Epidermal Growth Factor and Transforming Growth Factor-α

  • Lillian B. Nanney
  • Lloyd E. KingJr.


Since its discovery in 1963 as a polypeptide that accelerated the in vivo maturation of epithelial tissues (Cohen and Elliott, 1963), epidermal growth factor (EGF) has been assumed to be important in regulating epidermal growth, differentiation, and repair. Over the last 30 years, the concepts inherent to EGF and its related growth factors have merged with that of lymphokines, interferons, and cytokines to become synonymous with small peptide factors that regulate multiple functions of cells and tissues. The regulatory signals induced by binding of soluble and matrix protein-bound growth factors/cytokines to specific receptors is termed signal transduction. Although in vitro and in vivo biochemical and genetic studies of signal transduction are unfolding at a rapid pace, these complex signaling mechanisms have not yet been evaluated in the more complicated milieu within cutaneous wounds. To provide an appropriate background for this chapter on EGF and its common factors involved in wound healing, a brief description of this expanding family of EGF-like molecules, their cellular interactions, and emerging signal transduction mechanisms is described below.


Epidermal Growth Factor Receptor Epidermal Growth Factor Hair Follicle Wound Repair Epidermal Growth Factor Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. M., and Sporn, M. B., 1983, Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization, J. Biol. Chem. 258:7155–7160.PubMedGoogle Scholar
  2. Barrandon, Y., and Green, H., 1987, Cell migration is essential for sustained growth of keratinocyte colonies: The roles of transforming growth factor-α and epidermal growth factor, Cell 50:1131–1137.PubMedCrossRefGoogle Scholar
  3. Ben-Ezra, J., Sheibani, K., Hwang, D. L., and Lev-Ran, A., 1990, Megakaryocyte synthesis is the source of epidermal growth factor in human platelets, Am. J. Pathol. 137:755–759.PubMedGoogle Scholar
  4. Betz, P., Nerlich, A., Tubel, J., Penning, R., and Eisenmenger, W., 1993, Localization of tenascin in human skin wounds—an immunohistochemical study, Int. J. Leg. Med. 105:325–328.CrossRefGoogle Scholar
  5. Blenis, J. P., 1993, Signal transduction via the MAP kinases, Proc. Natl. Aca. Sci. USA 90:5889–5892.CrossRefGoogle Scholar
  6. Blessing, M., Nanney, L. B., King, L. E., Jones, C. M., and Hogan, B. L., 1993, Transgenic mice as a model to study the role of TGF-beta-related molecules in hair follicles, Genes Dev. 7:204–215.PubMedCrossRefGoogle Scholar
  7. Brookfield, J., 1992, Can genes by truly redundant? Curr. Biol. 2:553–554.PubMedCrossRefGoogle Scholar
  8. Brown, G. L., Curtsinger, L., Brightwell, J. R., Ackerman, D. M., Tobin, G. R., Polk, H. C., George-Nascimento, C., Valenzula, P., and Schultz, G. S., 1986, Enhancement of epidermal regeneration by biosythetic epidermal growth factor, J. Exp. Med. 163:1319–1324.PubMedCrossRefGoogle Scholar
  9. Brown, G. L., Curtsinger, L., White, M., Mitchell, R., Pietsch, J., Nordquist, R., von Fraunhofer, A., and Schultz, G. S., 1988, Acceleration of tensile strength of incisions treated with EGF and TGF-β, Ann. Surg. 208:788–794.PubMedCrossRefGoogle Scholar
  10. Brown, G. L., Nanney, L. B., Griffen, J., Cramer, A. B., Yancey, J. M., Curtsinger, L. J., Holtzin, L., Schultz, G. S., Jurkiewicz, M. J., and Lynch, J. B., 1989, Enhancement of wound healing by topical treatment with epidermal growth factor, N. Engl. J. Med. 321:76–79.PubMedCrossRefGoogle Scholar
  11. Brown, J. P., Twardzik, D. R., Marguardt, H. J., and Todaro, G. J., 1985, Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor-α, Nature 313:491–492.PubMedCrossRefGoogle Scholar
  12. Buckley, A., Davidson, J. M., Kamerath, C. D., Wolt, T. B., and Woodward, S. C., 1985, Sustained release of epidermal growth factor accelerates wound repair, Proc. Natl. Acad. Sci. USA 82:7340–7344.PubMedCrossRefGoogle Scholar
  13. Cadena, D. L., and Gill, G. N., 1992, Receptor tyrosine kinases, FASEB J. 6:2332–2337.PubMedGoogle Scholar
  14. Callaghan, T., Antczak, M., Flinkinger, T., Raines, M., Myers, M. K., and Kuug, H-J., 1993, A complete description of the EGF-receptor exon structure: Implication in oncogenic activation and domain evolution, Oncogene 8:2939–2948.PubMedGoogle Scholar
  15. Carpenter, G., 1992, Receptor tyrosine kinase substrates; src homology domains and signal transduction, FASEB J. 6:3283–3289.PubMedGoogle Scholar
  16. Carpenter, G., 1993, Intracellular signalling from the epidermal growth factor receptor, FORUM Trends Exp. Clin. Med. 3:616–634.Google Scholar
  17. Carpenter, G., and Cohen, S., 1976, 125I-Labelled human epidermal growth factor. Binding, internalization and degradation in human fibroblasts, J. Cell Biol. 71:159–171.PubMedCrossRefGoogle Scholar
  18. Carpenter, G., King, L. E., and Cohen, S., 1978, Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro, Nature 276:409–410.PubMedCrossRefGoogle Scholar
  19. Cheng, C., Tennenbaum, T., Dempsey, P. J., Coffey, R. J., Yuspa, S. H., and Dlugosz, A. A., 1993, Epidermal growth factor receptor ligands regulate keratin 8 expression in keratinocytes, and transforming growth factor-α mediates the induction of keratin 8 by the v-ras Ha oncogene, Cell Growth Differ. 4:317–327.PubMedGoogle Scholar
  20. Coffey, R. J., Derynck, R., Wilcox, J. N., Bringman, T. S., Gouskin, A. S., Moses, H. L., and Pittelkow, M. R., 1987, Production and autoinduction of transforming growth factor-a in human keratinocytes, Nature 328:817–819.PubMedCrossRefGoogle Scholar
  21. Cohen, S., and Elliott, G. A., 1963, The stimulation of epidermal keratinization by a protein isolated from the submaxillary gland of the mouse, J. Invest. Dermatol. 40:1–5.PubMedGoogle Scholar
  22. Colige, A. C., Lambert, C. A., Nusgens, B. V., and Lapiere, C. M., 1992, Effect of cell-cell and cell-matrix interactions on the response of fibroblasts to epidermal growth factor in vitro. Expression of collagen type I, collagenase, stromelysin and tissue inhibitor of metalloproteinases, Biochem. J. 285:215–221.PubMedGoogle Scholar
  23. Darnell, J. E., Kerr, I. M., and Stark, G. R., 1994, Jak-Stat pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins, Science 264:1415–1420.PubMedCrossRefGoogle Scholar
  24. Delany, A. M., Brinkerhoff, C. E., 1992, Post-transcriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts, J. Biol. Biochem. 50:400–410.Google Scholar
  25. Derynck, R., 1986, Transforming growth factor-α: Structure and biological activities, J. Cell Biol. 32:293–304.Google Scholar
  26. Dlugosz, A. A., Cheng, C., Denning, M. F., Dempsey, P. J., Coffey, R. J., and Yuspa, S. H., 1994, Ker-atinocyte growth factor receptor ligands induce transforming growth factor alpha expression and activate the epidermal growth factor receptor signalling pathway in cultural epidermal keratinocytes, Cell Growth Diff. 5:1283–1292.PubMedGoogle Scholar
  27. Dominey, A. M., Wang, X., King, Jr., L. E., Nanney, L. B., Gagne, T. A., Sellheyer, C., Bundman, D. S., Longley, M. A., Rothnagel, J. A., Greenhalgh, D. A., and Roop, D. R., 1993, Targeted over-expression of transforming growth factor-α in the epidermis of transgenic mice elicits hyperproliferation, hyerkeratosis, and differentiation and spontaneous squamous papillomas, Cell Growth Differ. 4:1071–1082.PubMedGoogle Scholar
  28. Donato, N. J., Rosenblum, M. G., and Steck, P. A., 1992, Tumor necrosis factor regulates tyrosine phosphorylation on epidermal growth factor receptors in A431 carcinoma cells: Evidence for a distinct mechanism, Cell Growth Differ. 3:259–268.PubMedGoogle Scholar
  29. Dvoneh, V. M., Murhpey, R. J., Matsuoka, J., and Grotendorst, C. R., 1992, Changes in growth factor levels in human wound fluid, Surgery 112:18–23.Google Scholar
  30. Dvorak, H. F., 1986, Tumors: wounds that do not heal: Similarities between tumor stroma generation and wound healing, N. Eng. J. Med. 315:1650–1659.CrossRefGoogle Scholar
  31. Egan, S. E., and Weinberg, R. A., 1993, The pathway of signal achievement, Nature, 365:781–783.PubMedCrossRefGoogle Scholar
  32. Ellis, D. L., Nanney, L. B., and King, L. E., 1990, Increased epidermal growth factor receptors in seborrheic keratoses and acrochordons of patients with the dysplastic nevus syndrome, J. Am. Acad. Dermatol. 23:1070–1077.PubMedCrossRefGoogle Scholar
  33. Engel, J., 1989, EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation? FEBS Letters 251:1–7.PubMedCrossRefGoogle Scholar
  34. Erickson, H. P., 1993a, Gene knockouts of c-src, transforming growth factor-β suggest superfluous, nonfunctional expression of proteins, J. Cell Biol. 120:1070–1081.CrossRefGoogle Scholar
  35. Erikson, H. P., 1993b, Tenascin-c, tenascin-R and tenascin-x: A family of talented proteins in search of functions, Curr. Opin. Cell. Biol. 5:869–876.CrossRefGoogle Scholar
  36. Falanga, V., Eaglstein, W. H., Bucalo, B., Katz, M. H., Harris, B., and Carson, P., 1992, Topical use of human recombinant epidermal growth factor (h-EGF) in venous ulcers, J. Dermatol. Surg. Oncol. 18:604–606.PubMedCrossRefGoogle Scholar
  37. Fava, R. A., Nanney, L. B., Wilson, D., and King, Jr., L. E., 1993, Annexin-1 localization in human skin: Possible association with cytoskeletal elements in keratinocytes of the stratum spinosum, J. Invest. Dermatol. 101:732–737.PubMedCrossRefGoogle Scholar
  38. Fisher, E. H., Charbonneau, H., and Tonks, N. K., 1991, Protein tyrosine phosphatase: A diverse family of intracellular and transmembrane enzymes, Science 253:401–406.CrossRefGoogle Scholar
  39. Fu, X.-Y., and Zhang, J. J., 1993, Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter, Cell 74:1135–1145.PubMedCrossRefGoogle Scholar
  40. Gates, R. E., King, L. E., Hanks, S. K., and Nanney, L. B., 1994, Potential role for focal adhesion kinase in migrating and proliferating keratinocytes near epidermal wounds and in culture, Cell Growth Differ. 5:891–899.PubMedGoogle Scholar
  41. Gospodarowicz, D., Brown, D. D., Birdwell, C. R., and Zetter, B. R., 1978, Control of proliferation of human vascular endothelial cells; characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin, J. Cell Biol. 77:774–788.PubMedCrossRefGoogle Scholar
  42. Graves, B. J., Crowther, R. L., Chandran, C., Rumberger, J. M., Li, S., Huang, K-S., Presky, D. H., Familletti, P. C., Wolitzky, B. A., and Burns, D. K., 1994, Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains, Nature 367:532–534.PubMedCrossRefGoogle Scholar
  43. Green, M. R., and Couchman, J. R., 1984, Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle, J. Invest. Dermatol. 83:118–123.PubMedCrossRefGoogle Scholar
  44. Green, M. R., Basketter, D. A., Couchman, J. R., and Rees, D. A., 1983, Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth, Dev. Biol. 100:506–512.PubMedCrossRefGoogle Scholar
  45. Griswold-Prenner, I., Carlin, C. R., and Rosner, M. R., 1993, Mitogen-activated protein kinase regulates the epidermal growth factor receptor through activation of a tryosine phosphatase, J. Biol. Chem. 268:13050–13054.PubMedGoogle Scholar
  46. Grotendorst, G. R., Smale, G., and Pencer, D., 1989, Production of transforming growth factor-β by human peripheral blood monocytes and neutrophils, J. Cell. Physiol. 140:396–402.PubMedCrossRefGoogle Scholar
  47. Gunaratne, P., Stoscheck, C. M., Gates, R. E., Nanney, L. B., and King, Jr., L. E., 1994, Protein tyrosyl phosphatase-1B is expressed by normal human epideramis, keratinocytes and A-431 cells, and de-phosphorylates substrates of the epidermal growth factor receptor, J. Invest. Dermatol., 103:701–706.PubMedCrossRefGoogle Scholar
  48. Hall, A., 1994, A biochemical function for ras—at last, Science 264:1413–1463.PubMedCrossRefGoogle Scholar
  49. Hayaski, T., Nichioka, J., Shingekiyo, T., Saito, Saito, S., and Suzuki, K., 1994, Protein S Tokushima: Abnormal molecule with a substitution of Glu for Lys-155 in the second epidermal growth factor-like domain of proteins, Blood 83:683–690.Google Scholar
  50. Heavner, G. A., Falcone, M., Kruszynski, M., Epps, L., Mervic, M., Riexinger, D., and Mcever, R. P., 1993, Peptides from multiple regions of the lectin domain of P-selectin inhibiting neutrophil adhesion, Int. J. Peptide Protein Res. 42:484–489.CrossRefGoogle Scholar
  51. Hebda, P. A., 1988, Stimulatory effects of transforming growth factor-beta and epidermal growth factor on epidermal cell outgrowth from porcine skin expiant cultures, J. Invest. Dermatol. 91:440–445.PubMedCrossRefGoogle Scholar
  52. Hernandez-Sotomayor, S. M. T., Arteaga, C. L., Soler, C., and Carpenter, G., 1993, Epidermal growth factor stimulates substrate-selective protein-tyrosine-phosphatase activity, Proc. Natl. Acad. Sci. USA 90: 7691–7695.PubMedCrossRefGoogle Scholar
  53. Higashiyama, S., Abraham, J. A., Miller, J. I., Diffes, J. C., and Klagsbrun, M., 1991, A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF, Science 251:936–939.PubMedCrossRefGoogle Scholar
  54. Higashiyama, S., Abraham, J. A., and Klagsbrun, M., 1993, Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: Dependence on interactions with cell surface heparan sulfate, J. Cell Biol. 122:933–940.PubMedCrossRefGoogle Scholar
  55. Holmes, W. E., Sliwkowski, M. X., Akita, R. W., Henzel, W. J., Lee, J., Park, J. W., Yansura, D., Abadi, N., Raab, H., Lewis, G. D., Shepard, M., Kuang, W., Wood, W. I., Goeddel, V., and Vandlen, R. L., 1992, Identification of heregulin, a specific activator of p185erbB2, Science 256:1205–1210.PubMedCrossRefGoogle Scholar
  56. Kansas, G. S., Saunders, K. B., Ley, K., Zakrzewicz, A., Gibson, R. M., Furie, B. C., Furie, B., and Tedder, T. F., 1994, A role for the epidermal growth factor-like domain of p-selectin in ligand recognition and cell adhesion, J. Cell Biol. 124:609–618.PubMedCrossRefGoogle Scholar
  57. Kerr, L. D., Magun, B. E., and Matrisian, L. M., 1992, The role of c-Fos in growth factor regulation of stromelysin/transin gene expression, Matrix Suppl. 1:176–183.PubMedGoogle Scholar
  58. King, L. E., Stoscheck, C. M., Gates, R., and Nanney, L. B., 1991, Epidermal growth factor and transforming growth factorα, in: Physiology, Biochemistry and Molecular Biology of the Skin (L. Goldsmith, ed.), pp. 329–350, Oxford University Press, New York.Google Scholar
  59. Krane, J. F., Murphy, D. P., Carter, D. M., and Kruger, J. G., 1991, Synergistic effects of EGF and insulin-like growth factor I/stomatomedin C (IGF-1) on keratinocyte proliferation may be mediated by IGF-1 transmodulation of the EGF receptor, J. Invest. Dermatol. 96:4199–4204.Google Scholar
  60. Laato, M., Kahari, V. M., Niinikoski, J., and Vuorio, E., 1987, Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes, Biochem. J. 247:385–388.PubMedGoogle Scholar
  61. Lamer, A. C., David, M., Feldman, G. M., Igarashi, K., Hackett, R. H., Webb, D. S. A., Sweitzer, S. M., Petricoin, E. F., and Finbloom, D. S., 1993, Tyrosine phosphorylation of DNA binding proteins by multiple cytokines, Science 261:1730–1733.CrossRefGoogle Scholar
  62. Leibovich, S. J., and Ross, R., 1975, The role of the macrophage in wound repair. A study of hydrocortisone and antimacrophage serum, Am. J. Pathol. 78:71–91.PubMedGoogle Scholar
  63. Lembach, K. J., 1976, Enhanced synthesis and extracellular accumulation of hyaluronic acid during stimulation of quiescent human fibroblasts by mouse epidermal growth factor, J. Cell. Physiol. 89:277–288.PubMedCrossRefGoogle Scholar
  64. Lightner, V. A., 1994, Tenascin: Does it play a role in epidermal morphogenesis and homeostasis? J. Invest. Dermatol. 102:273–277.PubMedCrossRefGoogle Scholar
  65. Luetteke, N. C., Hu Qiu, T., Peiffer, R. L., Oliver, P., Smithies, O., and Lee, D. C., 1993, TGFα deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice, Cell 73:263–278.PubMedCrossRefGoogle Scholar
  66. Lutticken, C., Wegenka, U. M., Yuan, J., Buschmann, J., Schindler, G., Ziemiecki, A., Harpur, A. G., Wilks, A. F., Yasukawa, K., Taga, T., Kishimoto, T., Barbieri, G., Pellegrini, S., Sendtner, M., Heinrich, P. G., and Horn, F., 1994, Association of transcription factor APRF and protein kinase jakl with the inter-leukin-6 signal tranducer gp 130, Science 263:89–92.PubMedCrossRefGoogle Scholar
  67. Mackie, E. J., Halfter, W., and Liverani, D., 1988, Induction of tenascin in healing wounds, J. Cell Biol. 107:2757–2767.PubMedCrossRefGoogle Scholar
  68. Maguire, H. C., Jaworsky, C., Cohen, J. A., Hellman, M., Weiner, D. B., and Greene, M. I., 1989, Distribution of neu (c-erbB-2) protein in human skin, J. Invest. Dermatol. 92:786–790.PubMedCrossRefGoogle Scholar
  69. Marikovsky, M., Breuing, K., Yu Liu, P., Eriksson, E., Higashiyama, S., Farber, P., Abraham, J., and Klagsbrun, M., 1993, Appearance of heparin-binding EGF-like growth factor in wounds fluid as a response to injury, Proc. Natl. Acad. Sci. USA 90:3889–3893.PubMedCrossRefGoogle Scholar
  70. Massague, J., 1985, Transforming growth factor-β modulates the high affinity receptors of epidermal growth factor and transforming growth factor-α, J. Cell Biol. 100:1500–1514.CrossRefGoogle Scholar
  71. Medved, L. V., Vysotchin, A., and Ingham, K. C., 1994, Ca++-dependent interactions between Gla and EGF domains in human coagulation factor IX, Biochemistry 33:478–485.PubMedCrossRefGoogle Scholar
  72. Moller, J. J., Ingemann-Hansen, T., and Poulsen, J. H., 1994, The epidermal growth factor-like domain of the human cartilage large aggregating proteoglycan, aggrecan: Increased serum concentration in rheumatoid arthritis, Br. J. Rheumatol. 33:44–47.PubMedCrossRefGoogle Scholar
  73. Nanney, L. B., 1990, Epidermal and dermal effects of epidermal growth factor during wound repair, J. Invest. Dermatol. 94:624–629.PubMedCrossRefGoogle Scholar
  74. Nanney, L. B., Magid, M., Stoscheck, C. M., and King, Jr., L. E., 1984, Comparison of epidermal growth factor binding and receptor distribution in normal human epidermis and epidermal appendages, J. Invest. Dermatol. 83:385–393.PubMedCrossRefGoogle Scholar
  75. Nanney, L. B., Stoscheck, C. M., Magid, M., and King, Jr., L. E., 1986, Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis, J. Invest. Dermatol. 86:260–265.PubMedCrossRefGoogle Scholar
  76. Nanney, L. B., King, Jr., L. E., and Dale, B. A., 1990a, Epidermal growth factor receptors in genetically induced hyperproliferative skin disorders, Pediar. Dermatol. 7:256–265.CrossRefGoogle Scholar
  77. Nanney, L. B., Stoscheck, C. M., King, Jr., L. E., Underwood, R. A., and Holbrook, K. A., 1990b, Immu-nolocalization of epidermal growth factor receptors in normal developing human skin, J. Invest. Dermatol. 94:742–748.PubMedCrossRefGoogle Scholar
  78. Nanney, L. B., Ellis, D. L., Levine, J., and King, L. E., 1992a, Epidermal growth factor receptors in idiopathic and virally induced skin diseases, Am. J. Pathol. 140:915–925.PubMedGoogle Scholar
  79. Nanney, L. B., Gates, R. E., Todderud, G., King, Jr., L. E., and Carpenter, G., 1992b, Altered distribution of phospholipase Cγ 1 in benign hyperproliferative epidermal diseases, Cell Growth Differ. 3:233–239.PubMedGoogle Scholar
  80. Nanney, L. B., Yates, R. A., and King, Jr., L. E., 1992c, Modulation of epidermal growth factor receptors in psoriatic lesions during treatment with topical EGF, J. Invest. Dermatol. 98:296–301.PubMedCrossRefGoogle Scholar
  81. Nawa, K., Ono, M., Fujiwara, J., Sugiyama, N., Uchiyama, T., and Marumotot, Y., 1994, Monoclonal antibodies against human thrombomodulin whose epitope is located in epidermal growth factor-like domains, Biochem. Biophys. Acta 1205:162–170.PubMedCrossRefGoogle Scholar
  82. Nickoloff, B. J., and Naidu, Y., 1994, Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin, J. Am. Acad. Dermatol. 30:535–546.PubMedCrossRefGoogle Scholar
  83. Nies, D. E., Hemesath, T. J., Kim, J. H., Gulcher, J. R., and Stefansson, K., 1991, The complete cDNA sequence of human hexabrachion (tenascin). A multidomain protein containing unique epidermal growth factor repeats, J. Biol. Chem. 266:2818–2823.PubMedGoogle Scholar
  84. Nowak, U. K., Cooper, A., Saunders, D., Smith, R. A. G., and Dobson, C. M., 1994, Unfolding studies of the protease domain of urokinase-type plasminogen activator: The existence of partly folded states and stable subdomains, Biochemistry 33:2951–2960.PubMedCrossRefGoogle Scholar
  85. Oka, Y., and Orth, D. N., 1983, Human plasma epidermal growth factor urogastrone is associated with blood platelets, J. Clin. Invest. 72:249–259.PubMedCrossRefGoogle Scholar
  86. Olashaw, N. E., O’Keefe, E. J., and Pledger, W. J., 1986, Platelet-derived growth factor modulates epidermal growth factor receptors by a mechanism distinct from that of phorbol esters, Proc. Natl. Acad. Sci. USA 83:3834–3839.PubMedCrossRefGoogle Scholar
  87. Ono, M., Okamura, K., Nakayama, Y., Tomita, M., Sata, Y., Komatsu, Y., and Kuwano, M., 1992, Induction of human microvascular endothelial tubular morphogenesis by human keratinocytes: Involvement of transforming growth factor-alpha, Biochem. Biophys. Res. Commun. 189:601–609.PubMedCrossRefGoogle Scholar
  88. Panayotou, G., Aumailley, M., Timpl, R., and Engel, J., 1989, Domains of laminin with growth factor activity, Cell 56:93–101.PubMedCrossRefGoogle Scholar
  89. Patel, V. G., Shum-Siu, A., Heniford, B. W., Wieman, T. J., and Hendler, F. J., 1994, Detection of epidermal growth factor receptor mRNA in tissue sections from biopsy specimens using in situ polymerase chain reaction, Am. J. Pathol. 144:7–14.PubMedGoogle Scholar
  90. Pelech, S. L., and Sanghera, J. S., 1992, MAP kinases: Charting the regulatory pathways, Science 257:1355–1356.PubMedCrossRefGoogle Scholar
  91. Peles, E., Bacus, S. S., Koski, R. A., Lu, H. S., Wen, D., Ogden, S. G., Levy, R. B., and Yarden, Y., 1992, Isolation of the Neu/HER-2 stimulatory ligand: A 44 kd glycoprotein that induces differentiation of mammary tumor cells, Cell 69:205–216.PubMedCrossRefGoogle Scholar
  92. Peppelenbosch, M. P., Tertoolen, L. G., Hage, W. J., and DeLaat, S. W., 1993, Epidermal growth factor-induced actin remodeling is regulated by 5-lipoxygenase and cyclooxygenase products, Cell 74: 565–575.PubMedCrossRefGoogle Scholar
  93. Perry, L. C., Connors, A. W., Matrisian, L. M., Nanney, L. B., Charles, P. D., Reyes, D. P., Kerr, L. D., and Fisher, J., 1993, Role of TGFβl and EGF in the wound healing process: An in vivo biochemical evaluation, J. Wound Repair Regen. 1:41–46.CrossRefGoogle Scholar
  94. Pierce, G. F., Berg, J. V., Rudolph, R., Tarpley, J., and Mustoe, T. A., 1991, Platelet-derived growth factor-BB and transforming growth factor-β selectively modulate glycosaminoglycans, collagen, and myo-fibroblasts in excisional wounds, Am. J. Pathol. 138:629–646.PubMedGoogle Scholar
  95. Pierce, G. F., Yanagishara, D., Klopchin, K., Danilenko, D. M., Hsu, E., Kenney, W. C., and Morris, C. F., 1994, Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor, J. Exp. Med. 179:831–840.PubMedCrossRefGoogle Scholar
  96. Pittelkow, M. R., Cook, P. W., Shipley, G. D., Derynck, R., and Coffey, R. J., 1993, Autonomous growth of human keratinocytes requires epidermal growth factor receptor occupancy, Cell Growth Differ. 4: 513–521.PubMedGoogle Scholar
  97. Plowman, G. D., Culouscou, J., Whitney, G. S., Green, J. M., Carlton, G. W., Foy, L., Neubauer, M. G., and Shoyab, M., 1993, Ligand-specific activation of HER4/p180, a fourth member of the epidermal growth factor receptor family, Proc. Natl. Acad. Sci. USA 90:1746–1750.PubMedCrossRefGoogle Scholar
  98. Qian, X., Dougall, W. C., Hellman, M. E., and Greene, M. I., 1994, Kinase-deficient neu proteins suppress epidermal growth factor function and abolish cell transformation, Oncogene 9:1507–1514.PubMedGoogle Scholar
  99. Quaglino, Jr., D., Nanney, L. B., Kennedy, R., and Davidson, J. M., 1990, Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin. I. Excisional wound model, Lab. Invest. 63:307–319.PubMedGoogle Scholar
  100. Rappolee, D. A., Mark, D., Banda, M. J., and Werb, Z., 1988, Wound macrophages express TGFβ and other growth factors in vivo: Analysis by mRNA phenotyping, Science 241:708–712.PubMedCrossRefGoogle Scholar
  101. Roesel, J. F., and Nanney, L. B., 1995, Assessment of differential cytokine effects on angiogenesis using an in vivo model of cutaneous wound repair, J. Surg. Res. 58:449–459, 1995.PubMedCrossRefGoogle Scholar
  102. Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T., and Bowtell, D., 1993, The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1, Nature 363:83–85.PubMedCrossRefGoogle Scholar
  103. Ruff-Jamison, S., Chen, K., and Cohen, S., 1993, Induction by EGF and interferon-γ of tyrosine phosphory-lated DNA binding proteins in mouse liver nuclei, Science 261:1733–1736.PubMedCrossRefGoogle Scholar
  104. Sadowski, H. B., Shuai, K., Darnell, J. E., and Gilman, M. Z., 1993, A common nuclear signal transduction pathway activated by growth factor and cytokine receptors, Science 261:1739–1744.PubMedCrossRefGoogle Scholar
  105. Saga, Y., Yagi, T., Ikawa, Y., Sakakura, T., and Aizawa, S., 1992, Mice develop normally without tenascin, Genes Dev. 6:1821–1831.PubMedCrossRefGoogle Scholar
  106. Sandgren, E. P., Luetteke, N. C., Palmiter, R. D., Brinster, R. L., and Lee, D. C., 1990, Overexpression of TGFα in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast, Cell 61:1121–1129.PubMedCrossRefGoogle Scholar
  107. Sasada, R., Ono, Y., Taniyama, Y., Shing, Y., Folkman, J., and Igarishi, K., 1993, Cloning and expression of cDNA encoding human betacellulin, a new member of the EGF family, Biochem. Biophys. Res. Commun. 190:1173–1179.PubMedCrossRefGoogle Scholar
  108. Schalkwijk, J., Steijten, P. M., van Vlijmen-Willems, I. M. J. J., Oosterling, B., Mackie, E. J., and Verstraeten, A. A., 1991, Tenascin expression in human dermis related to epidermal proliferation, Am. J. Pathol. 139:1143–1150.PubMedGoogle Scholar
  109. Schreiber, A. B., Winkler, M. E., and Derynck, R., 1986, Transforming growth factor-α: A more potent angiogenic mediator than epidermal growth factor, Science 232:1250–1252.PubMedCrossRefGoogle Scholar
  110. Schultz, G. S., White, M., Mitchell, R., Brown, G., Lynch, J., Twardzik, D. R., and Todaro, G. J., 1987, Epithelial wound healing enhanced by transforming growth factor-α and vaccinia growth factor, Science 235:350–352.PubMedCrossRefGoogle Scholar
  111. Shing, Y., Christofori, G., Hanahan, D., Ono, Y., Sasada, R., Igarashi, K., and Folkman, J., 1993, Betacellulin: A mitogen from pancreatic B cell tumors, Science 259:1604–1607.PubMedCrossRefGoogle Scholar
  112. Shima, I., Sasaguri, Y., Nakano, R., Yamana, H., Fujita, H., Kakegawa, T., Morimatsu, M., 1993, Production of matrix metalloproteinase 9192KDa gelatinase by human oesophageal squamous cell carcinoma in response to epidermal growth factor, Brit. J. Can. 67:721–727.CrossRefGoogle Scholar
  113. Shoyab, M., Plowman, G. D., McDonald, V. L., Bradley, J. G., and Todaro, G. J., 1989, Structure and function of human amphiregulin: A member of the epidermal growth factor family, Science 243:1074–1076.PubMedCrossRefGoogle Scholar
  114. Sibilia, M., Wagner, E. F., 1995, Strain-dependent epithelial defects in mice lacking the EGF receptor, Science 269:234–238.PubMedCrossRefGoogle Scholar
  115. Smith, B. O., Lowning, K. A., Dudgeon, T. J., Cunningham, M., Driscoll, P. C., and Campbell, I. D., 1994, Secondary structure of fibronectin type 1 and epidermal growth factor modules from tissue-type plas-minogen activator by nuclear magnetic resonance, Biochemistry 33:2422–2429.PubMedCrossRefGoogle Scholar
  116. Soler, C., Beguinot, L., Sorkin, A., and Carpenter, G., 1993, Tyrosine phosphorylation of ras GTPase-activating protein does not require association with the epidermal growth factor receptor, J. Biol. Chem. 268:22010–22019.PubMedGoogle Scholar
  117. Soler, C., Beguinot, L., and Carpenter, G., 1994, Individual epidermal growth factor receptor auto-phosphorylation sites do not stringently define association motifs for several SH-2 containing proteins, J. Biol. Chem. 269:12320–12324.PubMedGoogle Scholar
  118. Sorokin, A., and Carpenter, G., 1993, Interaction of activated EGF receptors with coated pit adaptins, Science 261:612–615.CrossRefGoogle Scholar
  119. Sorokin, A., Lemmon, M. A., Ullrich, A., and Schlessinger, J., 1994, Stabilization of an active dimeric form of the epidermal growth factor receptor by introduction of an inter-receptor disulfide bond, J. Biol. Chem. 269:9752–9759.PubMedGoogle Scholar
  120. Stoscheck, C. M., Nanney, L. B., and King, Jr., L. E., 1992, Quantitative determination of EGF-R during epidermal wound healing, J. Invest. Dermatol. 99:645–649.PubMedCrossRefGoogle Scholar
  121. Stricklin, G. P., Li, L., Jancic, V., Wenczak, B. A., and Nanney, L. B., 1993, Localization of mRNAs representing collagenase and TIMP in sections of healing human burn wounds, Am. J. Pathol. 143:1657–1666.PubMedGoogle Scholar
  122. Taylor, H. C., Lightner, V. A., Beyer, W. F., McCaslin, D., Briscoe, G., and Erickson, H. P., 1989, Biochemical and structural studies of tenascin hexabrachion proteins, J. Cell. Biochem. 41:71–90.PubMedCrossRefGoogle Scholar
  123. Threadgill, D. W., Dlugosz, A. A., Hansen, L. A., Tennenbaum, T., Lichti, U., Yee, D., LaMantia, C., Mourton, T., Herrup, K., Harris, R. C., Baarnard, J. A., Yuspa, S. H., Coffey, R. J., Magnuson, T., 1995, Targeted disruption of mouse EGF receptor: Effects of genetic background on mutant phenotype, Science 269:230–234.PubMedCrossRefGoogle Scholar
  124. Watanabe, T., Shintani, A., Nakata, M., Shing, Y., Folkman, J., Igarashi, K., and Sasada, R., 1994, Recombinant human betacellulin, J. Biol. Chem. 269:9966–9973.PubMedGoogle Scholar
  125. Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J., 1991, Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma, N. Engl. J. Med. 324:1–8.PubMedCrossRefGoogle Scholar
  126. Wen, D., Peles, E., Cupples, R., Suggs, S. V., Bacus, S. S., Luo, Y., Trail, G., Hu, S., Silbiger, S. M., Levy, R. B., Koski, R. A., Lu, H. S., and Yarden, Y., 1992, Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit, Cell 69:559–572.PubMedCrossRefGoogle Scholar
  127. Wenczak, B. A., and Nanney, L. B., 1993, Correlation of TGFa and EGF-R with proliferating cell nuclear antigen in human burn wounds, J. Wound Repair Regen. 1:219–230.CrossRefGoogle Scholar
  128. Wenczak, B. A., Lynch, J. B., and Nanney, L. B., 1992, Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair, J. Clin. Invest. 90:2392–2401.PubMedCrossRefGoogle Scholar
  129. Werner, S., Peters, K. G., Longaker, M. T., Fuller-Pace, F., Banda, J. J., and Williams, L. T., 1992, Large induction of keratinocyte growth factor expression in the dermis during wound healing, Proc. Natl. Aca. Sci. USA 89:6896–6900.CrossRefGoogle Scholar
  130. Williams, R., Sanghera, J., Wu, F., Carbonaro-Hall, D., Campbell, D. L., Warburton, D., Pelech, S., and Hall, F., 1993, Identification of a human epidermal growth factor receptor-associated protein kinase as a new member of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase family, J. Biol. Chem. 268:18213–18217.PubMedGoogle Scholar
  131. Zhong, Z., Wen, Z., and Darnell, J. E., 1994, Stat3: A STAT family member activated by tyrosine phospho-rylation in response to epidermal growth factor and interleukin-6, Science 264:95–98.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Lillian B. Nanney
    • 1
  • Lloyd E. KingJr.
    • 1
  1. 1.Departments of Plastic Surgery, Cell Biology, and Dermatology, Department of Veteran’s AffairsVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations