Skip to main content

Fetal Wound Healing and the Development of Antiscarring Therapies for Adult Wound Healing

  • Chapter
The Molecular and Cellular Biology of Wound Repair

Abstract

Scarring is an important clinical problem, often resulting in adverse effects on function and growth as well as an undesirable cosmetic appearance. Adult wound healing is characterized by acute inflammation, contraction, and collagen deposition, responses likely to have been optimized for rapid wound closure and minimizing infection. Similar processes may also result in fibrotic diseases that are common in many areas of medicine and surgery. Abdominal surgery often leads to intraperitoneal fibrous adhesions, while fibrotic retinopathy in diabetes, pulmonary fibrosis, and hepatic cirrhosis are significant medical problems. A major medical objective is therefore the reduction, and ideally the prevention, of scarring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abatangelo, G., Martelli, M., and Vecchia, P., 1983, Healing of hyaluronic acid enriched wounds: Histologi-cal observations, J. Surg. Res. 35:410–416.

    PubMed  CAS  Google Scholar 

  • Adzick, N. S., Outwater, K. M., Harrison, M. R., Davies, P., Glick, P. L., deLorimer, A. A., and Reid, L. M., 1985a, Correction of congenital diaphragmatic hernia in utero. IV An early gestational age fetal lamb model for pulmonary vascular morphometric analysis, J. Pediatr. Surg. 20:673–680.

    PubMed  CAS  Google Scholar 

  • Adzick, N. S., Harrison, M. R., Glick, P. L., Beckstead, J. H., Villa, R. L., Schevenstuhl, H., and Goodson, W. H., 1985b, Comparison of fetal, newborn and adult wound healing by histologic, enzyme-histochemical and hydroxyproline determination, J. Pediatr. Surg. 20:315–319.

    PubMed  CAS  Google Scholar 

  • Andres, J. L., Stanley, K., Cheifetz, S., and Massague, J., 1989, Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor, J. Cell Biol. 109:3137–3145.

    PubMed  CAS  Google Scholar 

  • Andres, J. L., Ronnstrand, L., Cheiftz, S., and Massague, J., 1991, Purification of the TGFβ binding proteoglycan betaglycan, J. Biol. Chem. 266:23282–23287.

    PubMed  CAS  Google Scholar 

  • Antoniades, H. N., Galanolpoulos, T. G., Neville-Golden, J., Kiritsy, C. P., and Lynch, S. E., 1991, Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF mRNAs in skin epithelial cells and PDGF mRNAs in connective tissue fibroblasts, Proc. Natl. Acad. Sci. USA 88:565–569.

    PubMed  CAS  Google Scholar 

  • Armstrong, J. R., and Ferguson, M. W. J., 1995, Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial Monodelphis domestica, Dev. Biol. 169(1):242–260.

    PubMed  CAS  Google Scholar 

  • Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., and Seed, B., 1990, CD44 is the principle cell surface receptor for hyaluronate, Cell 61:1303–1313.

    PubMed  CAS  Google Scholar 

  • Attisano, L., Wrana, J. L., Lopes-Casillas, F., and Massague, J., 1994, TGFβ receptors and actions, Biochim. Biophys. Acta. 1222:71–80.

    PubMed  CAS  Google Scholar 

  • Balazs, E. A., and Darzynkiewicz, Z., 1973, The effect of hyaluronic acid on fibroblasts, mononuclear phagocytes and lymphocytes, in: Biology of the Fibroblast (E. Kulonen and J. Pikkarainen, eds.), pp. 237–252, Academic Press, New York.

    Google Scholar 

  • Balza, E., Borsi, L., Allemanni, G., and Zardi, L., 1988, Transforming growth factor-β regulates the levels of different fibronectin isoforms in normal human cultured fibroblasts, FEBS Lett. 228:42–44.

    PubMed  CAS  Google Scholar 

  • Bertolami, C. N., and Dunoff, R. B., 1978, Hyaluronidase activity during open wound healing in rabbits: A preliminary report, J. Surg. Res. 25:256–259.

    PubMed  CAS  Google Scholar 

  • Bianco, P., Fisher, L. W., Young, M. F., Termine, J. D., and Robey, P. G., 1990, Expression and localisation of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues, J. Histochem. Cytochem. 38:1549–1563.

    PubMed  CAS  Google Scholar 

  • Birk, D. E., Fitch, J. M., Barbiaz, J. P., and Linsenmayer, T. F., 1988, Collagen type I and type V are present in the same fibril in the avian corneal stroma, J. Cell Biol. 106:999–1008.

    PubMed  CAS  Google Scholar 

  • Birk, D. E., Fitch, J. M., Babiarz, J. R., Doane, K. J., and Linsenmayer, T. M., 1990, Collagen fibrillogenesis in vitro: Interaction of types I and V collagen regulates fibril diameter, J. Cell Sci. 95:649–657.

    PubMed  CAS  Google Scholar 

  • Bonner-Frazer, M., 1985, Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion, J. Cell Biol. 101:610–617.

    Google Scholar 

  • Boon, L., Manicourt, D., Marbaix, E., Vandenabeele, M., and Vanwijck, R., 1992, A comparative analysis of surgical cleft lip corrected in utero and in neonates, Plast. Reconstr. Surg. 89:11–17.

    PubMed  CAS  Google Scholar 

  • Border, W. A., and Ruoshlati, E., 1992, Transforming growth factor-β in disease: The dark side of tissue repair, J. Clin. Invest. 90:1–5.

    PubMed  CAS  Google Scholar 

  • Border, W. A., Okuda, S., Languino, L. R., Sporn, M. B., Ruoslahti, E., 1990a, Suppression of experimental glomerulophritis by anti-serum against transforming growth factor-β, Nature 346:371–374.

    PubMed  CAS  Google Scholar 

  • Border, W. A., Okuda, S., Languino, L. R., and Ruoslahti, E., 1990b, Transforming growth factor beta regulates production of proteoglycans by mesangial cells, Kidney Int. 37:689–695.

    PubMed  CAS  Google Scholar 

  • Boucaut, J. C., Darriebere, J., Boulekbache, H., and Thiery, J. P., 1984, Prevention of gastrulation but not neuralation by antibodies to fibronectin in amphibian embryos, Nature 307:364–367.

    PubMed  CAS  Google Scholar 

  • Bowersox, J. C., and Sorgente, N., 1982, Chemotaxis of aortic endothelial cells in response to fibronectin, Cancer Res. 42:2547–2551.

    PubMed  CAS  Google Scholar 

  • Brecht, M., Mayer, U., and Schlosser, E., 1986, Increased hyaluronic acid synthesis is required for fibroblast detachment and mitosis, Biochem. J. 239:445–450.

    PubMed  CAS  Google Scholar 

  • Broeklmann, T. J., Limper, A. M., Colby, T. V., and McDonald, J. A., 1991, Transforming growth factor β1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis, Proc. Natl. Acad. Sci. USA 88:6642–6646.

    Google Scholar 

  • Brown, G. L., Curtsinger, L., Brightwell, J. R., Ackerman, D. M., Tobin, G. R., Polk, H. C., George-Nascimento, C., Valenzuela, P., and Schultz, G. S., 1986, Enhancement of epidermal regeneration by biosynthetic epidermal growth factor, J. Exp. Med. 163:1319–1324.

    PubMed  CAS  Google Scholar 

  • Burd, D. A. R., Siebert, J. W., Ehrlich, H. P., and Garg, H. G., 1989, Human skin and post-burn hyaluronan: Demonstration of the association with collagen and other proteins, Matrix 9:322–327.

    PubMed  CAS  Google Scholar 

  • Burd, D. A. R., Longaker, M. T., Adzick, N. S., Harrison, M. R., and Erlich, H. P., 1990, Fetal wound healing in a large animal model: The deposition of collagen is confirmed, Br. J. Plast. Surg. 43:571–577.

    PubMed  CAS  Google Scholar 

  • Burd, D. A. R., Longaker, M. T., Rittenberg, T., Adzick, N. S., Harrison, M. R., and Erlich, H. P., 1991a, In vitro foetal wound contraction: The effect of amniotic fluid, Br. J. Plast. Surg. 44:302–305.

    PubMed  CAS  Google Scholar 

  • Burd, D. A. R., Greco, R. M., Regauer, S., Longaker, M. T., Siebert, J. W., and Garg, H. G., 1991b, Hyaluronan and wound healing: A new perspective, Br. J. Plast. Surg. 44:579–584.

    PubMed  CAS  Google Scholar 

  • Burrington, J. D., 1971, Wound healing in the fetal lamb, J. Pediatr. Surg. 6:523–528.

    PubMed  CAS  Google Scholar 

  • Chamberlain, J., and Ferguson, M. W. J., 1995, Use of antisense oligonucleotides to TGFβ in adult wound repair, J. Invest. Dermatol., in press.

    Google Scholar 

  • Chamberlain, J., Shah, M., and Ferguson, M. W. J., 1995, The effect of suramin on healing adult rodent dermal wounds, J. Anat. 186:87–96.

    PubMed  CAS  Google Scholar 

  • Chandrakasan, G., Rutka, J., and Stern, R., 1986, Hyaluronic acid stimulates collagen synthesis and levels of type III collagen in cultures of human fibroblasts (Abstract), J. Cell Biol. 103:252.

    Google Scholar 

  • Cheng, C. Y., Martin, D. E., Leggett, C. G., Reece, M. C., and Reese, A. C., 1988, Fibronectin enhances healing of excised wounds in rats, Arch. Dermatol. 124:221–225.

    PubMed  CAS  Google Scholar 

  • Chiquet-Ehrismann, R., 1990, What distinguishes tenascin from fibronectin? FASEB J. 4:2598–2604.

    PubMed  CAS  Google Scholar 

  • Chiquet-Ehrismann, R., Kalla, P., Pearson, C. A., Beck, K., and Chiquet, M., 1988, Tenascin interferes with fibronectin action, Cell 53:383–390.

    PubMed  CAS  Google Scholar 

  • Chiu, E. S., Longaker, M. T., and Adzick, N. S., Stern, M., Harrison, M. P., and Stern, R., 1990, Hyaluronic acid patterns in fetal and adult wound fluid, Surg. Forum 41:636–639.

    Google Scholar 

  • Clark, R. A. F., 1988, Potential roles of fibronectin in cutaneous wound repair, Arch. Dermatol. 124: 201–206.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F., 1993, Regulation of fibroplasia in cutaneous wound repair, Am. J. Med. Sci. 306:42–48.

    PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Winn, H. J., Dvorak, H. F., and Colvin, R. B., 1983, Fibronectin beneath re-epithelialising epidermis in vivo, sources and significance, J. Invest. Dermatol. 80:26–30S.

    Google Scholar 

  • Clark, R. A. F., Nielsen, L. D., Welch, M. P., and McPherson, J. M., 1995, Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGFβ, J. Cell Sci. 108:1251–1261.

    PubMed  CAS  Google Scholar 

  • Damon, D. H., Lobb, R. R., D’Amore, P. A., and Wagner, J. A., 1989, Heparin potentiates the action of acidic fibroblast growth factor by prolonging its biological half life, J. Cell Physiol. 138:221–226.

    PubMed  CAS  Google Scholar 

  • Daniloff, J. K., Crossin, K.L., Pincon-Raymond, M., Murawsky, M., Rieger, F., and Edelman, G. M., 1989, Expression of cytotactin in the normal regenerating neuromuscular system, J. Cell Biol. 108:625–635.

    PubMed  CAS  Google Scholar 

  • Dennis, P. A., and Rifkin, D. B., 1991, Cellular activation of latent TGFβ requires binding to the cation-independent M6P/IGF II receptor, Proc. Natl. Acad. Sci. USA 88:580–584.

    PubMed  CAS  Google Scholar 

  • Depalma, R. L., Krummel, T. M., Durham, L. A., Michna, B. A., Thomas, B. L., Nelson, J. M., and Diegelmann, R. F., 1989, Characterisation and quantitation of wound matrix in the fetal rabbit, Matrix 9:224–231.

    PubMed  CAS  Google Scholar 

  • Derynck, R., 1994, TGFβ receptor-mediated signalling, Trends Biochem. Sci. 19:548–553.

    PubMed  CAS  Google Scholar 

  • Desmouliere, A., Redard, M., Darby, I., and Gabbiani, G., 1995, Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar, Am. J. Pathol. 146:56–66.

    PubMed  CAS  Google Scholar 

  • Dillon, P. W., Keefer, K., Blackburn, J. H., Houghton, P. E., and Krummel, T. M., 1994, The extracellular matrix of the fetal wound: Hyaluronic acid controls lymphocyte adhesion, J. Surg. Res. 57:170–173.

    PubMed  CAS  Google Scholar 

  • Donaldson, D. J., and Mahan, J. T., 1983, Fibrinogen and fibronectin as substrates for epidermal cell migration during wound closure, J. Cell Sci. 62:117–127.

    PubMed  CAS  Google Scholar 

  • Duband, J. L., Darriebere, T., Boucaut, J. C., Boulekbache, H., and Thiery, J. P., 1987, Regulation of development by the extracellular matrix, in: Cell Membranes: Methods and Reviews (E. L. Elson, W. A. Frazier, and L. Glaser, eds.), pp. 1–53, Plenum Press, New York.

    Google Scholar 

  • Duband, J. L., Dufor, S., and Thiery, J. P., 1988, Extracellular matrix-cytoskeleton interactions in locomoting embryonic cells, Protoplasma 145:112–119.

    Google Scholar 

  • Dunphy, J. E., and Upuda, K. N., 1955, Chemical and histochemical sequences in the normal healing of wounds, N. Engl. J. Med. 235:847–851.

    Google Scholar 

  • Durham, L. A., Krummel, T. M., Cawthorn, J. W., Thomas, B. L., and Diegelmann, R. F., 1989, Analysis of transforming growth factor beta receptor binding in embryonic, fetal and adult rabbit fibroblasts, J. Pediatr. Surg. 24:784–788.

    PubMed  Google Scholar 

  • Elenius, K., Vainio, S., Laato, M., Samivirta, M., Thesleff, I., and Jalkanen, M., 1991, Induced expression of syndecan in healing wounds, J. Cell Biol. 114:585–595.

    PubMed  CAS  Google Scholar 

  • Ellis, I., Grey, A. M., Schor, A. M., and Schor, S. L., 1992, Antagonistic effects of TGF-β1 and MSF on fibroblast migration and hyaluronic acid synthesis: Possible implications for dermal wound healing, J. Cell Sci. 102:447–456.

    PubMed  CAS  Google Scholar 

  • Ellis, I. R., 1993, Migration Stimulating Factor: Biochemical Characterisation, Mode of Action, PhD thesis, University of Manchester.

    Google Scholar 

  • Epstein, E. H., 1974, (alpha 1 (3)) Human skin collagen. Release by pepsin digestion and preponderance in fetal life. J. Biol. Chem. 249:3225–3231.

    Google Scholar 

  • Erickson, H. P., 1993, Tenascin-C., tenascin-R and tenasin-R and tenascin-X: A family of talented proteins in search of functions, Curr. Opin. Cell Biol. 5:869–876.

    PubMed  CAS  Google Scholar 

  • Erickson, H. P., and Bourdon, M. A., 1989, Tenascin: An extracellular matrix protein prominent in specialised embryonic tissues and tumours, Annu. Rev. Cell Biol. 5:71–92.

    PubMed  CAS  Google Scholar 

  • Erlich, H. P., 1988, Wound closure: Evidence of co-operation between fibroblasts and collagen matrix, Eye 2:149–157.

    Google Scholar 

  • Erlich, H. P., and Rajartnum, J. M. B., 1990, Cell locomotion forces versus cell contraction forces for collagen lattice contraction: In vitro model of wound contraction, Tissue Cell 22:407–417.

    Google Scholar 

  • Estes, J. H., Spencer, E. M., Longaker, M. T., and Adzick, N. S., 1991, Insulin-like growth factor II in ovine wound fluid. Evidence for developmental regulation, Surg. Forum 42:659–661.

    Google Scholar 

  • Estes, J. M., Adzick, N. S., Harrison, M. R., Longaker, M. T., and Stern, R., 1993, Hyaluronate metabolism undergoes an ontogenic transition during fetal development: Implications for scar-free wound healing, J. Pediatr. Surg. 28:1227–1231.

    PubMed  CAS  Google Scholar 

  • Estes, J. M., Van de Berg, J. S., Adzick, N. S., MacGillivray, T. E., Desmouliere, A., and Gabbiani, G., 1994, Phenotypic and functional features of myofibroblasts in sheep wounds, Differentiation 56:173–181.

    PubMed  CAS  Google Scholar 

  • Feinberg, R. N., and Beebe, D. L., 1983, Hyaluronate in vasculogenesis, Science 220:1177–1179.

    PubMed  CAS  Google Scholar 

  • Ferguson, M. W. J., and Howarth, G. F., 1991, Marsupial models of scarless fetal wound healing, in: Fetal Wound Healing, 1st ed. (N. S. Adzick and M. T. Longaker, eds.), pp. 92–125, Elsevier, Holland.

    Google Scholar 

  • Ferguson, M. W. J., Shah, M., Armstrong, J., Whitby, D. J., and Longaker, M. T., 1995, Scar formation. The spectral nature of fetal and adult wound repair, Plas. Reconstr. Surg., in press.

    Google Scholar 

  • Ffrench-Constant, C., and Hynes, R. O., 1988, Patterns of fibronectin gene expression and splicing during cell migration in chicken embryos, Development 104:369–382.

    PubMed  CAS  Google Scholar 

  • Ffrench-Constant, C., and Hynes, R. O., 1989, Alternative splicing of fibronectin is temporally and spatially regulated in the chicken embryo, Development 106:375–388.

    PubMed  CAS  Google Scholar 

  • Ffrench-Constant, C., Van De Water, L., Dvorak, H. F., and Hynes, R. O., 1989, Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat, J. Cell Biol. 109: 903–914.

    PubMed  CAS  Google Scholar 

  • Fiegel, V. D., Penner, B. G., Wohl, R. C., and Knighton, D. R., 1991, PDGF-BB induces wound capillary endothelial cell chemotaxis, Wound Healing Society Programme Abstracts, no. 1.

    Google Scholar 

  • Fleischamajer, R., Fisher, L. W., MacDonald, E. D., Jacobs, L., Perlish, J. S., and Termine, J. D., 1991, Decorin interacts with fibrillar collagen of embryonic and adult human skin, J. Struct. Biol. 106:82–90.

    Google Scholar 

  • Frantz, F. W., Diegelmann, R. F., Mast, B. A., and Cohen, K., 1992, Biology of fetal wound healing: Collagen biosynthesis during dermal repair, J. Pediatr. Surg. 27:945–949.

    PubMed  CAS  Google Scholar 

  • Frantz, F. W., Bettinger, D. A., Haynes, J. H., Johnson, D. E., Harvey, K. H., Dalton, H. P., Yager, D. R., Diegelmann, R. F., and Cohen, I. K., 1993, Biology of fetal repair: The presence of bacteria in fetal wounds induces an adult-like healing response, J. Pediatr. Surg. 78:428–434.

    Google Scholar 

  • Frost, S. J., and Weigel, P. H., 1990, Binding of hyaluronic acid to mammalian fibrinogens, Biochim. Biophys. Acta 1034:39–45.

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Hirschel, B. J., Ryan, G. B., Statkov, P. R., and Majno, G., 1972, Granulation tissue as a contractile organ: A study of structure and function, J. Exp. Med. 135:719–734.

    PubMed  CAS  Google Scholar 

  • Gao, X. X., Devoe, L. D., and Given, K. S., 1994, Effects of amniotic fluid on proteases—A possible role of amniotic fluid in fetal wound healing, Ann. Plast. Surg. 33:128–134.

    PubMed  CAS  Google Scholar 

  • Garin-Chesa, P., Old, L. J., and Rettig, W. J., 1990, Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers, Proc. Natl. Acad. Sci. USA 87:7235–7239.

    PubMed  CAS  Google Scholar 

  • Giri, S. N., Hyde, D. M., and Hollinger, M. A., 1993, Effect of antibody to transforming growth factor-β on bleomycin induced accumulation of lung collagen in mice, Thorax 48:959–966.

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., Ferrara, F., Schweigere, L., and Neufeld, G., 1987, Structural characterisation and biological functions of fibroblast growth factor, Endocrinol. Rev. 8:95–114.

    CAS  Google Scholar 

  • Goss, A. N., 1977, Intrauterine healing of fetal rat oral mucosal, skin and cartilage wounds, J. Oral Pathol. 6:35–38.

    PubMed  CAS  Google Scholar 

  • Graham, M. F., Diegelmann, R. F., and Cohen, I. K., 1984, An in vitro model of fibroplasia: Simultaneous quantification of fibroblast proliferation, migration and collagen synthesis, Proc. Soc. Exp. Med. 176:302–308.

    CAS  Google Scholar 

  • Grinnell, F., Billingham, R. E., and Burgess, L., 1981, Distribution of fibronectin during wound healing in vivo, J. Invest. Dermatol. 76:181–189.

    PubMed  CAS  Google Scholar 

  • Gross, J., Farinelli, W., Sadow, P., Anderson, R., and Bruns, R., 1995, On the mechanism of skin wound contraction. A granulation tissue knockout with a normal phenotype, Proc. Natl. Acad. Sci. USA 92:5982–5986.

    PubMed  CAS  Google Scholar 

  • Hallock, G., Rice, D. C., Merkel, J. R., and DiPaolo, B. R., 1988, Analysis of collagen content in the fetal wound, Ann. Plast. Surg. 21:310–315.

    PubMed  CAS  Google Scholar 

  • Hallock, G. G., Merkel, J. R., Rice, D. C., and DiPaolo, B. R., 1993, The ontogenic transition of collagen deposition in rat skin, Ann. Plast. Surg. 30:239–243.

    PubMed  CAS  Google Scholar 

  • Hardingham, T. E., and Bayliss, M. T., 1990, Proteoglycans of articular cartilage changes in ageing and joint disease, Semin. Arthritis Rheum. Suppl. 1:12–33.

    Google Scholar 

  • Hedbom, E., and Heinegard, D., 1989, Interaction of a 59 kDa connective tissue matrix protein with collagen I and II, J. Biol. Chem. 264:6898–6905.

    PubMed  CAS  Google Scholar 

  • Hedlund, H., Mengarelli-Widholm, S., Heinegard, D., Reinholt, F. P., and Svensson, O., 1994, Fibromodulin distribution and association with collagen, Matrix Biol. 14:227–232.

    PubMed  CAS  Google Scholar 

  • Hellstrom, S., and Laurent, C., 1987, Hyaluronan and healing of tympanic membrane perforations: An experimental study, Acta. Otolaryngol. S442:54–61.

    Google Scholar 

  • Hemesath, T. J., Marton, L. S., and Stefansson, K., 1994, Inhibition of T cell activation by the extracellular matrix protein tenascin, J. Immunol. 152:5199–5207.

    PubMed  CAS  Google Scholar 

  • Heremans, H., Dillen, C., Put, W., Vandamme, J., and Billiau, A., 1992, Protective effect of anti-interleukin (IL)-6 antibody against endotoxin, associated with paradoxically increased IL-6 levels, Eur. J. Immunol. 22:2395–2401.

    PubMed  CAS  Google Scholar 

  • Hildebrand, A., Romaris, M., Rasmussen, L. M., Heinegard, D., Twardzik, D. R., Border, W. A., and Ruoslahti, E., 1994, Interaction of small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor-beta, Biochem. J. 302:527–534.

    PubMed  CAS  Google Scholar 

  • Hopkinson-Woolley, J., Hughes, D., Gordon, S., and Martin, P., 1994, Macrophage recruitment during limb development and wound healing in the embryonic and fetal mouse, J. Cell Sci. 107:1159–1167.

    PubMed  Google Scholar 

  • Home, R. S. C., Hurley, J. V., Crowe, D. M., Ritz, M. H., McCo’Brien, B., and Arnold, L. I., 1992, Wound healing in fetal sheep: a histological and electron microscope study, Br. J. Plast. Surg. 45:333–345.

    Google Scholar 

  • Hunt, T. K., Zederfeldt, B., and Goldstick, T. K., 1961, Oxygen and wound healing, Am. J. Surg. 118: 521–525.

    Google Scholar 

  • Ignotz, R. A., and Massague, J., 1987, Cell adhesion protein receptors as targets for transforming growth factor β action, Cell 51:189–197.

    PubMed  CAS  Google Scholar 

  • Ignotz, R. A., Endo, T., and Massague, J., 1987, Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor β, J. Biol. Chem. 262:6443–6446.

    PubMed  CAS  Google Scholar 

  • Ihara, S., and Motobayashi, Y., 1992, Wound closure in fetal rat skin, Development 114:573–582.

    PubMed  CAS  Google Scholar 

  • Ihara, S., Motobayashi, Y., Nagao, E., and Kistler, A., 1990, Ontogenic transition of wound healing pattern in rat skin occurring at the rat fetal stage, Development 110:671–680.

    PubMed  CAS  Google Scholar 

  • Jackson, R. L., Busch, S. J., and Cardin, A. L., 1991, Glycosaminoglycans: Molecular properties, protein interactions and role in physiological processes, Physiol. Rev. 71:481–539.

    PubMed  CAS  Google Scholar 

  • Jahoda, C. A. B., and Oliver, R. F., 1984, Histological studies of the effects of wounding vibrissa follicles in the hooded rat, J. Embryol. Exp. Morphol. 83:95–108.

    PubMed  CAS  Google Scholar 

  • Jarnagin, W. R., Rockey, D. C., Koteliansky, V. E., Wang, S.-S., and Bissell, D. M., 1994, Expression of variant fibronectins in wound healing: Cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis, J. Cell Biol. 127:2037–2048.

    PubMed  CAS  Google Scholar 

  • Julia, M. V., Albert, A., Morales, L., Miro, D., Sancho, M. A., and Garcia, X., 1993, Wound healing in the fetal period: The resistance of the scar to rupture, J. Pediatr. Surg. 28:1458–1462.

    PubMed  CAS  Google Scholar 

  • Kahari, V. M., Larjava, H., and Uitto, J., 1991, Differential regulation of extracellular matrix proteoglycan gene expression, J. Biol. Chem. 266:10608–10615.

    PubMed  CAS  Google Scholar 

  • Kane, C. J. M., Mansbridge, J. N., Hebda, P. A., and Hanawalt, P. C., 1991, Direct evidence for spatial and temporal regulation of transforming growth factor βl expression during cutaneous wound healing, J. Cell Physiol. 148:157–173.

    PubMed  CAS  Google Scholar 

  • Keene, D. R., Sakai, L. Y., Bachinger, H. P., and Burgeson, R. E., 1987, Type III collagen can be present on banded collagen fibrils regardless of fibril diameter, J. Cell Biol. 105:2393–2402.

    PubMed  CAS  Google Scholar 

  • Kiritsy, C. P., and Lynch, S. E., 1993, Role of growth factors in cutaneous wound healing: A review, Crit. Rev. Oral Biol. Med. 4:729–760.

    PubMed  CAS  Google Scholar 

  • Knight, K. R., Home, R. S. C., Lepore, D. A., Kumta, S., Ritz, M., Hurley, J. V., and McCO’Brien, B., 1994, Glycosaminoglycan composition of uninjured skin and of scar tissue in fetal, newborn and adult sheep, Res. Exp. Med. 194:119–127.

    CAS  Google Scholar 

  • Knudson, W., Biswas, C., Li, X. Q., Nemec, R. E., and Toole, B. P., 1989, The role and regulation of tumour-associated hyaluronan, in: The Biology of Hyaluronan, (CIBA Foundation Symposium), (D. Evered and J. Whelan, eds.), pp. 150–169, John Wiley and Sons, Chichester, England.

    Google Scholar 

  • Kojima, S., Nara, K., and Rifkin, D. B., 1993, Requirement for transglutaminase in the activation of latent transforming growth factor β in bovine endothelial cells, J. Cell Biol. 121:439–448.

    PubMed  CAS  Google Scholar 

  • Krummel, T. M., Nelson, J. M., Diegelmann, R. F., Linblad, W. J., Salzberg, A. M., Greenfield, L. J., and Cohen, I. K., 1987, Fetal response to injury in the rabbit, J. Pediatr. Surg. 22:640–644.

    PubMed  CAS  Google Scholar 

  • Krummel, T. M., Michna, B. A., Thomas, B. L., Sporn, M. B., Nelson, J. M., Salzberg, I. K., and Diegelmann, R. F., 1988, Transforming growth factor beta (TGF-β) induces fibrosis in a fetal wound model, J. Pediatr. Surg. 23:647–652.

    PubMed  CAS  Google Scholar 

  • Kuhn, K., 1987, The classical collagens: Types I, II and III, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds.), pp. 1–42, Academic Press, New York.

    Google Scholar 

  • Kujawa, M. J., and Tepperman, K., 1983, Culturing chick muscle cells on glycosaminoglycan substrates: Attachment and differentiation, Dev. Biol. 99:277–286.

    PubMed  CAS  Google Scholar 

  • Kujawa, M. J., Pechak, D. G., Fiszman, M. Y., Caplan, A. I., 1986, Hyaluronic acid bonded to cell culture surfaces inhibits the program of myogenesis, Dev. Biol. 113:10–16.

    PubMed  CAS  Google Scholar 

  • Kumar, S., Kumar, P., Ponting, J. M., Sattar, A., Rooney, P., Pye, D., and Hunter, R. D., 1992, Hyaluronic acid promotes and inhibits angiogenesis, in: Angiogenesis in Health and Disease (M. E. Maragoudakis, P. Lelkes, and P. M. Gullino, eds.), pp. 253–263, Plenum Press, New York.

    Google Scholar 

  • Kurkinen, M., Vaheri, A., Roberts, P. J., and Stenman, S., 1980, Sequential appearance of fibronectin and collagen in experimental granulation tissue, Lab. Invest. 43:47–51.

    PubMed  CAS  Google Scholar 

  • Lane, A. T., Scott, G. A., and Day, K. H., 1989, Development of fetal skin transplanted onto nude mice, J. Invest. Dermatol. 93:787–791.

    PubMed  CAS  Google Scholar 

  • Laurent, T. C., 1987, Biochemistry of hyaluronan, Acta Otolaryngol. (Stockh.) 442(Suppl):7–24.

    CAS  Google Scholar 

  • Laurent, T. C., Hellstrom, S., and Fellenius, E., 1988, Hyaluronan improves the healing of experimental membrane perforations. Arch. Otolaryngol. Head Neck Surg. 114:1435–1441.

    PubMed  CAS  Google Scholar 

  • Le Boeuf, R. D., Raja, R. H., Fuller, G. M., and Weigel, P. H., 1986, Human fibrinogen specifically binds hyaluronic acid, J. Biol. Chem. 261:12586–12592.

    Google Scholar 

  • Lee, W. H., Bowsher, R. R., Apathy, J. M., Smith, M. M., and Henry, D. P., 1991, Measurement of insulin-like growth factor II in physiological fluids and tissues. II Extraction and quantification in rat tissues, Endocrinology 128:815–822.

    PubMed  CAS  Google Scholar 

  • Leibovich, S. J., and Ross, R., 1975, The role of the macrophage in wound repair. A study with hydrocortisone and anti-macrophage serum, Am. J. Pathol. 78:71–100.

    PubMed  CAS  Google Scholar 

  • Levine, J. H., Moses, H. L., Gold, L. I., and Nanney, L. B., 1993, Spatial and temporal patterns of immunoreactive transforming growth factor β1, β2 and β3 during excisional wound repair, Am. J. Pathol. 143:368–380.

    PubMed  CAS  Google Scholar 

  • Lightner, V. A., and Erickson, H. P., 1990, Binding of hexabrachion (tenascin) to the extracellular matrix and substratum and its effect on cell adhesion, J. Cell Sci. 95:263–277.

    PubMed  CAS  Google Scholar 

  • Longaker, M. T., Harrison, M. R., Crombleholme, T. M., Langer, J. C., Decker, M., Verrier, E. D., Spend-love, R., and Stern, R., 1989a, Studies in fetal wound healing: I A factor in fetal serum that stimulates deposition of hyaluronic acid, J. Pediatr. Surg. 24:789–792.

    PubMed  CAS  Google Scholar 

  • Longaker, M. T., Harrison, M. R., Langer, J. C., Crombleholme, T. M., Verrier, E. D., Spendlove, R., and Stern, R., 1989b, Studies in fetal wound healing: IIA fetal environment accelerates fibroblast migration in vitro, J. Pediatr. Surg. 24:793–798.

    PubMed  CAS  Google Scholar 

  • Longaker, M. T., Whitby, D. J., Ferguson, M. W. J., Harrison, M. R., Crombleholme, T. M., Langer, J. C., Cochrum, K. C., Verrier, E. D., and Stern, R., 1989c, Studies in fetal wound healing: III Early deposition of fibronectin distinguishes fetal from adult wound healing, J. Pediatr. Surg. 24:799–805.

    PubMed  CAS  Google Scholar 

  • Longaker, M. T., Adzick, N. S., Hall, J. L., Stair, S. E., Crombleholme, T. M., Duncan, B. W., Bradley, S. M., Harrison, M. R., and Stern, R., 1990a, Studies in fetal wound healing: VII Fetal wound healing may be modulated by hyaluronic acid stimulating activity in amniotic fluid, J. Pediatr. Surg. 25:430–433.

    PubMed  CAS  Google Scholar 

  • Longaker, M. T., Whitby, D. J., Adzick, N. S., Crombleholme, T. M., Langer, J. C., Duncan, B. W., Bradley, S. M., Stern, R., Ferguson, M. W., and Harrison, M. R., 1990b, Studies in fetal wound healing. VI Second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation, J. Pediatr. Surg. 25:63–68.

    PubMed  CAS  Google Scholar 

  • Longaker, M. T., Burd, A. R., Gowen, A. H., Yen, T. S. B., Jennings, R. W., Duncan, B. W., Harrison, M. R., and Adzick, N. S., 1991a, Midgestational excisional fetal lamb wounds contract in utero, J. Pediatr. Surg. 26:942–948.

    PubMed  CAS  Google Scholar 

  • Longaker, M. T., Chiu, E. S., Adzick, N. S., Stern, M., Harrison, M. R., and Stern, R., 1991b, Studies in fetal wound healing. A prolonged presence of hyaluronic acid characterizes fetal wound healing, Ann. Surg. 213:292–296.

    PubMed  CAS  Google Scholar 

  • Longaker, M. T., Whitby, D. J., Jennings, R. W., Duncan, B. W., Ferguson, M. W., Harrison, M. R., and Adzick, N. S., 1991c, Fetal diaphragmatic wounds heal with scar formation, J. Surg. Res. 50:375–385.

    PubMed  CAS  Google Scholar 

  • Longaker, M. T., Whitby, D. J., Ferguson, M. W. J., Lorenz, H. P., Harrison, M. R., and Adzick, N. S., 1994, Adult skin wounds in the fetal environment heal with scar formation, Ann. Surg. 219:65–72.

    PubMed  CAS  Google Scholar 

  • Lopez-Casillas, F., Wrana, J. L., and Massague, J., 1993, Betaglycan presents ligand to the TGF-β signalling receptor, Cell 73:1435–1444.

    PubMed  CAS  Google Scholar 

  • Lopez-Casillas, F., Payne, H. M., Andres, J. L., and Massague, J., 1994, Betaglycan can act as a dual modulator of TGF-β access to signalling receptors: Mapping of ligand binding and GAG attachment sites, J. Cell Biol. 124:557–568.

    PubMed  CAS  Google Scholar 

  • Lorenz, P. H., and Adzick, N. S., 1993, Scarless skin wound repair in the fetus, West. J. Med. 159:350–355.

    PubMed  CAS  Google Scholar 

  • Lorenz, H. P., Longaker, M. T., Perocha, L. A., Jennings, R. W., Harrison, M. R., and Adzick, N. S., 1992, Scarless wound repair: A human fetal skin model, Development 114:253–259.

    PubMed  CAS  Google Scholar 

  • Lorenz, H. P., Whitby, D. J., Longaker, M. T., and Adzick, N. S., 1993, Fetal wound healing: The ontogeny of scar formation in the non-human primate, Ann. Surg. 217:391–396.

    PubMed  CAS  Google Scholar 

  • Lotz, M. M., Burdsal, C. A., Erickson, H. P., and McClay, D. R., 1989, Cell adhesion to fibronectin and tenascin: Quantitative measurements of initial binding and subsequent strengthening response, J. Cell Biol. 109:1795–1805.

    PubMed  CAS  Google Scholar 

  • Mackie, E. J., Halfter, W., and Liverani, D., 1988, Induction of tenascin in healing wounds, J. Cell. Biol. 107:2757–2767.

    PubMed  CAS  Google Scholar 

  • Magnuson, V. L., Young, M., Schattenberg, D. G., Mancini, M. A., Chen, B., Steffensen, B., and Klebe, R. J., 1991, The alternative splicing of fibronectin pre-mRNA is altered during ageing and in response to growth factors, J. Biol. Chem. 266:14654–14662.

    PubMed  CAS  Google Scholar 

  • Martens, E., Dillen, C., Put, W., Heremans, H., Vandamme, J., and Billiau, A., 1993, Increased circulating interleukin-6 (IL-6) activity in endotoxin-challenged mice pretreated with anti-IL-6 antibody is due to IL-6 accumulated in antigen-antibody complexes, Eur. J. Immunol. 23:2026–2029.

    PubMed  CAS  Google Scholar 

  • Martin, D. E., Reece, M. C., Maher, J. E., and Reese, A. C., 1988, Tissue debris at the injury site is coated by plasma fibronectin and subsequently removed by tissue macrophages, Arch. Dermatol. 124:226–229.

    PubMed  CAS  Google Scholar 

  • Martin, P., and Lewis, J., 1992, Actin cables and epidermal movement in embryonic wound healing, Nature 360:179–183.

    PubMed  CAS  Google Scholar 

  • Martin, P., Dickson, M. C., Millan, F. A., and Akhurst, R. J., 1993, Rapid induction and clearance of TGF-β1 is an early response to wounding in the mouse embryo, Dev. Genet. 14:225–238.

    PubMed  CAS  Google Scholar 

  • Massague, J., Cheiftetz, S., Boyd, F. T., and Andres, J. L., 1990, TGF-beta receptors and TGF-beta binding proteoglycans: Recent progress in identifying their functional properties, Ann. NY Acad. Sci. 593: 59–72.

    PubMed  CAS  Google Scholar 

  • Mast, B. A., Flood, L. C., Haynes, J. H., DePalma, R. L., Cohen, I. K., Dieglmann, R. F., and Krummel, T. M., 1991, Hyaluronic acid is a major component of the matrix of fetal rabbit skin and wounds: Implications for healing by regeneration, Matrix 11:63–68.

    PubMed  CAS  Google Scholar 

  • Mast, B. A., Dieglemann, R. F., Krummel, T. M., and Cohen, I. K., 1992a, Scarless wound healing in the mammalian fetus, Surg. Gynecol. Obstet. 174:441–451.

    PubMed  CAS  Google Scholar 

  • Mast, B. A., Haynes, J. H., Krummel, T. M., Diegelmann, R. F., and Cohen, I. K., 1992b, In vivo degradation of fetal wound hyaluronic acid results in increased fibroplasia, collagen deposition and neovascularisation, Plast. Reconstr. Surg. 89:503–509.

    PubMed  CAS  Google Scholar 

  • Mast, B. A., Diegelmann, R. F., Krummel, T. M., and Cohen, I. K., 1993, Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts, Matrix 13:441–446.

    PubMed  CAS  Google Scholar 

  • McCluskey, J., Hopkinson-Wooley, J., Luke, B., and Martin, P., 1993, A study of wound healing in the El 1.5 mouse embryo by light and electron microscopy, Tissue Cell 25:173–181.

    PubMed  CAS  Google Scholar 

  • McDonald, J. A., 1988, Extracellular matrix assembly, Annu. Rev. Cell Biol. 4:183–207.

    PubMed  CAS  Google Scholar 

  • Merkel, J. R., DiPaolo, B. R., Hallock, G. G., and Rice, D. C., 1988, Types I and types III collagen content of healing wounds in fetal and adult rats, Proc. Soc. Exp. Biol. Med. 187:493–497.

    PubMed  CAS  Google Scholar 

  • Meyer, D. H., Krull, N., Dreher, K. L., and Gressner, A. M., 1992, Biglycan and decorin gene expression in normal and fibrotic rat liver: Cellular localization and regulatory factors, Hepatology 16:204–216.

    PubMed  CAS  Google Scholar 

  • Mian, N., 1986, Analysis of cell-growth-phase-related variations in hyaluronate synthase activity of isolated plasma membrane fractions of cultured human skin fibroblasts, Biochem. J. 237:333–342.

    PubMed  CAS  Google Scholar 

  • Morykwas, M. J., Ditesheim, J. A., Ledbetter, M. S., Crook, E., White, W. L., Jennings, D. A., and Argenta, L. C., 1991, Monodelphis domesticius: A model for early developmental wound healing, Ann. Plast. Surg. 4:327–331.

    Google Scholar 

  • Moses, A. C., Nissley, P. S., Short, P. A., Rechler, M. M., White, R. M., Knight, A. B., and Higa, O. Z., 1980, Increase levels of multiplication stimulating activity, an insulin-like growth factor in fetal rat serum, Proc. Natl. Acad. Sci. USA 77:3649–3653.

    PubMed  CAS  Google Scholar 

  • Mustoe, T. A., Pierce, G. F., Thomason, A., Gramates, P., Sporn, M. B., and Deuel, T. F., 1987, Accelerated healing of incisional wounds in rats induced by transforming growth factor β, Science 237:1333–1336.

    PubMed  CAS  Google Scholar 

  • Nath, R. K., LaRegina, M., Markham, H., Ksander, G. A., and Weeks, P. M., 1994a, The expression of transforming growth factor beta in fetal and adult rabbit skin wounds, J. Pediatr. Surg. 29:416–421.

    PubMed  CAS  Google Scholar 

  • Nath, R. K., Parks, W C., Mackinnon, S. E., Hunter, D. A., Markham, H., and Weeks, P. M., 1994b, The regulation of collagen in fetal skin wounds: mRNA localization and analysis, J. Pediatr. Surg. 29:855–862.

    PubMed  CAS  Google Scholar 

  • Nelson, N. M., 1976, Respiration and circulatory changes before birth, in: The Physiology of the Newborn Infant, 4th ed. (C. A. Smith and N. M. Nelson, eds.), pp. 75–121, C. C. Thomas, Springfield, Massachusetts.

    Google Scholar 

  • Noms, D. A., Clark, R. A. F., Swigart, L. M., Huff, J. C., Weston, W. L., and Howell, S. E., 1982, Fibronectin fragment(s) are chemotactic for human peripheral blood monocytes, J. Immunol. 129:1612–1618.

    Google Scholar 

  • Picardo, M., McGurk, M., Schor, S. L., Grey, A. M., and Ellis, I., 1992, Identification of migration stimulating factor in wound fluid, Exp. Mol. Pathol. 57:8–21.

    PubMed  CAS  Google Scholar 

  • Pierce, G. F., Vandeberg, J., Rudolph, R., Tarpley, J., and Mustoe, T., 1991, Platelet derived growth factor-BB and transforming growth factor beta-1 selectively modulate glycosaminoglycans, collagen and myo-fibroblasts in excisional wounds, Am. J. Pathol. 138:629–646.

    PubMed  CAS  Google Scholar 

  • Poole, T. J., and Thiery, J. P., 1986, Antibodies and a synthetic peptide that block cell-fibronectin adhesion arrest neural crest migration in vivo, Prog. Clin. Biol. Res. 217B:235–238.

    PubMed  CAS  Google Scholar 

  • Purchio, A. F., Cooper, J. A., Brunner, A. M., Lioubin, M. N., Gentry, L. E., Kovacina, K. S., Roth, R. A., and Marquardt, H., 1988, Identification of mannose-6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-βl precursor, J. Biol. Chem. 263:14211–14215.

    PubMed  CAS  Google Scholar 

  • Raghow, R., 1994, The role of extracellular matrix in post inflammatory wound healing and fibrosis, FASEB J. 8:823–831.

    PubMed  CAS  Google Scholar 

  • Rettig, W. J., Garin-Chesa, P., Beresford, H. R., Oettgen, H. F., Melamed, M. R., and Old, L. J., 1988, Cell surface glycoproteins of human sarcomas: Differential expression in normal and malignant tissues and cultured cells, Proc. Natl. Acad. Sci. USA 85:3110–3114.

    PubMed  CAS  Google Scholar 

  • Rittenberg, T., Longaker, M. T., Adzick, N. S., and Erlich, H. P., 1991, Sheep amniotic fluid has a protein factor which stimulates human fibroblast populated collagen lattice contraction, J. Cell Physiol. 149:444–450.

    PubMed  CAS  Google Scholar 

  • Roberts, A. B., and Sporn, M. B., 1990, The transforming growth factors TGF-β, in: Peptide Growth Factors and Their Receptors, Vol. 95 Handbook of Experimental Pathology (M. B. Sporn and A. B. Roberts, eds.), pp. 419–472, Springer-Verlag, New York.

    Google Scholar 

  • Robinson, B. W., and Goss, A. N., 1981, Intrauterine healing of fetal rat cheek wounds, Cleft Palate J. 18:251–255.

    PubMed  CAS  Google Scholar 

  • Roswell, A. R., 1984, The intrauterine healing of fetal muscle wounds: experimental study in the rat, Br. J. Plast. Surg. 37:635–642.

    Google Scholar 

  • Ruegg, C. R., Chiquet-Ehrismann, R., and Alkan, S. S., 1989, Tenascin, an extracellular matrix protein exerts immunomodulatory activities, Proc. Natl Acad. Sci. USA 86:7437–7441.

    PubMed  CAS  Google Scholar 

  • Ruoslahti, E., and Yamaguchi, Y., 1991, Proteoglycans as modulators of growth factor activities, Cell 64:867–869.

    PubMed  CAS  Google Scholar 

  • Saga, Y., Yagi, T., Ikawa, Y., Sakakura, T., and Aizawa, S., 1992, Mice develop normally without tenascin, Genes Dev. 6:1821–1831.

    PubMed  CAS  Google Scholar 

  • Sakaguchi, K., Yanagishita, M., Takeuchi, Y., and Aurbach, G. D., 1991, Identification of heparan sulfate proteoglycans as a high affinity receptor for acidic fibroblast growth factor (aFGF) in a parathyroid cell line, J. Biol. Chem. 266:7270–7278.

    PubMed  CAS  Google Scholar 

  • Saksela, O., Rifkin, D. B., 1990, Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity, J. Cell Biol. 110:767–775.

    PubMed  CAS  Google Scholar 

  • Sames, K., 1994, Introduction: Biochemistry of proteoglycans and glycosaminoglycans, in: The Role of Proteoglycans and Glycosaminoglycans in Ageing. Interdisciplinary Topics in Gerontology (H. P. von Hahn, ed.), pp. 1–17, S. Karger, Basel, Switzerland.

    Google Scholar 

  • Scanlan, M. J., Mohan Raj, B. K., Calvo, B., Garin-Chesa, P., Sanz-Moncasi, M. P., Healey, J. H., Old, L. J., and Rettig, W. J., 1994, Molecular cloning of fibroblast activation protein a, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers, Proc. Natl. Acad. Sci. USA 91:5657–5661.

    PubMed  CAS  Google Scholar 

  • Schmid, P., Kunz, S., Cerletti, N., McMaster, G., and Cox, D., 1993, Injury induced expression of TGF-β1 mRNA is enhanced by exogenously applied TGFβs, Biochem. Biophys. Res. Commun. 194:399–406.

    PubMed  CAS  Google Scholar 

  • Schonherr, E., Hausser, H., Beavan, L., and Kresse, H., 1995, Decorin-type I collagen-interaction: Presence of separate core protein binding domains, J. Biol. Chem. 270:8877–8883.

    PubMed  CAS  Google Scholar 

  • Schor, S. L., Schor, A. M., Rushton, G., and Smith, L., 1985, Adult, fetal and transformed fibroblasts display different migratory phenotypes on collagen gels: Evidence for an isoform transition during fetal development, J. Cell Sci. 73:221–234.

    PubMed  CAS  Google Scholar 

  • Schor, S. L., Schor, A. M., Grey, A. M., and Rushton, G., 1988, Fetal and cancer patient fibroblasts produce an autocrine migration stimulating factor not made by normal adult cells, J. Cell Sci. 90:391–399.

    PubMed  CAS  Google Scholar 

  • Schor, S. L., Schor, A. M., Grey, A. M., Chen, J., Rushton, G., Grant, M., and Ellis, I., 1989, Mechanisms of action of the migration stimulating factor (MSF) produced by fetal and cancer patient fibroblasts: Effect on hyaluronic acid synthesis, In Vitro Cell. Dev. Biol. 25:737–746.

    PubMed  CAS  Google Scholar 

  • Schultz, G. S., White, M., Mitchell, R., Brown, G., Lynch, J., Twardzick, D. R., and Todaro, G. J., 1987, Epithelial wound healing enhanced by transforming growth factor a and vaccinia growth factor, Science 235:350–352.

    PubMed  CAS  Google Scholar 

  • Schurch, W., Seemayer, T. A., and Gabbiani, G., 1992, Myofibroblasts, in: Histology for Pathologists (S. S. Sternberg, ed.), pp. 109–144, Raven Press, New York.

    Google Scholar 

  • Schwarzbauer, J. E., Tamkun, J. W., Lemiscka, I. R., and Hynes, R. O., 1983, Three different fibronectin mRNA arise by alternative splicing within the coding region, Cell 35:421–431.

    PubMed  CAS  Google Scholar 

  • Schwarzbauer, J. E., Patel, R. S., Fonda, D., and Hynes, R. O., 1987, Multiple sites of alternative splicing of the rat fibronectin gene transcript, EMBO J. 6:2573–2580.

    PubMed  CAS  Google Scholar 

  • Scott, J. E., 1988, Proteoglycan-fibrillar collagen interactions, Biochem. J. 252:313–323.

    PubMed  CAS  Google Scholar 

  • Scott, J. E., 1992, Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues, FASEB J. 6:2639–2645.

    PubMed  CAS  Google Scholar 

  • Scott, J. E., and Hughes, E. W., 1986, Proteoglycan-collagen relationships in developing chick and bovine tendons. Influence of physiological environment, Connect. Tiss. Res. 14:267–278.

    CAS  Google Scholar 

  • Shah, M., Foreman, D. M., and Ferguson, M. W. J., 1992, Control of scarring in adult wounds by neutralising antibody to TGF-β, Lancet 339:213–214.

    PubMed  CAS  Google Scholar 

  • Shah, M., Foreman, D. M., and Ferguson, M. W. J., 1994, Neutralising antibody to TGFβ1,2 reduces cutaneous scarring in adult rodents, J. Cell Sci. 107:1137–1157.

    PubMed  CAS  Google Scholar 

  • Shah, M., Foreman, D. M., and Ferguson, M. W. J., 1995, Neutralisation of TGF-β1 and TGF-β2 or exogenous addition of TGF-β3 to cutaneous rat wounds reduces scarring, J. Cell Sci. 108:15–17.

    Google Scholar 

  • Shaw, L. M., and Olsen, B. R., 1991, FACIT collagens: Diverse molecular bridges in extracellular matrices, Trends Biochem. Sci. 16:191–194.

    PubMed  CAS  Google Scholar 

  • Siebert, J. W., Burd, D. A. R., McCarthy, J., and Erlich, H. P., 1990, Fetal wound healing: A biochemical study of scarless healing, Plast. Reconst. Surg. 85:495–504.

    PubMed  CAS  Google Scholar 

  • Sloan, P., 1991, Current concepts in the role of fibroblasts and extracellular matrix in wound healing and their relevance to oral implantology, J. Dent. 19:107–109.

    PubMed  CAS  Google Scholar 

  • Somasundaram, K., and Prathap, K., 1970, Intra-uterine healing of skin wounds in rabbit wounds in rabbit fetuses, J. Pathol. 100:81–86.

    PubMed  CAS  Google Scholar 

  • Somasundaram, K., and Prathap, K., 1972, The effect of exclusion of amniotic fluid on intra-uterine healing of skin wounds in rabbit fetuses, J. Pathol. 107:127–130.

    PubMed  CAS  Google Scholar 

  • Speranz, M. L., Valentini, G., and Calligaro, A., 1987, Influence of fibronectin on fibrillogenesis of type I and type III collagen, Coll. Rel. Res. 7:115–123.

    Google Scholar 

  • Sporn, M. B., Roberts, A. B., Schull, J. M., Smith, J. M., Ward, J. M., and Sodek, J., 1983, Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo, Science 219:1329–1331.

    PubMed  CAS  Google Scholar 

  • Stadnyk, A. W., 1994, Cytokine production by epithelial cells, FASEB J. 8:1041–1047.

    PubMed  CAS  Google Scholar 

  • Stern, M., Schmid, B., Dodson, T. B., Stern, R., and Kaban, K. B., 1992, Fetal cleft lip repair in rabbits: Histology and role of hyaluronic acid, J. Oral Maxillofac. Surg. 50:263–268.

    PubMed  CAS  Google Scholar 

  • Stern, M., Dodson, T. B., Longaker, M. T., Lorenz, H. P., Harrison, M. R., and Kaban, L. B., 1993, Fetal cleft lip repair in lambs: Histologie characteristics of the healing wound, Int. J. Oral Maxillofac. Surg. 22:371–374.

    PubMed  CAS  Google Scholar 

  • Tahery, T. J., and Lee, D. A., 1989, Review: Pharmacologie control of wound healing in glaucoma filtration surgery, J. Ocular Pharmacol. 5:155–179.

    CAS  Google Scholar 

  • Takashima, A., Billingham, R. E., and Grinnell, F., 1986, Activation of rabbit keratinocyte receptor function in vivo during wound healing, J. Invest. Dermatol. 86:585–590.

    PubMed  CAS  Google Scholar 

  • Tamkun, J. W., Schwarzbauer, J. E., and Hynes, R. O., 1984, A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon, Proc. Natl. Acad. Sci. USA 81:5140–5144.

    PubMed  CAS  Google Scholar 

  • Tan, E. M. L., Hoffren, J., Rouda, S., Greenbaum, S., Fox, J. W., Moore, J. H., and Dodge, G. R., 1993, Decorin, versican and biglycan gene expression by keloid and normal dermal fibroblasts: Differential regulation by basic fibroblast growth factor, Exp. Cell Res. 209:200–207.

    PubMed  CAS  Google Scholar 

  • Terrell, T. G., Working, P. K., Chow, C. P., Green, C. P., and Green, J. D., 1993, Pathology of recombinant human transforming growth factor-βl in rats and rabbits, Int. Rev. Exp. Pathol. 34:43–67.

    PubMed  Google Scholar 

  • Thompson, R. W., Whalen, G. F., Saunders, K. B., Hores, T., and D’Amore, P. A., 1990, Heparin-mediated release of fibroblast growth factor-like activity into the circulation of rabbits, Growth Factors 3: 221–229.

    PubMed  CAS  Google Scholar 

  • Tomida, M., Koyama, H., and Ono, T., 1974, Hyaluronic acid synthetase in cultured mammalian cells producing hyaluronic acid. Oscillatory change during the growth phase and suppression by 5-bro-modeoxyuridine, Biochem. Biophys. Acta 338:352–363.

    CAS  Google Scholar 

  • Toole, B. P., 1991, Proteoglycans and hyaluronan in morphogenesis and differentiation, in: Cell Biology of the Extracellular Matrix (E. D. Hay, ed.), pp. 305–339, Plenum Press, New York.

    Google Scholar 

  • Turley, B. P., and Torrance, J., 1984, Localization of hyaluronate-binding protein on motile and non-motile fibroblasts, Exp. Cell Res. 161:17–28.

    Google Scholar 

  • Turley, E. A., Austen, L., Vandeligt, K., and Clary, C., 1991, Hyaluronan and a cell associated hyaluronan binding protein regulates the locomotion of Ras-transformed cells, J. Cell Biol. 112:1041–1047.

    PubMed  CAS  Google Scholar 

  • Van Vlasselaer, P., Borremans, B., van Gorp, U., Dasch, J. R., and DeWaal-Malefyt, R., 1994, Interleukin-10 inhibits transforming growth factor-β (TGF-β) synthesis required for osteogenic commitment of mouse bone marrow cells, J. Cell Biol 124:569–577.

    PubMed  Google Scholar 

  • Vogel, K. G., and Trotter, J. A., 1987, The effect of proteoglycans on the morphology of collagen fibrils formed in vitro, Collagen Rel. Res. 7:105–114.

    CAS  Google Scholar 

  • Vogel, K. G., Paulsson, M., and Heinegard, D., 1984, Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon, Biochem. J. 223:587–597.

    PubMed  CAS  Google Scholar 

  • Vuorio, E., and Crombrugghe, B., 1990, The family of collagen genes, Annu. Rev. Biochem. 59:837–872.

    PubMed  CAS  Google Scholar 

  • Wahl, S. M., Hunt, D. A., Wakefield, N., McCartney-Francis, L. M., Wahl, A. B., Roberts, A. B., and Sporn, M. B., 1987, Transforming growth factor-β (TGF-β) induces monocyte chemotaxis and growth factor production, Proc. Natl. Acad. Sci. USA 84:5788–5792.

    PubMed  CAS  Google Scholar 

  • Weigel, P. H., Fuller, G. M., and Le Boeuf, R. D., 1986, A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing, J. Theor. Biol. 119:219–234.

    PubMed  CAS  Google Scholar 

  • Welch, M. P., Odland, G. F., and Clark, R. A. F., 1990, Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly and fibronectin receptor expression during wound contraction, J. Cell Biol. 110:133–145.

    PubMed  CAS  Google Scholar 

  • West, D. C., Hampson, I. N., Arnold, F., and Kumar, S., 1985, Angiogenesis induced by degradation products of hyaluronic acid, Science 228:1324–1326.

    PubMed  CAS  Google Scholar 

  • Whitby, D. J., and Ferguson, M. W. J., 1991a, The extracellular matrix of lip wounds in fetal, neonatal and adult mice, Development 112:651–668.

    PubMed  CAS  Google Scholar 

  • Whitby, D. J., and Ferguson, M. W. J., 1991b, Immunolocalization of growth factors in fetal wound healing, Dev. Biol. 147:2207–2215.

    Google Scholar 

  • Whitby, D. J., Longaker, M. T., Harrison, M. R., Adzick, N. S., and Ferguson, M. W. J., 1991, Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin, J. Cell Sci. 99: 583–586.

    PubMed  Google Scholar 

  • Wider, T. M., Yager, J. S., Rittenberg, T., Hugo, N. E., and Erlich, P., 1993, The inhibition of fibroblast-populated collagen lattice contraction by human amniotic fluid: A chronologic examination, Plast. Reconstruc. Surg. 91:1287–1293.

    CAS  Google Scholar 

  • Wight, T. N., Kinsella, M. G., and Qwarnstrom, E. E., 1992, The role of proteoglycans in cell adhesion, migration and proliferation, Curr. Opin. Cell Biol. 4:793–801.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Mann, D. M., and Ruoslahti, E., 1990, Negative regulation of transforming growth factor-beta by the proteoglycan decorin, Nature 346:281–284.

    PubMed  CAS  Google Scholar 

  • Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E., and Border, W. A., 1993, Expression of transforming growth factor β is elevated in human and experimental diabetic nephropathy, Proc. Natl. Acad. Sci. USA 90:1814–1818.

    PubMed  CAS  Google Scholar 

  • Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M., 1991, Cell surface heparin like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 64:841–848.

    PubMed  CAS  Google Scholar 

  • Yeo, T. K., Brown, L., and Dvork, H. L., 1991, Alterations in proteoglycan synthesis common to healing wounds and tumors, Am. J. Pathol. 138:437–1450.

    Google Scholar 

  • Yoshioka, K., Takemura, T., Murakami, K., Okada, M., Hino, S., Miyamoto, H., and Maki, S., 1993, Transforming growth factor β and mRNA in glomeruli in normal and diseased human kidneys, Lab. Invest. 68:154–163.

    PubMed  CAS  Google Scholar 

  • Zugmaier, G., Paik, S., Wilding, G., Knabbe, C., Bano, M., Lupu, R., Deschauer, B., Simpson, S., Dickson, R. B., and Lippman, M., 1991, Transforming growth factor-β1 induces cachexia and systemic fibrosis without an anti-tumor effect in nude mice, Cancer Res. 51:3590–3594.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCallion, R.L., Ferguson, M.W.J. (1988). Fetal Wound Healing and the Development of Antiscarring Therapies for Adult Wound Healing. In: Clark, R.A.F. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0185-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0185-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0187-3

  • Online ISBN: 978-1-4899-0185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics