The Immunotherapy of HIV Infection with Drugs

  • John W. Hadden


The history of the effort to treat HIV infection with immunotherapeutic drugs has been a frustrating one. Soon after the onset of this epidemic in 1981, there were extensive efforts to use a long list of drugs being employed in cancer immunotherapy to treat AIDS. As predicted (Hadden, 1985), these attempts failed (Hadden, 1991; Specter and Hadden, 1992). The problem, quite simply, related to the predicted inability of any drug to increase T-cell number by any mechanism other than the inhibition of HIV replication. In approaching this discussion, I recognize that this topic is not in vogue. In fact, in some recent reviews, the subject of immunotherapeutic drugs is not even mentioned (Laurence, 1995; Lederman, 1995). I take a different view (Hadden, 1991). I would contend that the efforts using some of the drugs have taught that not only are they safe but also that they can reduce the development of AIDS-defining clinical events and can often delay the predicted decline in CD4 T lymphocytes. Nevertheless, the efforts have not demonstrated a convincing mechanism of action. The problem remains to be properly phrased: What can immunotherapeutic drugs be expected to do for HIV infection? and How do we measure the effect by other than clinical endpoints?, i. e., how can we prove the mechanism of action? It will be the purpose of this chapter to review the progress of efforts to employ such drugs in HIV infection prior to the development of AIDS and to delineate prospects for better defining and improving such treatment.


Human Immunodeficiency Virus Human Immunodeficiency Virus Infection Human Immunodeficiency Virus Replication Inosine Pranobex Asymptomatic Human Immunodeficiency Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, D., Cotton, D., and Mayer, K., eds., 1995, AIDS/HIV Treatment Directory Vol. 7, No. 4.Google Scholar
  2. Addo, E., McFarlane, H., and Parsad, K., 1989, ACTH-inosine pranobex in the treatment of AIDS. Encouraging results, West Indian Med. J. 38:142–147.PubMedGoogle Scholar
  3. Ahuja, K., Manvar, D., Reddy, M., Moriarty, M., and Grieco, M. H., 1983, Cimetidine as an immunomodulating agent in the A.I.D. syndrome, J. Allergy Clin. Immunol. 71:132.CrossRefGoogle Scholar
  4. Barcellini, W., Meroni, P. L., Frasca, D., Squotti, C., Borghi, M. O., Uberti-Foppa, C., Buzzetti, P., Lazzarin, A., Doria, G., Moroni, M., and Zanussi, C., 1987, Effect of subcutaneous thymopentin treatment in drug addicts with persistent generalized lymphadenopathy, Clin. Exp. Immunol. 67:537–543.PubMedGoogle Scholar
  5. Bekesi, J. G., Tsang, P. H., Wallace, J. I., and Roboz, J. P., 1987, Immunorestorative properties of isoprinosine in the treatment of patients at high risk of developing ARC or AIDS, J. Clin. Lab. Immunol. 24:155–161.PubMedGoogle Scholar
  6. Birx, D. L., and Redfield, R., 1991, HIV vaccine therapy, Int. J. Immunopharmacol. 13:129–132.PubMedCrossRefGoogle Scholar
  7. Blackboum, D. J., Mackewicz, C., Barker, E., and Levy, J. A., 1994, Human CD8+ cell non-cytolytic anti-HIV activity mediated by a novel cytokine, Res. Immunol 145:653–658.CrossRefGoogle Scholar
  8. Brockmeyer, N. H., Kreuzfelder, E., Mertins, L., Chalabi, N., Kirch, W., Scheiermann, N., Goos, M., and Ohnhaus, E. E., 1988, Immunomodulatory properties of cimetidine in ARC patients, Clin. Immunol. Immunopathol. 48:50–60.PubMedCrossRefGoogle Scholar
  9. Carey, J. T., Lederman, M. M., Tossii, Z., Edmonds, K., Hodder, S., Calabrese, L. H., Proffitt, M. R., Johnson, C. E., and Ellner, J. J., 1987, Augmentation of skin test reactivity and lymphocyte blastogenesis in patients with AIDS treated with transfer factor, J. Am. Med. Assoc. 257:651–655.CrossRefGoogle Scholar
  10. Carter, W. A., Brodsky, I., Pellegrino, M. G., Henriques, H. R., Parenti, D. M. Schulof, R. S., Robinson, E. W., Volsky, D. J., Paxton, H., Kariko, K., Suhadolnik, R. J., Strayer, D. R., Lewin, M., Einck, L., Simon, G. L., Scheib, R. G., Montefiori, D. C., Mitchell, W. M., Paul, D., Meyerin, W. A., Reichenbach, N., and Gillespie, D. H., 1987, Clinical, immunological and virological effects of ampligen, a mismatched double-stranded RNA in patients with AIDS or AIDS-related complex, Lancet 6:1286–1292.CrossRefGoogle Scholar
  11. Carter, W. A., Ventura, D., Shapiro, D. E., Strayer, D. R., Gillespie, D. H., and Hubbell, H. R., 1991, Mismatched double-stranded RNA, ampligen (poly(I):poly(C12U)), demonstrates antiviral and immunostimulatory activities in HIV disease, Int. J. Immunopharmacol. 13:69–76.PubMedCrossRefGoogle Scholar
  12. Chachoua, A., Hochster, H., Green, M., Ward, C., Gutknecht, G., Chuang-Stein, C., Nicholas, J., and Merritt, J., 1988, Phase II trial of bropirimine in patients with AIDS related Kaposi’s sarcoma, Proc. Am. Soc. Clin. Oncol. 7:6 (abstract).Google Scholar
  13. Chirmule, N., Kalynanaraman, V., and Pahwa, S., 1988, Suppression of antigen specific lymphoproliferation by the envelope glycoproteins of the human immunedeficiency virus, FASEB J. 46:A906.Google Scholar
  14. Ciobanu, N., Weite, K., Kruger, G., Ventuta, S., Gold, J., Feldman, S. P., Wang, C. Y., Koziner, B., Moore, M. A. S., Safai, B., and Mertelsmann, R., 1983, Defective T-cell response to PHA and mitogenic monoclonal antibodies in male homosexuals with acquired immunodeficiency syndrome and its in vitro correction by interleukin 2, J. Clin. Immunol. 3:332–340.PubMedCrossRefGoogle Scholar
  15. Clerici, M., and Shearer, G. M., 1993, A TH1-TH2 switch is a critical step in the etiology of HIV infection, Immunol. Today 14:107–111.PubMedCrossRefGoogle Scholar
  16. Clerici, M., and Shearer, G. M., 1994, The TH1-TH2 hypothesis of HIV infection: New insights, Immunol. Today 15:575–581.PubMedCrossRefGoogle Scholar
  17. Clerici, M., Levin, J. M., Kessler, H. A., Harris, A., Berzofsky, J. A., Landay, A. L., and Shearer, G. M., 1994a, HIV-specific T-helper activity in seronegative health care workers exposed to contaminated blood, J. Am. Med. Assoc. 271:42–46.CrossRefGoogle Scholar
  18. Clerici, M., Wynn, T. A., Berzofsky, J. A., Blatt, S. P., Hendrix, C. W., Sher, A., Coffman, R. L., and Shearer, G. M., 1994b, Role of IL-2 in T helper cell dysfunction in asymptomatic individuals infected with the human immunodeficiency virus, J. Clin. Invest. 93:768–775.PubMedCrossRefGoogle Scholar
  19. Conant, M. A., Goldstein, G., Hirsch, R. L., Meyerson, L. A., and Kremer, A. B., 1990, The effect of thymopentin treatment on progression of disease and surrogate markers in HIV-infected patients without AIDS. (UCLA Symposia on Molecular and Cell Biology, San Francisco AIDS Meeting Abstract #L411.) J. Cell. Biochem. (Suppl.) 14D:148.Google Scholar
  20. De Simone, C., Albertini, F., Almaviva, M., Angarano, P., Chiodo, F., Costigliola, P., Delia, S., Ferlini, A., Gritti, F., Mazzarello, G., Milazzo, F., Montroni, M., Narciso, P., Pastore, G., Raise, E., Santini, G., Sorice, F., Terragna, A., Visco, G., and Vullo, V., 1988, Clinical and immunological assessment in HIV+ subjects receiving inosine-pranobex: A randomized, multicentric study, Med. Oncol. Tumor Pharmacother. 10:299–303.Google Scholar
  21. Falloon, J., Ogata-Arakaki, D., Baseler, M., Graziani, A., Armantea, M. A., and Davey, R. T., 1990, Therapy of HIV infection with AS-101 and zidovudine, Abstract, 6th Int. Conf. AIDS.Google Scholar
  22. Glasky, A. J., and Gordon, J., 1986, Inosiplex treatment of acquired immundeficiencies: A clinical model for effective immunomodulation, Methods Fundam. Exp. Clin. Pharmacol. 8:35–40.Google Scholar
  23. Goldstein, G., Conant, M. A., Beall, G., Grossman, H. A., Galpin, J. E., Blick, G., Calabrese, L. H., Hirsch, R. L., Fisher, A., Stampone, P., and Meyerson, L. A., 1995, Safety and efficacy of thymopentin in zidovudine (AZT)-treated asymptomatic HIV-infected subjects with 200-500 CD4 cell/mm3: A double-blind placebo-controlled trial, J. Acq. Immune Defic. Syndr. Hum. Retrovirol. 8:279–288.CrossRefGoogle Scholar
  24. Good, R. A., Haraguchi, S., Lorenz, E., and Day, N. K., 1991, In vitro immunomodulation and in vivo immuno-therapy of retrovirus-induced immunosuppression, Int. J. Immunopharmacol. 13:1–8.PubMedCrossRefGoogle Scholar
  25. Goodwin, J. S., and Webb, D. R., 1980, Regulation of the immune response by prostaglandins, Clin. Immunol. Immunopathol. 15:106–109.PubMedCrossRefGoogle Scholar
  26. Gottlieb, A. A., 1991, Clinical and immunologic observations in patients with AIDS-related complex treated with IMREG-1, Int. J. Immunopharmacol. 13:29–32.PubMedCrossRefGoogle Scholar
  27. Gottlieb, A. A., and Trial Investigators, 1988, A phase 3 controlled trial of ImReg 1 in AIDS/ARC patients, 4th Int. Conf. AIDS, Stockholm, June.Google Scholar
  28. Gottlieb, M. S., Zackin, R. A., Fiala, M., Henry, D. H., Marcel, A. J., Combs, K. L., Vieira, J., Liebman, H. A., Cone, L. A., Hillman, B. A., and Gottlieb, A. A., 1991, Response to treatment with the leukocyte-derived immunomodulator IMREG-1 in immunocompromised patients with AIDS-related complex, Ann. Intern. Med. 115:84–91.PubMedCrossRefGoogle Scholar
  29. Gurley, R. J., Keuchi, K., Byrn, R. A., Anderson, K., and Groopman, J. E., 1989, CD4 lymphocyte function with early human immunodeficiency virus infection, Proc. Natl. Acad. Sci. USA 86:1993–1997.PubMedCrossRefGoogle Scholar
  30. Hadden, E. M., Wang, Y., Sosa, M., Coffey, R. G., Giner-Sorolla, A., and Hadden, J. W., 1995, Methyl inosine monophosphate (MIMP) augments T lymphocyte mitogen responses and reverses various immunosuppressants, Int. J. Immunopharmacol. 17:763–770.PubMedCrossRefGoogle Scholar
  31. Hadden, J. W., 1985a, Thymomimetic drugs, in: Serono Symposium on Immunopharmacology, Volume 23 (P. A. Miescher, L. Bolis, and M. Ghione, eds.), Raven Press, New York, pp. 183–192.Google Scholar
  32. Hadden, J. W., 1985b, Perspective on the immunotherapy of AIDS, Ann. NY. Acad. Sci. 437:76–84.CrossRefGoogle Scholar
  33. Hadden, J. W., 1991, Immunotherapy of human immunodeficiency virus (HIV), Trends Pharmacol Sci. 12:107–111.PubMedCrossRefGoogle Scholar
  34. Hadden, J. W., 1994, T-cell adjuvancy, Int. J. Immunopharmacol. 16:703–710.PubMedCrossRefGoogle Scholar
  35. Hadden, J. W., and Coffey, R. G., 1990, Early biochemical events in the activation of T lymphocytes by mitogenic agents, in: Immunopharmacology Reviews I (J. W. Hadden and A. Szentivanyi, eds.), Plenum Press, New York, pp. 273–376.CrossRefGoogle Scholar
  36. Hadden, J. W., Coffey, R. G., Hadden, E. M., Lopez-Corrales, E., and Sunshine, G. H., 1975, Effects of levamisole and imidazole on lymphocyte proliferation and cyclic nucleotide levels, Cell. Immunol. 20:98–103.PubMedCrossRefGoogle Scholar
  37. Hadden, J. W., Specter, S., Galy, A., Touraine, J. L., and Hadden, J. W., 1986, Thymic hormones, interleukins, endotoxins and thymomimetic drugs in T lymphocyte ontogeny, in: Advances in Immunopharmacology HI (L. Chedid, J. W. Hadden, F. Spreafico, P. Dukor, and D. Willoughby, eds.), Pergamon Press, Elmsford, NY, pp. 487–497.Google Scholar
  38. Hadden, J. W., Giner-Sorolla, A., and Hadden, E. M., 1991, Methyl inosine monophosphate (MIMP), a new purine immunomodulator for HIV infection, Int. J. Immunopharmacol. 13:49–54.PubMedCrossRefGoogle Scholar
  39. Hadden, J. W., Ongradi, J., Specter, S., Nelson, R., Sosa, M., Strand, M., Giner-Sorolla, A., and Hadden, E. M., 1992, Methyl inosine monophosphate (MIMP): A potential immunotherapeutic for early HIV infection, Int. J. Immunopharmacol. 14:555–563.PubMedCrossRefGoogle Scholar
  40. Haraguchi, S., Good, R. A., James-Yarish, M., Cianciolo, G. J., and Day, N. K., 1995, Induction of intracellular cAMP by a synthetic retroviral envelope peptide: A possible mechanism of immunopathogenesis in retroviral infections, Proc. Natl. Acad. Sci. USA 92:5568–5571.PubMedCrossRefGoogle Scholar
  41. Hersh, E. M., Funk, C. Y., Peterson, E. A., and Mosier, D. E., 1991a, Effective therapy of the LP-BM5 murine retroviruse-induced lymphoproliferative disease with diethyldithiocarbamate, AIDS Res. Hum. Retrovir. 7:553–561.PubMedCrossRefGoogle Scholar
  42. Hersh, E. M., Brewton, G., Abrams, D., Bartlett, J., Galpin, J., Gill, P., Gorter, R., Gottlieb, M., Jonikas, J. J., Landesman, S., Levine, A., Marcel, A., Peterson, E. A., Whiteside, M., Zahradnik, J., Negron, C., Boutitic, F., Caraux, J., Dupuy, J.-M., and Salmi, L. R., 1991b, Ditiocarb sodium (diethyldithiocarbamate) therapy in patients with asymptomatic HIV infection and AIDS. A randomized, double-blind, placebo-controlled, multicenter study, J. Am. Med. Assoc. 265:1538–1544.CrossRefGoogle Scholar
  43. The HIV-87 Study Group, 1993, Multicenter, randomized, placebo-controlled study of ditiocarb (Imuthiol) in human immunodeficiency virus-infected asymptomatic and minimally symptomatic patients, AIDS Res. Hum. Retrovir. 9:83–89.CrossRefGoogle Scholar
  44. Ho, D. D., Moudgil, T., and Alam, M., 1989, Quantitation of human immunodeficiency virus type I in the blood of infected persons, N. Engl. J. Med. 321:1621–1625.PubMedCrossRefGoogle Scholar
  45. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M., 1995, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature 373:123–126.PubMedCrossRefGoogle Scholar
  46. Hofmann, B., Nishanian, P., Nguyen, T., Liu, M., and Fahey, J. L., 1993a, Restoration of T-cell function in HIV infection by reduction of intracellular cAMP levels with adenosine analogues, AIDS 7:659–664.PubMedCrossRefGoogle Scholar
  47. Hofmann, B., Nishanian, P., Nguyen, T., Insixiengmay, P., and Fahey, J. L., 1993b, Human immunodeficiency virus proteins induce the inhibitory cAMP/protein kinase A pathway in normal lymphocytes, Proc. Natl. Acad. Sci. USA 90:6676–6680.PubMedCrossRefGoogle Scholar
  48. Kahn, J. O., Allan, J. D., Hodges, T. L., Kaplan, L. D., Arri, C. J., Fitch, H. F., Izu, A. E., Mordenti, J., Sherwin, S. A., Groopman, J. E., and Volderding, P. A. 1990, The safety and pharmacokinetics of recombinant soluble CD4 (rCD4) in subjects with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex, Ann. Intern. Med. 112:254–261.PubMedCrossRefGoogle Scholar
  49. Kaplan, C. S., Peterson, E. A., Yokum, D., and Hersh, E. M., 1989, A randomized controlled dose response study of intravenous sodium diethyldithiocarbamate in patients with advanced human immunodeficiency virus infection, Life Sci. 45:iii–ix.PubMedCrossRefGoogle Scholar
  50. Keadle, T. L., Daniel, S., Rouse, B. T., and Horohov, D. W., 1996, Virus induced immunosuppression, in: Immunopharmacology Reviews, Vol. 2, pp. 131–156. (J. W. Hadden and A. Szentivanyi, eds.), Plenum Press, New York.CrossRefGoogle Scholar
  51. Kirkpatrick, C. H., Davis, K. C., Horsburgh, C. R., Cohn, D. L., Penley, K., and Judson, K. N., 1985, Interleukin 2 production by persons with the generalized lymphadenopathy syndrome or the acquired immune deficiency syndrome, J. Clin. Immunol. 5:31–37.PubMedCrossRefGoogle Scholar
  52. Kotier, D. P., and Reka, S., 1990, Modulation of HIV production by rectal mucosa in vitro, Gastroenterology 98:457a.Google Scholar
  53. Kovacs, J. A., Baseler, M., Dewar, R. J., Vogel, S., Davey, R. T., Jr., Falloon, J., Polis, M. A., Walker, R. E., Stevens, R., Salzman, N. P., Metcalf, J. A., Masur, H., and Lane, H. C., 1995, Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection, N. Engl. J. Med. 332:567–575.PubMedCrossRefGoogle Scholar
  54. Landay, A. L., Mackewicz, C. E., and Levy, J. A., 1993, An activated CD8+ T cell phenotype correlates with anti-HIV activity and asymptomatic clinical status, Clin. Immunol. Immunopathol. 69:106–116.PubMedCrossRefGoogle Scholar
  55. Lang, J., Trepo, C., Kirstetter, M., Herrou, L., Retornaz, G., Renoux, G., Musset, M., Touraine, J. L., Choutet, P., Falkenroot, A., Liurdset, J. M., Touraine, F., Renoux, M., Caraux, J., and The AIDS Imuthiol French Study Group, 1988, Randomized and double-blind placebo-controlled trial of ditiocarb sodium (Imuthiol) in human immunodeficiency virus infection, Lancet 9:702–706.CrossRefGoogle Scholar
  56. LaPorte, J. P., Gonzalez, C., and Lebas, J., 1989, A new immunomodulating compound (AS101) in the treatment of AIDS, 5th Int. Conf. AIDS, Montreal p. 399, abstract.Google Scholar
  57. Laurence, J., 1995, Immune reconstitution in HIV/AIDS: Concepts and strategies, The AIDS Reader pp. 52-59.Google Scholar
  58. Lederman, M., 1995, Host factor-directed immunotherapies, The AIDS Reader pp. 64-68.Google Scholar
  59. Mackewicz, C., and Levy, J. A., 1992, CD8+ cell anti-HIV activity: Nonlytic suppression of virus replication, AIDS Res. Hum. Retrovir. 8:1039–1050.PubMedCrossRefGoogle Scholar
  60. McMahon, D., Winklestein, A., Huang, X.-L., Armstrong, J., Pazin, G., Rinaldo, C., Tripoli, C., and Ho, M., 1992, Acute reactions associated with the infusion of ampligen, AIDS 6:235–236.PubMedGoogle Scholar
  61. Merigan, T. C., Fisher, A. C., Goldstein, G., Winters, M. A., Meyerson, L. A., and Hirsch, R. L., 1995, Evaluation of codon 215 mutation, viral load, P24 and CD4 as prognostic factors in asymptomatic HIV infected subjects treated with thymopentin, J. Acq. Immune Defic. Syndr. Hum. Retrovir. 8:279–288.CrossRefGoogle Scholar
  62. Nielson, H. J., Svenningsen, A., Moesgaard, F., Georgsen, J., Pedersen, C., Mathiesen, L., Dickmeiss, E., Nielsen, J. O., and Kehlet, H., 1991, Ranitidine improves certain cellular immune responses in asymptomatic HIV-infected individuals, J. Acq. Immune Defic. Syndr. 4:577–584.Google Scholar
  63. Pahwa, S., Pahwa, R., Good, R. A., Gallo, R. C., and Saxinger, C., 1986, Stimulatory and inhibitory influences of human immunodeficiency virus on normal B lymphocytes, Proc. Natl. Acad. Sci. USA 83:9124–9128.PubMedCrossRefGoogle Scholar
  64. Pantaleo, G., Graziosi, C., Demarest, J. F., Butini, L., Montroni, M., Fox, C. H., Orenstein, J. M., Kotler, D. P., and Fauci, A. S., 1993, HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature 362:355–358.PubMedCrossRefGoogle Scholar
  65. Park, B. Y., and Good, R. A., 1975, Quantitative assessment of thymus-dependent T-cell function in human peripheral blood, Birth Defects 11:10–11.PubMedGoogle Scholar
  66. Pederson, E. C., Sandstrom, E., Peterson, C. S., Norkrans, G., Gerstoft, J., Karlsson, J. O., Jurgenson, H. J., Christianson, K. C., Hakansson, C., Pehrson, P. O., Nielson, H. J., and the candinavian Isoprinosine Study Group, 1990, The efficacy of inosine pranobex in preventing the acquired immunodeficiency syndrome in patients with human immunodeficiency virus infection, N. Engl. J. Med. 322:1757–1763.CrossRefGoogle Scholar
  67. Reddy, M. M., Manvar, D., Ahuja, K. K., Moriarty, M. L., and Grieco, M. H., 1985, Augmentation of mitogen-induced proliferative responses by in vitro indomethacin in patients with acquired immune deficiency syndrome and AIDS-related complex, Int. J. Immunopharmacol. 7:917–921.PubMedCrossRefGoogle Scholar
  68. Redfield, R. R., Birx, D. L., Ketter, N., Tramont, E., Polonis, V., Davis, C., Brundage, J. F., Smith, G., Johnson, S., Fowler, A., Wierzba, T., Shafferman, A., Volovitz, F., Oster, C., Burke, D. S., and the Military Medical Consortium for Applied Retroviral Research, 1991, A Phase I evaluation of the safety and immunogenicity of vaccination with recombinant gp160 in patients with early human immunodeficiency virus infection, N. Engl. J. Med. 324:1677–1684.PubMedCrossRefGoogle Scholar
  69. Reisinger, E. A., Kern, P., Ehrst, M., Bock, P., Rao, H. D., Dietrich, M., and German DTC Study Group, 1990, Inhibition of HIV progression by dithiocarb, Lancet 335:679–682.PubMedCrossRefGoogle Scholar
  70. Renoux, G., and Renoux, M., 1984, Diethyldithiocarbamate (DTC): A biological augmenting agent specific for T cells, in: Immune Modulation Agents and Their Mechanisms (R. L. Fenichel and M. A. Chirigos, eds.), Dekker, New York, p. 7.Google Scholar
  71. Rozzo, S. J., and Kirkpatrick, C. H., 1992, Purification of transfer factors, Mol. Immunol. 74:167–182.CrossRefGoogle Scholar
  72. Ruegg, C. L., and Engleman, E. G., 1990, Impaired immunity in AIDS: The mechanisms responsible and their potential reversal by antiviral therapy. Ann. N.Y. Acad. Sci. 616:307–317.PubMedCrossRefGoogle Scholar
  73. Ruegg, C. L., and Strand, M., 1991, A synthetic peptide with sequence identity to the transmembrane protein PG41 of HIV-1 inhibits distinct lymphocyte activation pathways dependent on protein kinase C and intracellular calcium influx, Cell. Immunol. 137:1–13.PubMedCrossRefGoogle Scholar
  74. Ruegg, C. L., Monell, C. R., and Strand, M., 1989, Identification, using synthetic peptides, of the minimum amino acid sequence from the retroviral transmembrane protein p15E required for inhibition of lympho-proliferation and its similarity to gp21 of human T lymphotropic virus types I and II, J. Virol. 63:3250–3256.PubMedGoogle Scholar
  75. Ruiz-Palacios, G. M., Ponce de Leon, A., Alacon-Segovia, D., Calva, E., and Vasquez, M., 1988, Tolerance and clinical response to AS101, a new immunomodulator in AIDS patients, IV Int. Conf. AIDS, Stockholm p. 229.Google Scholar
  76. Schooley, R. T., Merigan, T. C., Gaut, P., Hirsch, M. S., Holodniy, M., Flynn, T., Liu, S., Byington, R. E., Henochowicz, S., Gubish, E., Spriggs, D., Kufe, D., Schindler, J., Dawson, A., Thomas, D., Hanson, D. G., Letwin, B., Liu, T., Gulinello, J., Kennedy, S., Fisher, R., and Hi, D. D., 1990, Recombinant soluble CD4 therapy in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex, Ann. Intern. Med. 112:247–253.PubMedCrossRefGoogle Scholar
  77. Schwartz, D. H., Skowron, G., and Merigan, T. C., 1991, Safety and effects of IL-2 plus zidovudine in a tomatic individuals infected with human immunodeficiency virus, J. Acq. Immune Defic. Syndr. 4:11–23.Google Scholar
  78. Shibata, M., Hoon, D., Okun, E., and Morton, D., 1992, Modulation of histamine type II receptors on CD8+ T cells by interleukin 2 and cimetidine, Int. Arch. Allergy Appl. Immunol. 97:8–16.CrossRefGoogle Scholar
  79. Siegal, J. P., Djeu, J., Stocks, N. L., Masur, H., Gelmann, E. P., and Quinnan, G. V., Jr., 1985, Sera from patients with the acquired immunodeficiency syndrome inhibit production of interleukin 2 by normal lymphocytes, J. Clin. Invest. 75:1957–1964.CrossRefGoogle Scholar
  80. Silvestris, F., Germone, A., Frassanito, M., and Dammacco, F., 1989, Immunologie effects of long-term thymopentin treatment in patients with HIV-induced lymphadenopathy syndrome, J. Lab. Clin. Med. 113:139–144.PubMedGoogle Scholar
  81. Sinha, S. K., Sizemore, R. C., and Gottlieb, A. A., 1988, Immunomodulatory components present in ImReg-1, an experimental immunosupportive biologic, Biotechnology 6:810–815.CrossRefGoogle Scholar
  82. Sizemore, R. C., Dienglewicz, R. L., Pecunia, E., and Gottlieb, A. A., 1991, Modulation of concanavalin A-induced, antigen-nonspecific regulatory cell activity by Leu-enkephalin and related peptides, Clin. Immunol. Immunopathol. 60:310–318.PubMedCrossRefGoogle Scholar
  83. Snyderman, R., and Cianciolo, G. J., 1984, Immunosuppressive activity of the retroviral envelope protein P15E and its possible relationship to neoplasia, Immunol. Today 5:240–244.CrossRefGoogle Scholar
  84. Sosa, M., Sana, A. R., Wang, Y., Wadsworth, T., Coto, J. A., Giner-Sorolla, A., Hadden, E. M., and Hadden, J. W., 1992, Potentiation of immune responses in mice by a new inosine derivative—Methyl inosine monophosphate (MIMP), Int. J. Immunopharmacol. 14:1259–1266.PubMedCrossRefGoogle Scholar
  85. Specter, S., and Hadden, J. W., 1992, Immunotherapy for acquired immunodeficiency syndrome: Status and prospects, in: AIDS and Other Manifestations of HIV Infection (G. Wormser, ed.), Raven Press, New York, pp. 625–632.Google Scholar
  86. Sunshine, G., Basch, R. S., Coffey, R. G., Cohen, K. W., Goldstein, G., and Hadden, J. W., 1978, Thymopoietin enhances the allogenic response and cyclic nucleotide levels of mouse peripheral, thymus-derived lymphocytes, J. Immunol. 120:1594–1599.PubMedGoogle Scholar
  87. Svedersky, L., Roey, S., Scillian, J., Goldyne, M., Moody, D., and Stites, D., 1990, Prostaglandin production is related to decreased lymphocyte responses in HIV-infected individuals, FASEB J. 7(4), ASBMG-AAI Meeting, New Orleans, abstract #3284.Google Scholar
  88. Turowski, R. C., and Triozzi, P. L., 1994, Application of chemical immunomodulators to the treatment of cancer and AIDS, Cancer Invest. 12:620–643.PubMedCrossRefGoogle Scholar
  89. Wilson, G. B., Paddock, G. V., and Fudenberg, H. H., 1979, The chemical nature of the antigen-specific moiety of transfer factor, Trans. Assoc. Am. Physicians 92:239–256.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • John W. Hadden
    • 1
  1. 1.Department of Internal Medicine, Division of ImmunopharmacologyUniversity of South Florida Medical CollegeTampaUSA

Personalised recommendations