Genetic Organization of HIV

  • Lee Ratner

Abstract

HIV-1 is a member of the primate lentivirus subgroup of retroviruses (Weiss et al., 1982), and is a close relative to HIV-2 and simian immunodeficiency viruses (SIV). More distantly related retroviruses infect sheep (visna virus), horses (equine infectious anemia virus), cats (feline immunodeficiency virus), and cattle (bovine immunodeficiency virus). These viruses are distinguished from murine and avian retroviruses in their vast array of regulatory and accessory gene products, in addition to the structural and enzymatic gene products common to all retroviruses. This chapter describes our current understanding of HIV-1 genes, their products, and functions. Rather than provide a lengthy list of references, this chapter refers to several excellent, recent reviews, and a selected group of more recent scientific papers.

Keywords

Human Immunodeficiency Virus Human Immunodeficiency Virus Type Virus Particle Long Terminal Repeat Simian Immunodeficiency Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken, C., and Trono, D., 1995, Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis, J. Virol 69:5048–5056.PubMedGoogle Scholar
  2. Ansari-Lari, M. A., Donehower, L. A., and Gibbs, R. A., 1995, Analysis of human immunodeficiency virus type 1 integrase mutants, Virology 211:332–335.PubMedCrossRefGoogle Scholar
  3. Amendt, B. A., Si, Z.-H., and Stoltzfus, M., 1995, Presence of exon splicing silencers within human immunodeficiency virus type 1 tat exon 2 and tat-rev exon 3: Evidence for inhibition mediated by cellular factors, Mol. Cell. Biol. 15:4606–4615.PubMedGoogle Scholar
  4. Baba, T. W., Jeong, Y. S., Penninck, D., Bronson, R., Greene, M. R., and Ruprecht, R. M., 1995, Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques, Science 267:1820–1824.PubMedCrossRefGoogle Scholar
  5. Bogerd, H. P., Fridell, R. A., Madore, S., and Cullen, B. R., 1995, Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins, Cell 82:485–494.PubMedCrossRefGoogle Scholar
  6. Broder, C. C., Dimitrov, D. S., Blumenthal, R., and Berger, E. A., 1993, The block to HIV-1 envelope glycoprotein-mediated membrane fusion in animal cells expressing human CD4 can be overcome by a human cell component(s), Virology 193:483–491.PubMedCrossRefGoogle Scholar
  7. Brown, P. O., 1990, Integration of retroviral DNA, Curr. Top. Microbiol. Immunol. 157:19–48.PubMedCrossRefGoogle Scholar
  8. Bryant, M. L., and Ratner, L., 1990, Myristoylation-dependent replication and assembly of HIV-1, Proc. Natl. Acad. Sci. USA 87:523–527.PubMedCrossRefGoogle Scholar
  9. Bryant, M. L., Heuckeroth, R. O., Kimata, J. T., Ratner, L., and Gordon, J. L., 1989, Replication of human immunodeficiency virus 1 and Moloney murine leukemia virus is inhibited by different heteroatom-containing analogs of myristic acid, Proc. Natl. Acad. Sci. USA 86:8655–8659.PubMedCrossRefGoogle Scholar
  10. Carriere, C., Gay, B., Chazal, N., Morin, N., and Boulanger, P., 1995, Sequence requirements for encapsidation of deletion mutants and chimeras of human immunodeficiency virus type 1 Gag precursor into retrovirus-like particles, J. Virol. 69:2366–2377.PubMedGoogle Scholar
  11. Clements, G. J., Price-Jones, M. J., Stephens, P. E., Sutton, C., Schulz, T. F., Clapham, P. R., McKeating, J. A., McClure, M. O., Thomson, S., Marsh, M., Kay, J., Weiss, R. A., and Moore, J. P., 1991, The V3 loops of the HIV-1 and HIV-2 surface glycoproteins contain proteolytic cleavage sites: A possible function in viral fusion? AIDS Res. Hum. Retrovir. 7:3–16.PubMedGoogle Scholar
  12. Coffin, J. M., 1995, HIV population dynamics in vivo: Implications for genetic variation, pathogenesis, and therapy, Science 267:483–489.PubMedCrossRefGoogle Scholar
  13. Craven, R. C., Leure-duPree, A. E., Weldon, R. A., and Wills, J. W., 1995, Genetic analysis of the major homology region of Rous sarcoma virus gag protein, J. Virol. 69:4213–4227.PubMedGoogle Scholar
  14. Cupelli, L. A., and Hsu, M.-C., 1995, The human immunodeficiency virus type 1 tat antagonist, Ro 5-3335, predominantly inhibits transcription initiation from the viral promoter, J. Virol. 69:2640–2643.PubMedGoogle Scholar
  15. Dedera, D., and Ratner, L., 1991, Demonstration of two distinct cytopathic effects with syncytia-defective HIV-1 mutants, J. Virol. 65:6129–6136.PubMedGoogle Scholar
  16. Dedera, D., Gu, R., and Ratner, L., 1992, Conserved cysteine residues in the HIV-1 transmembrane envelope protein are essential to precursor envelope cleavage, J. Virol. 66:1207–1209.PubMedGoogle Scholar
  17. Du, Z., Lang, S. M., Sasseville, V G., Lackner, A. A., Ilyinskii, P. O., Daniel, M. D., Jung, J. U., and Desrosiers, R. C., 1995, Identification of a Nef allele that causes lymphocyte activation and acute disease in macaque monkeys, Cell 82:665–674.PubMedCrossRefGoogle Scholar
  18. Dukes, C. S., Yu, Y., Rivadeneira, E. D., Sauls, D. L., Liao, H.-X., Haynes, B. F., and Weinberg, J. B., 1995, Cellular CD44S as a determinant of human immunodeficiency virus type 1 infection and cellular tropism, J. Virol. 69:4000–4005.PubMedGoogle Scholar
  19. Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R., and Davies, D. R., 1994, Crystal structure of the catalytic domain of HIV-1 integrase: Similarity to other polynucleotidyl transferases, Science 266:1981–1986.PubMedCrossRefGoogle Scholar
  20. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A., 1996, HIV-1 entry cofactor: Functional cDNA cloning of a seven transmembrane, G protein-coupled receptor, Science 272:872–877.PubMedCrossRefGoogle Scholar
  21. Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W., and Luhrmann, R., 1995, The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs, Cell 82:475–484.PubMedCrossRefGoogle Scholar
  22. Francke, E. K., Yuan, H. E. H., and Luban, J., 1994, Specific incorporation of cyclophilin A into HIV-1 virions, Nature 372:359–362.CrossRefGoogle Scholar
  23. Gabuzda, D., Olshevsky, U., Bertaini, P., Haseltine, W. A., and Sodroski, J., 1991, Identification of membrane anchorage domains of the HIV-1 gp160 envelope glycoprotein precursor, J. Acq. Immune Defic. Syndr. 4:34–40.Google Scholar
  24. Gallay, P., Swingler, S., Aiken, C., and Trono, D., 1995, HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator, Cell 80:379–388.PubMedCrossRefGoogle Scholar
  25. Gaynor, R. B., 1995, Regulation of human immunodeficiency virus type 1 gene expression by the transactivator protein Tat, in: Transacting Functions of Human Retroviruses, Current Topics in Microbiology and Immunology, Volume 193 (I. S. Y Chen, H. Koprowski, A. Srinivasan, and P. K. Vogt, eds.), Springer-Verlag, Berlin, pp. 51–78.CrossRefGoogle Scholar
  26. Goff, S. P., 1990, Integration of retroviral DNA into the genome of the infected cell, Cancer Cells 2:172–178.PubMedGoogle Scholar
  27. Gorelick, R. J., Chabot, D. J., Rein, A., Henderson, L. E., and Arthur, L. O., 1993, The two zinc fingers in the human immunodeficiency virus type 1 nucleocapsid protein are not functionally equivalent, J. Virol. 67:4027–4036.PubMedGoogle Scholar
  28. Gottlinger, H. G., Dorfman, T., Sodroski, J. G., and Haseltine, W. A., 1991, Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release, Proc. Natl. Acad. Sci. USA 88:3195–3199.PubMedCrossRefGoogle Scholar
  29. Grandgenett, D. P., and Mumm, S. R., 1990, Unraveling retrovirus integration, Cell 60:3–4.PubMedCrossRefGoogle Scholar
  30. Greenway, A., Azad, A., and McPhee, D., 1995, Human immunodeficiency virus type 1 Nef protein inhibits activation pathways in peripheral blood mononuclear cells and T-cell lines, J. Virol. 69:1842–1850.PubMedGoogle Scholar
  31. Heinzinger, N. K., Bukrinsky, M. I., Haggerty, S. A., Ragland, A. M., Kewalramani, V., Lee, M.-A., Gendelman, H. E., Ratner, L., Strevenson, M., and Emerman, M., 1994, The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells, Proc. Natl. Acad. Sci. USA 91:7311–7315.PubMedCrossRefGoogle Scholar
  32. Helseth, E., Olshevsky, U., Furman, C., and Sodroski, J., 1991, Human immunodeficiency virus type 1 gp120 envelope glycoprotein regions important for association with the gp41 transmembrane glycoprotein, J. Virol. 65:2119–2123.PubMedGoogle Scholar
  33. Hope, T., and Pomerantz, R. J., 1995, The human immunodeficiency virus type 1 Rev protein: A pivotal protein in the viral life cycle, in: Transacting Functions of Human Retroviruses, Current Topics in Microbiology and Immunology, Volume 193 (I. S. Y. Chen, H. Koprowski, A. Srinivasan, and P. K. Vogt, eds.), Springer-Verlag, Berlin, pp. 91–106.CrossRefGoogle Scholar
  34. Jabbar, M. A., 1995, The human immunodeficiency virus type 1 Vpu protein: Roles in virus release and CD4 downregulation, in: Transacting Functions of Human Retroviruses, Current Topics in Microbiology and Immunology, Volume 193 (I. S. Y. Chen, H. Koprowski, A. Srinivasan, and P. K. Vogt, eds.), Springer-Verlag, Berlin, pp. 107–120.CrossRefGoogle Scholar
  35. Jacks, T., Power, M. D., Masiarz, F. R., Luciw, P. A., Barr, P. J., and Varmus, H. E., 1988, Characterization of ribosomal frameshifting in HIV-1 gag-pol expression, Nature 331:280–283.PubMedCrossRefGoogle Scholar
  36. Jones, K. A., and Peterlin, B. M., 1994, Control of RNA initiation and elongation at the HIV-1 promoter, Annu. Rev. Biochem. 63:717–743.PubMedCrossRefGoogle Scholar
  37. Kalpana, G. V., Marmon, S., Wang, W., Crabtree, G. R., and Goff, S. P., 1994, Binding and stimulation of HIV integrase to transcription factor SNF5, Science 266:2002–2006.PubMedCrossRefGoogle Scholar
  38. Kappes, J. C., 1995, Viral protein X, in: Transacting Functions of Human Retroviruses, Current Topics in Microbiology and Immunology, Volume 193 (I. S. Y. Chen, H. Koprowski, A. Srinivasan, and P. K. Vogt, eds.), Springer-Verlag, Berlin, pp. 121–132.CrossRefGoogle Scholar
  39. Katz, R. A., and Skalka, A. M., 1994, The retroviral enzymes, Annu. Rev. Biochem. 63:133–173.PubMedCrossRefGoogle Scholar
  40. Koito, A., Stamatatos, L., and Cheng-Mayer, C., 1995, Small amino acid sequence changes within the V2 domain can affect the function of a T-cell line-tropic human immunodeficiency virus type 1 envelope gp120, Virology 206:878–884.PubMedCrossRefGoogle Scholar
  41. Leonard, C. K., Spellman, M. W., Riddle, L., Harris, R. J., Thomas, J. N., and Gregory, T. J., 1990, Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells, J. Biol. Chem. 265:10373–10382.PubMedGoogle Scholar
  42. Levy, D. N., Refaeli, Y., and Weiner, D. B., 1995, The vpr regulatory gene of human immunodeficiency virus, in: Transacting Functions of Human Retroviruses, Current Topics in Microbiology and Immunology, Volume 193 (I. S. Y Chen, H. Koprowski, A. Srinivasan, and P. K. Vogt, eds.), Springer-Verlag, Berlin, pp. 209–238.CrossRefGoogle Scholar
  43. Lu, Y.-L., Spearman, P., and Ratner, L., 1993, HIV-1 viral protein R localization in infected cells and virion, J. Virol. 67:6542–6550.PubMedGoogle Scholar
  44. Lu, Y.-L, Bennett, R., Wills, J., Gorelick, R., and Ratner, L., 1995, A leucine-triplet repeat sequence in Gag p6 required for HIV-1 Vpr incorporation, J. Virol. 69:6873–6879.PubMedGoogle Scholar
  45. Luban, J., and Goff, S. P., 1994, Mutational analysis of cis-acting packaging signals in human immunodeficiency virus type 1 RNA, J. Virol. 68:3784–3793.PubMedGoogle Scholar
  46. Macreadie, I., G., Castelli, L. A., Hewish, D. R., Kirkpatrick, A., Ward, A. C., and Azad, A. A., 1995, A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects, Proc. Natl. Acad. Sci. USA 92:2114–2710.CrossRefGoogle Scholar
  47. Maddon, P. J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A., and Axel, R., 1986, The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain, Cell 47:333–348.PubMedCrossRefGoogle Scholar
  48. Mahalingam, S., Khan, S. A., Murali, R., Jabbar, M. A., Monken, C. E., Collman, R. G., and Srinivasan, A., 1995, Mutagenesis of the putative alpha-helical domain of the Vpr protein of human immunodeficiency virus type 1: Effect on stability and virion incorporation, Proc. Natl. Acad. Sci. USA 92:3794–3798.PubMedCrossRefGoogle Scholar
  49. Mammano, F., Kondo, E., Sodroski, J., Bukovsky, A., and Gottlinger, H. G., 1995, Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains, J. Virol 69:3824–3830.PubMedGoogle Scholar
  50. Massiah, M. A., Stanch, M. R., Paschall, C., Summers, M. F., Christensen, A. M., and Sundquist, W. L., 1994, Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein, J. Mol. Biol. 244:198–223.PubMedCrossRefGoogle Scholar
  51. Miller, M. D., Warmerdam, M. T., Page, K. A., Feinberg, M. B., and Greene, W. C., 1995, Expression of the human immunodeficiency virus type 1 (HIV-1) nef gene during HIV-1 production increases progeny particle infectivity independently of gp160 or viral entry, J. Virol 69:579–584.PubMedGoogle Scholar
  52. Olshevsky, U., Helseth, E., Furman, C., Li, J., Haseltine, W., and Sodroski, J., 1990, Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding, J. Virol 64:5701–5707.PubMedGoogle Scholar
  53. Owens, R. J., Dubay, J. W., Hunter, E., and Compans, R. W., 1991, Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells, Proc. Natl. Acad. Sci. USA 88:3987–3991.PubMedCrossRefGoogle Scholar
  54. Platt, E. J., and Haffar, O. K., 1994, Characterization of human immunodeficiency virus type 1 Pr55gag membrane association in a cell-free system, Proc. Natl. Acad. Sci. USA 91:4594–4598.PubMedCrossRefGoogle Scholar
  55. Ratner, L., 1992, Glucosidase inhibitors for treatment of HIV-1 infection, AIDS Res. Hum. Retrovir. 8:165–173.PubMedCrossRefGoogle Scholar
  56. Ratner, L., and Niederman, T. M. J., 1995, Nef, in: Transacting Functions of Human Retroviruses, Current Topics in Microbiology and Immunology, Volume 193 (I. S. Y. Chen, H. Koprowski, A. Srinivasan, and P. K. Vogt, eds.), Springer-Verlag, Berlin, pp. 169–208.CrossRefGoogle Scholar
  57. Refaeli, Y., Levy, D. N., and Weiner, D. B., 1995, The glucocorticoid receptor type II complex is a target of the HIV-1 vpr gene product, Proc. Natl. Acad. Sci. USA 92:3621–3625.PubMedCrossRefGoogle Scholar
  58. Rogel, M. E., Wu, L. I., and Emerman, M., 1995, The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection, J. Virol 69:882–888.PubMedGoogle Scholar
  59. Salghetti, S., Mariani, R., and Skowronski, J., 1995, Human immunodeficiency virus type 1 Nef and p56lck protein-tyrosine kinase interact with a common element in CD4 cytoplasmic tail, Proc. Natl. Acad. Sci. USA 92:349–353.PubMedCrossRefGoogle Scholar
  60. Schubert, U., Bour, S., Ferrer-Montiel, A. V., Montai, M., Maldarelli, F., and Strebel, K., 1996, The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains, J. Virol 70:809–819.PubMedGoogle Scholar
  61. Schwartz, S. B., Felber, B. K., Benko, D. M., Fenyo, E.-M., and Pavlakis, G. N., 1990, Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1, J. Virol. 64:2519–2529.PubMedGoogle Scholar
  62. Shioda, T., Levy, J. A., and Cheng-Mayer, C., 1991, Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelop gp120 gene, Nature 349:167–169.PubMedCrossRefGoogle Scholar
  63. Spearman, P., Wang, J.-J., Vander Heyden, N., and Ratner, L., 1994, Identification of human immunodeficiency virus type 1 Gag protein domains essential to membrane binding and particle assembly, J. Virol 68:3232–3242.PubMedGoogle Scholar
  64. Staffa, A., and Cochrane, A., 1995, Identification of positive and negative splicing regulatory elements with the terminal tat-rev exon of human immunodeficiency virus type 1, Mol. Cell. Biol. 15:4597–4605.PubMedGoogle Scholar
  65. Starcich, B. R., Hahn, B. H., Shaw, G. M., McNeely, R. D., Morrow, S., Wolf, H., Parks, E. S., Parks, W. P., Josephs, S. F., and Gallo, R. C., 1986, Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS, Cell 45:637–648.PubMedCrossRefGoogle Scholar
  66. Stein, B., Kramer, M., Rahmsdorf, H. J., Ponta, H., and Herrlich, P., 1989, UV induced transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and UV induced secretion of an extracellular factor that induces HIV-1 transcription in nonirradiated cells, J. Virol. 63:4540–4544.PubMedGoogle Scholar
  67. Stutz, F., Neville, M., and Rosbash, M., 1995, Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast, Cell 82:495–506.PubMedCrossRefGoogle Scholar
  68. Tencza, S. B., Miller, M. A., Islam, K., Mietzner, T. A., and Montelaro, R.C., 1995, Effect of amino acid substitutions on calmodulin binding and cytolytic properties of the LLP-1 peptide segment of human immunodeficiency virus type 1 transmembrane protein, J. Virol 69:5199–5202.PubMedGoogle Scholar
  69. Thali, M., Bukovsky, A., Kondo, E., Rosenwirth, B., Walsh, C. T., Sodroski, J., and Gottlinger, H. G., 1994, Functional association of cyclophilin A with HIV-1 virions, Nature 372:363–365.PubMedCrossRefGoogle Scholar
  70. Trono, D., 1992, Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses, J. Virol 66:4893–4900.PubMedGoogle Scholar
  71. Veronese, F. D., Copeland, T. D., Oroszlan, S., Gallo, R. C., and Sarngadharan, M. G., 1988, Biochemical and immunological analysis of human immunodeficiency virus gag gene products p17 and p24, J. Virol. 62:795–801.PubMedGoogle Scholar
  72. Volsky, D. J., Potash, M. J., Simm, M., Sova, P., Ma, X.-Y., Chao, W., and Shahabuddin, M., 1995, The human immunodeficiency virus type 1 vif gene: The road from an accessory to an essential role in human immunodeficiency virus type 1 replication, in: Transacting Functions of Human Retroviruses, Current Topics in Microbiology and Immunology, Volume 193 (I. S. Y. Chen, H. Koprowski, A. Srinivasan, and P. K. Vogt, eds.), Springer-Verlag, Berlin, pp. 157–168.CrossRefGoogle Scholar
  73. Walker, S., Hagemeier, C., Sissons, J. G., and Sinclair, J. H., 1992, A 10-base pair element of the human immunodeficiency virus type 1 long terminal repeat (LTR) is an absolute requirement for transactivation by the human cytomegalovirus 72-kilodalton IE1 protein but can be compensated for by other LTR regions in transactivation by the 80-kilodalton IE2 protein, J. Virol 66:1543–1550.PubMedGoogle Scholar
  74. Wang, Y-H., Davies, A. H., and Jones, I. M., 1995, Expression and purification of glutathione S-transferase-tagged HIV-1 gp120: No evidence of an interaction with CD26, Virology 208:142–146.PubMedCrossRefGoogle Scholar
  75. Weiss, R. A., Teich, N., Varmus, H. E., and Coffin, J. M., eds., 1982, RNA Tumor Viruses, Volume 1, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  76. Wen, W., Meinkoth, J. L., Tsien, R. Y., and Taylor, S. S., 1995, Identification of a signal for rapid export of proteins from the nucleus, Cell 82:463–474.PubMedCrossRefGoogle Scholar
  77. Wills, J., and Craven, R., 1991, Form, function, and use of retroviral gag proteins, AIDS 5:639–654.PubMedCrossRefGoogle Scholar
  78. Wlodawer, A., and Erickson, J. W., 1993, Structure-based inhibitors of HIV-1 protease, Annu. Rev. Biochem. 62:543–585.PubMedCrossRefGoogle Scholar
  79. Wu, X., Conway, J. A., Kim, J., and Kappes, J. C., 1994, Localization of the vpx packaging signal with type gag precursor protein, J. Virol. 68:6161–6169.PubMedGoogle Scholar
  80. Wu, X., Liu, H., Ziao, H., Kim, J., Seshaiah, P., Natsoulis, G., Boeke, J. D., Hahn, B. H., and Kappes, J. C., 1995a, Targeting fusion proteins to human immunodeficiency virus particles via fusion with Vpr and Vpx, J. Virol. 69:3389–3398.PubMedGoogle Scholar
  81. Wu, Z., Kayman, S. C., Honnen, W., Revesz, K., Chen, H., Vijh-Warner, S., Tilley, S. A., McKeating, J., Shotton, C., and Pinter, A., 1995b, Characterization of neutralization epitopes in the V2 region of human immunodeficiency virus type 1 gp 120: Role of glycosylation in the correct folding of the V1/V2 domain, J. Virol. 69:2271–2278.PubMedGoogle Scholar
  82. Wu-Baer, F., Sigman, D., and Gaynor, R. B., 1995, Specific binding of RNA polymerase II to the human immunodeficiency virus trans-activating region RNA is regulated by cellular cofactors and Tat, Proc. Natl. Acad. Sci. USA 92:7253–7257.CrossRefGoogle Scholar
  83. Yahi, N., Fantini, J., Baghdiguian, S., Mabrouk, K., Tamalet, C., Rochat, H., van Rietschoten, J., and Sabatier, J.-M., 1995, SPC3, a synthetic peptide derived from the V3 domain of human immunodeficiency virus type 1 (HIV-1) gp120, inhibits HIV-1 entry into CD4+ and CD4-cells by two distinct mechanisms, Proc. Natl. Acad. Sci. USA 92:4867–4871.PubMedCrossRefGoogle Scholar
  84. Yu, G., Shen, F. S., Sturch, S., Aquino, A., Glazer, R. L., and Felsted, R. L., 1995, Regulation of HIV-1 gag protein subcellular targeting by protein kinase c, J. Biol. Chem. 270:4792–4796.PubMedCrossRefGoogle Scholar
  85. Zack, J. A., Cann, A. J., Lugo, J. P., and Chen, I. S. Y., 1988, HIV-1 production from infected peripheral blood T cells after HTLV-I induced mitogenic stimulation, Science 240:1026–1029.PubMedCrossRefGoogle Scholar
  86. Zack, J. A., Arrigo, S. J., Weitsman, S. R., Go, A. S., Haislip, A., and Chen, I. S. Y., 1990, HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure, Cell 61:213–222.PubMedCrossRefGoogle Scholar
  87. Zhao, L.-J., Mukherjee, S., and Narayan, O., 1994a, Biochemical mechanism of HIV-1 Vpr function. Specific interaction with a cellular protein, J. Biol. Chem. 269:15577–15582.PubMedGoogle Scholar
  88. Zhao, L.-J., Wang, L., Mukherjee, S., and Narayan, O., 1994b, Biochemical mechanism of HIV-1 Vpr function. Oligomerization mediated by the N-terminal domain, J. Biol. Chem. 269:32131–32137.PubMedGoogle Scholar
  89. Zhou, W., Parent, L. J., Wills, J. W., and Resh, M. D., 1994. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids, J. Virol. 68:2556–2569.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Lee Ratner
    • 1
  1. 1.Division of Molecular Oncology, Departments of Medicine, Pathology, and Molecular MicrobiologyWashington UniversitySt. LouisUSA

Personalised recommendations