., Klausner, R. D., and Shaw, A. S., 1994, Interactions of p59fyn and ZAP-70 with T-cell receptor activation motifs: Defining the nature of a signalling motif, Mol. Cell. Biol. 14:3729–3741.Google Scholar
  101. Todderud, G., Wahl, M. L., Rhee, S. G., and Carpenter, G., 1990, Stimulation of phospholipase C-gamma 1 membrane association by epidermal growth factor, Science 249:296–298.PubMedGoogle Scholar
  102. Truitt, K. E., Hicks, C. M., and Imboden, J. B., 1994, Stimulation of CD28 triggers an association between CD28 and phosphatidylinositol 3-kinase in Jurkat T cells, J. Exp. Med. 179:1071–1076.PubMedGoogle Scholar
  103. Tsukada, S., Saffran, D. C., Rawlings, D. J., Parolini, O., Allen, R. C., Klisak, I., Sparkes, R. S., Kubagawa, H., Mohandas, T., Quan, S., Belmont, J. W., Cooper, M. D., Conley, M. E., and Witte, O. N., 1995, Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia, Cell 72:279–290.Google Scholar
  104. Tsygankov, A. Y., Broker, B. M., Fargnoli, J., Ledbetter, J. A., and Bolen, J. B., 1992, Activation of tyrosine kinase p60fyn following T cell antigen receptor crosslinking, J. Biol. Chem. 267:18259–18262.PubMedGoogle Scholar
  105. Turka, L. A., Linsley, P. S., Paine, R., Schieven, G. L., Thompson, C. B., and Ledbetter, J. A., 1991, Signal transduction via CD4, CD8, and CD28 in mature and immature thymocytes: Implications for thymic selection, J. Immunol. 146:1428–1436.PubMedGoogle Scholar
  106. Valentin, A., Lundin, K., Patarroyo, M., and Asjoe, B., 1990, The leukocyte adhesion glycoprotein CD18 participates in HIV-1 induced syncytia formation in monocytoid and T-cells, J. Immunol. 144:934–937.PubMedGoogle Scholar
  107. Valitutti, S., Muller, S., Cella, M., Padovan, E., and Lanzavecchia, A., 1995, Serial triggering of many T-cell receptors by a few peptide-MHC complexes, Nature 375:148–151.PubMedGoogle Scholar
  108. Veillette, A., Bookman, M. A., Horak, E. M., and Bolen, J. B., 1988, The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p561ck, Cell 55:301–308.PubMedGoogle Scholar
  109. Veillette, A., Bookman, M. A., Horak, E. M., Samelson, L. E., and Bolen, J. B., 1989, Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p561ck, Nature 338:257–259.PubMedGoogle Scholar
  110. Vetrie, D., Vorechovsky, I., Sideras, P., Holland, J., Davies, A., Hinter, F., Hammarstrom, L., Kinnon, K., Levinsky, R., Bobrow, M., Smith, C. I. E., and Bentley, D. R., 1995, The gene involved in X-linked agammaglobulinaemia (XLA) is a member of the src family of prptein-tyrosine kinases, Nature 361:226–233.Google Scholar
  111. Wang, Z.-Q., Dudhane, A., Orlikowsky, T., Clarke, K., Li, X., Darzynkiewicz, Z., and Hoffmann, M. K., 1994, CD4 engagement induces Fas antigen-dependent apoptosis of T cells in vivo, Eur. J. Immunol. 24:1549–1552.PubMedGoogle Scholar
  112. Wange, R. L., Malek, S. N., Desiderio, S., and Samelson, L. E., 1993, Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor zeta and CD3 epsilon from activated Jurkat T cells, J. Biol. Chem. 268:19797–19801.PubMedGoogle Scholar
  113. Weiss, A., and Littman, D. R., 1994, Signal transduction by lymphocyte antigen receptors, Cell 76:263–274.PubMedGoogle Scholar
  114. Weissman, D., Li, Y., Orenstein, J. M., and Fauci, A. S., 1995, Both a precursor and a mature population of dendritic cells can bind HIV, J. Immunol 155:4111–4117.PubMedGoogle Scholar
  115. Westendorp, M. O., Frank, R., Ochsenbauer, C., Stricker, K., Dheln, J., Walczak, H., Debatin, K.-M., and Krammer, P. H., 1995, Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120, Nature 375:497–503.PubMedGoogle Scholar
  116. Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H., and Swat, W., 1995, Defective signalling through the T-and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene, Nature 374:470–473.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jeffrey A. Ledbetter
    • 1
  1. 1.Bristol-Myers Squibb Pharmaceutical Research InstituteUSA

Personalised recommendations