Advertisement

Collagens and the Reestablishment of Dermal Integrity

  • Beate Eckes
  • Monique Aumailley
  • Thomas Krieg

Abstract

Skin contains a large number of different morphological structures that are composed of various extracellular matrix (ECM) components (Table I). Following tissue injury and destruction, ECM restoration has to be achieved by a controlled de novo synthesis as well as degradation of damaged ECM molecules. Although the ECM contains a large number of glycoproteins, those belonging to the family of collagens probably play the most important role, since they not only provide the structural scaffold of the tissue but also regulate many cellular functions.

Keywords

Collagen Type Collagen Versus Bullous Pemphigoid Interstitial Collagen Type Versus Collagen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albini, A., and Adelmann-Grill, B. C., 1985, Collagenolytic cleavage products of collagen type I as chemoat-tractants for human dermal fibroblasts, Eur. J. Cell Biol. 36:104–107.PubMedGoogle Scholar
  2. Aumailley, M., and Timpl, R., 1986, Attachment of cells to basement membrane collagen type IV, J. Cell Biol 103:1569–1575.CrossRefPubMedGoogle Scholar
  3. Aumailley, M., Mann, K., von der Mark, H., and Timpl, R., 1989, Cell attachment properties of collagen VI and Arg-Gly-Asp dependent binding to its α2 (VI) and α3 (VI) chains, Exp. Cell Res. 181:463–474.CrossRefPubMedGoogle Scholar
  4. Baron, M., Norman, D. G., and Campbell, I. D., 1991, Protein modules, Trends Biochem. Sci. 16:13–17.CrossRefPubMedGoogle Scholar
  5. Bell, E., Ivarsson, B., and Merrill, C., 1979, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro, Proc. Natl. Acad. Sci. USA 76:1274–1278.CrossRefPubMedGoogle Scholar
  6. Birk, D. E., Fitch, J. M., Barbiarz, J. P., and Linsenmayer, T. F., 1988, Collagen type I and V are present in the same fibril in the avian corneal stroma, J. Cell Biol. 106:999–1008.CrossRefPubMedGoogle Scholar
  7. Brown, J. C., Mann, K., Wiedemann, H., and Timpl, R., 1993, Structure and binding properties of collagen type XIV isolated from human placenta, J. Cell Biol. 120:557–567.CrossRefPubMedGoogle Scholar
  8. Burgeson, R. E., 1993, Type VII collagen, anchoring fibrils and epidermolysis bullosa, J. Invest. Dermatol. 101:252–255.CrossRefPubMedGoogle Scholar
  9. Chan, B. M., Kassner, P. D., Schiro, J. A., Byers, H. R., Küpper, T. S., and Hemler, M. E., 1992, Distinct cellular functions mediated by different VLA integrin alpha subunit cytoplasmic domains, Cell 68:1051–1060.CrossRefPubMedGoogle Scholar
  10. Chu, M. L., Zhan, R. Z., Pan, T. C., Stokes, D., Kuo, H. J., Glanville, R. W., Mayer, U., Mann, K., Deutzmann, R., and Timpl, R., 1990, Mosaic structure of globular domains in the human type VI collagen α3 chain: Similarity to von Willebrand factor, fibronectin, actin, salivary proteins, and aprotinin type protease inhibitors, EMBO J. 9:385–393.PubMedGoogle Scholar
  11. Cidadao, A. J., 1989, Interactions between fibronectin, glycosaminoglycans and native collagen fibrils—An EM study in artificial three-dimensional extracellular matrices, Eur. J. Cell Biol 48:303–312.PubMedGoogle Scholar
  12. Clark, R. A. F., 1985, Cutaneous tissue repair: Basic biological considerations, J. Am. Acad. Dermatol. 13:701–725.CrossRefPubMedGoogle Scholar
  13. Clore, J. N., Cohen, I. K., and Diegelmann, R. F., 1979, Quantitation of collagen types I and III during wound healing in rat skin, Proc. Soc. Exp. Biol. Med. 161:337–340.CrossRefPubMedGoogle Scholar
  14. Colombatti, A., Bonaldo, P., Ainger, K., Bressan, G. M., and Volpin, D., 1987, Biosynthesis of chick type VI collagen: Intercellular assembly and molecular structure, J. Biol. Chem. 262:14454–14460.PubMedGoogle Scholar
  15. Contard, P., Bartel, R. L., Jacobs, L., Perlish, J., MacDonald, E. D., Handler, L., Cone, D., and Fleischmajer, R., 1993, Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone, J. Invest. Dermatol. 100:35–39.CrossRefPubMedGoogle Scholar
  16. Davis, G. E., 1992, Affinity of integrin for damaged extracellular matrix avβ3 binds to denatured collagen type I through RGD sites, Biochem. Biophys. Res. Commun. 182:1025–1031.CrossRefPubMedGoogle Scholar
  17. Docherty, R., Forrester, J. V., Lackie, J. M., and Gregory, D. W., 1989, Glycosaminoglycans facilitate the movement of fibroblasts through three-dimensional collagen matrices, J. Cell Sci. 92:263–270.PubMedGoogle Scholar
  18. Eckes, B., Mauch, C., Hüppe, G., and Krieg, T., 1993, Down-regulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms, FEBS Lett. 318:129–133.CrossRefPubMedGoogle Scholar
  19. Ehrlich, H. P., 1988, The modulation of contraction of fibroblast populated collagen lattices by types I, II, and III collagen, Tissue Cell 20:47–50.CrossRefPubMedGoogle Scholar
  20. Engel, J., 1991, Common structural motifs in proteins of the extracellular matrix, Curr. Opin. Cell Biol. 3:779–785.CrossRefPubMedGoogle Scholar
  21. Eyre, D. R., Apon, S., Wu, J. J., Ericsson, L. H., and Walsh, K. A., 1987, Collagen type IX: Evidence for covalent linkages to type II collagen in cartilage, FEBS Lett. 220:337–341.CrossRefPubMedGoogle Scholar
  22. Fleischmajer, R., Contard, P., Schwartz, E., MacDonald, E. D., Jacobs, L., and Sakai, L. Y., 1991, Elastin-associated microfibrils (10 nm) in a three-dimensional fibroblast culture, J. Invest. Dermatol. 97:638–643.CrossRefPubMedGoogle Scholar
  23. Font, B., Aubert-Foucher, E., Goldschmidt, D., Eichenberger, D., and van der Rest, M., 1993, Binding of collagen XIV with the dermatan sulfate side chain of decorin, J. Biol. Chem. 268:25015–25018.PubMedGoogle Scholar
  24. Fouser, L., Sage, E. H., Clark, J., and Bornstein, P., 1991, Feedback regulation of collagen gene expression: A Trojan horse approach, Proc. Natl. Acad. Sci. USA 88:10158–10162.CrossRefPubMedGoogle Scholar
  25. Gillery, P., Bellon, G., Coustry, F., and Borel, J. P., 1989, Cultures of fibroblasts in fibrin lattices—Models for a study of metabolic activities of the cells in physiological conditions, J. Cell. Physiol. 140:483–490.CrossRefPubMedGoogle Scholar
  26. Gillery, P., Fertin, C., Nicolas, J. F., Chastang, F., Kalis, B., Banchereau, J., and Maquart, F. X., 1992, Interleukin-4 stimulates collagen gene expression in human fibroblast monolayer cultures. Potential role in fibrosis, FEBS Lett. 302:231–234.CrossRefPubMedGoogle Scholar
  27. Goldberg, H., Helaakoski, T., Garrett, L. A., Karsenty, G., Pellegrino, A., Lozano, G., Maity, S., and de Crombrugghe, B., 1992, Tissue-specific expression of the mouse a2 (I) collagen promoter, J. Biol. Chem. 267:19622–19630.PubMedGoogle Scholar
  28. Grinnell, F., 1994, Fibroblasts, myofibroblasts, and wound contraction, J. Cell Biol. 124:401–404.CrossRefPubMedGoogle Scholar
  29. Gross, J., 1956, The behavior of collagen as a model in morphogenesis, J. Biophys. Biochem. Cytol. (Suppl.) 2:261–294.CrossRefPubMedGoogle Scholar
  30. Guidice, G. J., Emery, D. J., and Diaz, L. A., 1992, Cloning and primary structural analysis of the bullous pemphigoid autoantigen BP 180, J. Invest. Dermatol. 99:243–250.CrossRefGoogle Scholar
  31. Guidry, C., 1993, Fibroblast contraction of collagen gels requires activation of protein kinase C., J. Cell. Physiol. 155:358–367.CrossRefPubMedGoogle Scholar
  32. Guidry, C., and Grinnell, F., 1987, Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts, J. Cell Biol. 104:1097–1103.CrossRefPubMedGoogle Scholar
  33. Heckmann, M., Aumailley, M., Hatamochi, A., Chu, M. L., Timpl, R., and Krieg, T., 1989, Down-regulation of α3 (VI) chain expression by γ-interferon decreases synthesis and deposition of collagen type VI, Eur. J. Biochem. 182:719–726.CrossRefPubMedGoogle Scholar
  34. Heckmann, M., Adelmann-Grill, B. C., Hein, R., and Krieg, T., 1993, Biphasic effects of interleukin-1α on dermal fibroblasts: Enhancement of chemotactic responsiveness at low concentrations and of mRNA expression for collagenase at high concentrations, J. Invest. Dermatol. 100:780–784.CrossRefPubMedGoogle Scholar
  35. Henkel, W., and Glanville, R. W., 1982, Covalent cross-linking between molecules of type I and type III collagen, Eur. J. Biochem. 122:205–213.CrossRefPubMedGoogle Scholar
  36. Hessle, H., and Engvall, E., 1984, Type VI collagen: Studies on its localization, structure and biosynthetic form with monoclonal antibodies, J. Biol. Chem. 259:3955–3961.PubMedGoogle Scholar
  37. Hogervorst, F., Kuikman, I., von dem Borne, A. E., and Sonnenberg, A., 1990, Cloning and sequence analysis of β4 cDNA: An integrin subunit that contains a unique 118 kd cytoplasmic domain, EMBO J. 9:765–770.PubMedGoogle Scholar
  38. Hynes, R. O., 1992, Integrins: Versatility, modulation, and signaling in cell adhesion, Cell 69:11–25.CrossRefPubMedGoogle Scholar
  39. Ignotz, R. A., Endo, T., and Massague, J., 1987, Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-β, J. Biol. Chem. 262:6443–6446.PubMedGoogle Scholar
  40. Ingber, D. E., and Folkman, J., 1989, Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: Role of extracellular matrix, J. Cell Biol. 109:317–330.CrossRefPubMedGoogle Scholar
  41. Juliano, R. L., and Haskill, S., 1993, Signal transduction from the extracellular matrix, J. Cell Biol. 120:577–585.CrossRefPubMedGoogle Scholar
  42. Kähäri, V. M., Chen, Y. Q., Su, N. W., Ramirez, F., and Uitto, J., 1990, TNF-α and interferon-7 suppress the activation of human type I collagen gene expression by TGF-β, J. Clin. Invest. 86:1489–1495.CrossRefPubMedGoogle Scholar
  43. Karsenty, G., Ravazzolo, R., and de Crombrugghe, B., 1991, Purification and functional characterization of a DNA-binding protein that interacts with a negative element in the mouse cd (I) collagen promoter, J. Biol. Chem. 266:24842–24848.PubMedGoogle Scholar
  44. Katayama, K., Armendariz-Borunda, J., Raghow, R., Kang, A. H., and Seyer, J. M., 1993, A pentapeptide from type I procollagen promotes extracellular matrix production, J. Biol. Chem. 268:9941–9944.PubMedGoogle Scholar
  45. Keene, D. R., Lunstrum, G. P., Morris, N. P., Stoddard, D. W., and Burgeson, R. E., 1991, Two type XIMike collagens localized to the surface of banded collagen fibrils, J. Cell Biol. 113:971–978.CrossRefPubMedGoogle Scholar
  46. Kivirikko, K. I., and Myllylä, R., 1985, Posttranslational processing of procollagens, Ann. NY Acad. Sci. 460:187–201.CrossRefPubMedGoogle Scholar
  47. Kivirikko, K. I., Helaakoski, T., Tasanen, K., Vuori, K., Myllylä, R., Parkkonen, T., and Pihlajaniemi, T., 1990, Molecular biology of prolyl 4-hydroxylase, in: Structure, Molecular Biology and Pathology of Collagen (R. Fleischmajer, B. R. Olsen, and K. Kühn, eds.), pp. 132–142, Academic Press, New York.Google Scholar
  48. Klein, C. E., Dressel, D., Steinmayer, T., Mauch, C., Eckes, B., Krieg, T., Bankert, R. W., and Weber, L., 1991, Integrin α2β1 is up-regulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils, J. Cell. Biol. 115:1427–1436.CrossRefPubMedGoogle Scholar
  49. König, A., and Bruckner-Tuderman, L., 1991, Epithelial-mesenchymal interactions enhance expression of collagen VII in vitro, J. Invest. Dermatol. 96:803–808.CrossRefPubMedGoogle Scholar
  50. König, A., and Bruckner-Tuderman, L., 1994, Transforming growth factor-β promotes deposition of collagen VII in a modified organotypic skin model, Lab. Invest. 70:203–209.PubMedGoogle Scholar
  51. Kulozik, M., Hogg, A., Lankat-Buttgereit, B., and Krieg, T., 1990, Co-localization of transforming growth factor β2 with α1(I) procollagen mRNA in tissue sections of patients with systemic sclerosis, J. Clin. Invest. 86:917–922.CrossRefPubMedGoogle Scholar
  52. Lambert, C. A., Soudant, E. P., Nusgens, B. V., and Lapiere, Ch. M., 1992, Pretranslational regulation of the extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces, Lab. Invest. 66:444–451.PubMedGoogle Scholar
  53. Lambert, C. A., Martens, H., Nusgens, B. V., and Lapiere, Ch. M., 1993, Regulation of collagenase and COL1A1 genes, but not β-actin gene in fibroblast populated collagen gels is mediated via tyrosine kinases and phospholipase C., J. Invest. Dermatol. 100:436 (Abstract).Google Scholar
  54. Langholz, O., Roeckel, D., Mauch, C., Kozlowska, E., Bank, I., Krieg, T., and Eckes, B., 1995, Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by α1β1 and α2β1 integrins, J. Cell Biol., in press.Google Scholar
  55. Linsenmayer, T. F., Fitch, J. M., and Mayne, R., 1984, Extracellular matrices in the developing avian eye. Type V collagen in corneal and noncorneal tissues, Invest. Ophthalmol. Vis. Sci. 25:41–47.PubMedGoogle Scholar
  56. Linsenmayer, T. F., Gibney, E., Igoe, F., Gordon, M. F., Fitch, J. M., Fessier, L. I., and Birk, D. E., 1993, Type V collagen: Molecular structure and fibrillar organization of the chicken α1 (V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis, J. Cell Biol. 121:1181–1189.CrossRefPubMedGoogle Scholar
  57. Madden, J. W., and Peacock, E. E., 1971, Studies on the biology of collagen during wound healing. III. Dynamic metabolism of scar collagen and remodeling of dermal wounds, Ann. Surg. 174:511–522.CrossRefPubMedGoogle Scholar
  58. Madri, J. A., Pratt, B. M., and Tucker, A. M., 1988, Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix, J. Cell Biol. 106:1375–1384.CrossRefPubMedGoogle Scholar
  59. Maity, S. N., Sinha, S., Routeshouser, E. C., and de Crombrugghe, B., 1992, Three different polypeptides are necessary for DNA binding of the mammalian heteromeric CCAAT binding factor, J. Biol. Chew. 267:16574–16580.Google Scholar
  60. Mäkelä, J. K., and Vuorio, E., 1986, Type I collagen messenger RNA levels in experimental granulation tissue and silicosis in rats, Med. Biol. 64:15–22.PubMedGoogle Scholar
  61. Matrisian, L. M., 1990, Metalloproteinases and their inhibitors in matrix remodeling, Trends Genet. 6:121–125.CrossRefPubMedGoogle Scholar
  62. Mauch, C., Hatamochi, A., Scharffetter, K., and Krieg, T., 1988, Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel, Exp. Cell Res. 178:493–503.CrossRefPubMedGoogle Scholar
  63. Mauch, C., Oono, T., Eckes, B., and Krieg, T., 1994, Cytokines and wound healing, in: Epidermal Growth Factors and Cytokines (T. A. Luger and T. Schwarz, eds.), pp. 325–344, Marcel Dekker, New York.Google Scholar
  64. Mayne, R., and Burgeson, R. E. (eds.), 1987, Structure and Function of Collagen Types, Academic Press, Orlando, Florida.Google Scholar
  65. McLaughlin, J. S., Linsenmayer, T. F., and Birk, D. E., 1989, Type V collagen synthesis and deposition by chicken embryo corneal fibroblasts in vitro, J. Cell Sci. 94:371–379.PubMedGoogle Scholar
  66. Mendier, M., Eich-Bender, S. G., Vaughan, L., Winterhalter, K. H., and Bruckner, P., 1989, Cartilage contains mixed fibrils of collagen types II, IX and XI, J. Cell Biol. 108:191–197.CrossRefGoogle Scholar
  67. Montesano, R. L., Orci, L., and Vassalli, P., 1983, In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices, J. Cell. Biol. 97:1648–1652.CrossRefPubMedGoogle Scholar
  68. Morris, N. P., and Bächinger, H. P., 1987, Type XI collagen is a heterotrimer with the composition (1α, 2α, 3a) retaining non triple helical domains, J. Biol. Chem. 262:11345–11350.PubMedGoogle Scholar
  69. Nathan, C., and Sporn, M., 1991, Cytokines in context, J. Cell Biol. 113:981–986.CrossRefPubMedGoogle Scholar
  70. Oono, T., Specks, U., Eckes, B., Majewski, S., Hunzelmann, N., Timpl, R., and Krieg, T., 1993, Expression of type VI collagen mRNA during wound healing by in situ hybridization, J. Invest. Dermatol. 100:329–334.CrossRefPubMedGoogle Scholar
  71. Overall, C. M., Wrana, J. L., and Sodek, J., 1989, Independent regulation of collagenase, 72 kDa pro-gelatinase and metalloproteinase inhibitor (TIMP) expression in human fibroblasts by transforming growth factor-β, J. Biol. Chem. 264:1860–1869.PubMedGoogle Scholar
  72. Peltonen, L., Halila, R., and Ryhänen, L., 1985, Enzymes converting procollagens to collagens, J. Cell. Biochem. 28:15–21.CrossRefPubMedGoogle Scholar
  73. Peltonen, J., Hsiao, L. L., Jaakkola, S., Sollberg, S., Aumailley, M., Timpl, R., Chu, M. L., and Uitto, J., 1991, Activation of collagen gene expression in keloids. Colocalization of type I and VI collagen and transforming growth factor β mRNAs, J. Invest. Dermatol. 97:240–248.CrossRefPubMedGoogle Scholar
  74. Penttinen, R. P., Kobayaski, S., and Bornstein, P., 1988, TGF-β increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability, Proc. Natl. Acad. Sci. USA 85:1105–1108.CrossRefPubMedGoogle Scholar
  75. Pfaff, M., Aumailley, M., Specks, II., Knolle, J., Zerwes, H. G., and Timpl, R., 1993, Integrin and Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI, Exp. Cell Res. 206:161–166.CrossRefGoogle Scholar
  76. Pöschl, E., Pollinger, R., and Kühn, K., 1988, The genes for the α1 (IV) and α2 (IV) chains of human basement membrane collagen type IV are arranged head-to-head and separated by a bidirectional promoter of unique structure, EMBO J. 7:2687–2695.PubMedGoogle Scholar
  77. Postlethwaite, A. E., Seyer, J. M., and Kang, A. H., 1978, Chemotactic attraction of human fibroblasts to type I, I and III collagen and collagen-derived peptides, Proc. Natl. Acad. Sci. USA 75:871–874.CrossRefPubMedGoogle Scholar
  78. Postlethwaite, A. E., Raghow, R., Stricklin, G. P., Poppleton, A., Seyer, J. M., and Kang, A. H., 1988, Modulation of fibroblast functions by interleukin-1 procollagen messenger RNAs and stimulation of other functions but not chemotaxis by human recombinant interleukin-1α and β, J. Cell Biol. 106:311–318.CrossRefPubMedGoogle Scholar
  79. Prockop, D. J., Kivirikko, K. I., Tuderman, L., and Guzman, N. A., 1979, The biosynthesis of collagen and its disorders, N. Engl. J. Med. 301:13–23.CrossRefPubMedGoogle Scholar
  80. Quaglino, D., Nanney, L. B., Ditesheim, J. A., and Davidson, J. M., 1991, Transforming growth factor-β stimulates wound healing and modulates extracellular matrix gene expression in pig skin: Incisional wound model, J. Invest. Dermatol. 97:34–42.PubMedGoogle Scholar
  81. Ramachandran, G. N., and Reddi, A. H. (eds.), 1976, Biochemistry of Collagen, Plenum Press, New York.Google Scholar
  82. Roberts, A. B., and Sporn, M. B., 1990, The transforming growth factor-βs, in: Handbook of Experimental Pharmacology. Vol. 95, I: Peptide Growth Factors and Their Receptors (M. B. Sporn and A. B. Roberts, eds.), pp. 419–472, Springer, Berlin.Google Scholar
  83. Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, N. S., Wakefield, L. M., Heine, U. L., Liotta, L. A., Falanga, V., Kehrl, J. H., and Fauci, A. S., 1986, Transforming growth factor type β: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci. USA 83:4167–4171.CrossRefPubMedGoogle Scholar
  84. Roeckel, D., and Krieg, T., 1994, Three-dimensional contact with type I collagen mediates tyrosine phosphorylation in primary human fibroblasts, Exp. Cell Res. 211:42–48.CrossRefPubMedGoogle Scholar
  85. Rossi, P., Karsenty, G., Roberts, A. B., Roche, N. S., Sporn, M. B., and de Crombrugghe, B., 1988, A nuclear factor I binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-β, Cell 52:405–414.CrossRefPubMedGoogle Scholar
  86. Routeshouser, E. C., and de Crombrugghe, B., 1992, Purification of BBF, a DNA-binding protein recognizing a positive cis-acting element in the mouse α1(III) collagen promoter, J. Biol. Chem. 267:14398–14404.Google Scholar
  87. Ruggiero, F., Champliaud, M. F., Garrone, R., and Aumailley, M., 1994, Interactions between cells and collagen V molecules or single chains involve distinct mechanisms, Exp. Cell Res. 210:215–222.CrossRefPubMedGoogle Scholar
  88. Ruoslahti, E., and Yamaguchi, Y., 1991, Proteoglycans as modulators of growth factor activities, Cell 64:867–869.CrossRefPubMedGoogle Scholar
  89. Schaller, M. D., Borgman, C. A., Cobb, B. S., Vines, R. R., Reynolds, A. B., and Parsons, J. T., 1992, pp125FAK, a structurally distinctive protein tyrosine kinase associated with focal adhesions, Proc. Natl. Acad. Sci. USA 89:5192–5196.CrossRefPubMedGoogle Scholar
  90. Scharffetter, K., Heckmann, M., Hatamochi, A., Mauch, C., Stein, B., Riethmüller, G., Ziegler-Heitbrock, H. W. L., and Krieg, T., 1989a, Synergistic effect of tumor necrosis factor alpha and interferon-γ on collagen synthesis of human skin fibroblasts in vitro, Exp. Cell Res. 181:409–419.CrossRefPubMedGoogle Scholar
  91. Scharffetter, K., Stolz, W., Lankat-Buttgereit, B., Hatamochi, A., Söhnchen, R., and Krieg, T., 1989b, Localization of collagen al (I) gene expression during wound healing by in situ hybridization, J. Invest. Dermatol. 93:405–412.CrossRefPubMedGoogle Scholar
  92. Schiro, J. A., Chan, B. M. C., Roswit, W. T., Kassner, P. D., Pentland, A. P., Hemler, M. E., Eisen, A. Z., and Küpper, T. S., 1991, Integrin a2βl (VLA-2) mediates reorganization and contraction of collagen matrices by human cells, Cell 67:403–410.CrossRefPubMedGoogle Scholar
  93. Schlumberger, W., Thie, M., Rauterberg, J., Kresse, H., and Robenek, H., 1989, Deposition and ultrastructural organization of collagen and proteoglycans in the extracellular matrix of gel-cultured fibroblasts, Eur. J. Cell Biol. 50:100–110.PubMedGoogle Scholar
  94. Shah, M., Foreman, D. M., and Ferguson, M. W., 1992, Control of scarring in adult wounds by neutralizing antibody to transforming growth factor β, Lancet 339:213–214.CrossRefPubMedGoogle Scholar
  95. Shaw, L. M., and Olsen, B. J., 1991, FACIT collagens: Diverse molecular bridges in extracellular matrices, Trends Biochem. Sci. 16:191–194.CrossRefPubMedGoogle Scholar
  96. Timpl, R., 1993, Structure and biological activity of basement membrane proteins, Eur. J. Biochem. 180:487–502.CrossRefGoogle Scholar
  97. Timpl, R., and Engel, J., 1987, Type VI collagen, in: Structure and Function of Collagen Types (R. Mayne and R. E. Burgeson, eds.), pp. 105–143, Academic Press, New York.Google Scholar
  98. Trueb, B., and Winterhalter, K. H., 1986, Type VI collagen is composed of a 200 kd and two 140 kd subunits, EMBO J. 5:2815–2819.PubMedGoogle Scholar
  99. Trueb, J., and Trueb, B., 1992, Type XIV collagen is a variant of undulin, Eur. J. Biochem. 207:549–557.CrossRefPubMedGoogle Scholar
  100. Vandenberg, P., Kern, A., Ries, A., Luckenbill-Edds, L., Mann, K., and Kühn, K., 1991, Characterization of a type IV collagen major cell binding site with affinity to the α1β1 and the α2β1 integrins, J. Cell Biol. 113:1475–1483.CrossRefPubMedGoogle Scholar
  101. van der Rest, M., and Garrone, R., 1992, The collagen family of proteins, FASEB J. 5:2814–2823.Google Scholar
  102. Varga, J., Rosenbloom, J., and Jimenez, S. A., 1987, Transforming growth factor-β causes a persistent increase in steady state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts, Biochem. J. 247:597–604.PubMedGoogle Scholar
  103. Varga, J., Olsen, A., Herhal, J., Constantine, G., Rosenbloom, J., and Jimenez, S. A., 1990, Interferon-γ reverses the stimulation of collagen but not fibronectin gene expression by TGF-β in normal human fibroblasts, Eur. J. Clin. Invest. 20:487–493.CrossRefPubMedGoogle Scholar
  104. Vogel, K. G., Paulsson, M., and Heinegard, D., 1984, Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon, Biochem. J. 223:587–597.PubMedGoogle Scholar
  105. von der Mark, H., Aumailley, M., Wick, G., Fleischmajer, R., and Timpl, R., 1984, Immunochemistry, genuine size and tissue localization of collagen VI, Eur. J. Biochem. 142:493–502.CrossRefPubMedGoogle Scholar
  106. Vukicevic, S., Kleinman, H. K., Luyten, F. P., Roberts, A. B., Roche, N. S., and Reddi, A. H., 1992, Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components, Exp. Cell Res. 202:1–8.CrossRefPubMedGoogle Scholar
  107. Weil, D., Mattei, M. G., Passarge, E., Long, N. V., Pribula-Conway, D., Mann, K., Deutzmann, R., Timpl, R., and Chu, M. L., 1988, Cloning and chromosomal localization of human genes encoding the three chains of type VI collagen, Am. J. Hum. Genet. 42:435–445.PubMedGoogle Scholar
  108. Werb, Z., and Gordon, S., 1975, Elastase secretion by stimulated macrophages. Characterization and regulation, J. Exp. Med. 142:361–377.CrossRefPubMedGoogle Scholar
  109. Wiestner, M., Krieg, T., Hörlein, D., Glanville, R. W., Fietzek, P., and Müller, P. K., 1979, Inhibiting effect of procollagen peptides on collagen biosynthesis in fibroblast cultures, J. Biol. Chem. 254:7016–7023.PubMedGoogle Scholar
  110. Witt, D. P., and Lander, A. D., 1994, Differential binding of chemokines to glycosaminoglycan subpopulations, Curr. Biol. 4:394–400.CrossRefPubMedGoogle Scholar
  111. Yamagata, M., Yamada, K. M., Yamada, S. S., Shinomura, T., Tanaka, H., Nishida, Y., Obara, M., and Kimata, K., 1991, The complete primary structure of type XII collagen shows a chimeric molecule with reiterated fibronectin type III motifs, von Willebrand factor A motifs, a domain homologous to a noncollagenous region of type IX collagen, and short noncollagenous domains with an Arg-Gly-Asp site, J. Cell Biol. 115:209–221.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Beate Eckes
    • 1
  • Monique Aumailley
    • 2
  • Thomas Krieg
    • 1
  1. 1.Department of DermatologyUniversity of CologneCologneGermany
  2. 2.Institute of Protein Biology and ChemistryCNRSLyon cedex 7France

Personalised recommendations