Mechanisms of Parenchymal Cell Migration into Wounds

  • James B. McCarthy
  • Joji Iida
  • Leo T. Furcht


Cellular motility is a fundamental consideration in the successful healing of wounds. While much effort has appropriately been recently placed on understanding the molecular basis of adhesion and signaling mechanisms involved in cell motility, it is important to keep in mind that these processes occur in the context of a complex and changing wound environment, which includes soluble and insoluble (i.e., density) gradients of cell motility-promoting components. A number of cell types must enter the wound in a relatively coordinated fashion, and this is controlled, in part, by modulating both the increased random and directed migration of cells.


Cell Biol Focal Adhesion Kinase Tyrosine Phosphorylation Granulation Tissue Cytoplasmic Tail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, S. K., Nagata, K., and Yamada, K., 1990, Cell surface receptors for extracellular matrix components, Biochim Biophys Acta 1031:91–110.PubMedCrossRefGoogle Scholar
  2. Akiyama, S. K., Yamada, S. S., Yamada, K. M., and LaFlamme, S. E., 1994, Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras, J. Biol. Chem. 269:15961–15964.PubMedGoogle Scholar
  3. Barondes, S. H., 1988, Bifunctional properties of lectins: lectins redefined. Trends in Biochem. Sci. 13:480–482.CrossRefGoogle Scholar
  4. Bennett, K. L., Jackson, D. G., Simon, J. C., Tanczos, E., Peach, R., Modrell, B., Stamenkovic, I., Plowman, G., and Aruffo, A., 1995, CD44 isoforms contain exon V3 are responsible for presentation of heparin-binding growth factor, J. Cell Biol. 128:687–698.PubMedCrossRefGoogle Scholar
  5. Bergmann, J. E., Kupfer, A., and Singer, S. J., 1983, Membrane insertion at the leading edge of motile fibroblasts, Proc. Natl. Acad. Sci. USA 80:1367–1371.PubMedCrossRefGoogle Scholar
  6. Brown, T. A., Bouchard, T., St. John, T., Wayner, E., and Carter, W. G., 1991, Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons, J. Cell Biol. 113:207–221.PubMedCrossRefGoogle Scholar
  7. Carter, S. B., 1967, Haptotactic Islands. A method of confining single cells to study individual cell reactions and clone fermentation, Exp. Cell Res. 48:188–193.CrossRefGoogle Scholar
  8. Carter, S. B., 1967, Haptotaxis and the mechanism of cell motility, Nature 213:256–260.PubMedCrossRefGoogle Scholar
  9. Caterina, M. J., and Devreotes, P. N., 1991, Molecular insights into eukaryotic chemotaxis, FASEB J. 5:3078–3085.PubMedGoogle Scholar
  10. Chan, B. M., Kassner, P. D., Schiro, J. A., Byers, H. R., Kuppe, T. S., and Hemler, M. E., 1992, Distinct cellular functions mediated by different VLA integrin a subunit cytoplasmic domains, Cell 68:1051–1060.PubMedCrossRefGoogle Scholar
  11. Chen, W.-T., 1981, Mechanism of retraction of the trailing edge during fibroblast movement, J. Cell Biol. 90:187–200.PubMedCrossRefGoogle Scholar
  12. Clark, R. A. F., Winn, H. J., Dvorak, H. F., and Colvin, R. B., 1983, FIbronectin beneath reepithelializing epidermis in vivo: Sources and significance, J. Invest. Dermatol. 80(Suppl):26s–30s.CrossRefGoogle Scholar
  13. Clark, R. A. F., Nielsen, L. D., Howell, S. E., and Folkvord, J. M., 1985, Human keratinocytes that have not terminally differentiated synthesize laminin and fibronectin by deposit on fibronectin in the pericellular matrix, J. Cell Biochem. 28:127–141.PubMedCrossRefGoogle Scholar
  14. Condeelis, J., Jones, J., and Segall, J. E., 1992, Chemotaxis of metastatic tumor cells: clues to mechanisms from dictyostelium paradigm, Cancer Metastasis Rev. 11:55–68.PubMedCrossRefGoogle Scholar
  15. Cooper, J. A., 1991, The role of actin polymerization in cell motility, Annual Review of Physiology 53:585–605.PubMedCrossRefGoogle Scholar
  16. Cunningham, C. C., Stossel, T. P., and Kwiatkowski, D. J., 1991, Enhanced motility of NIH 3T3 fibroblasts that overexpress gelsolin, Science 251:1233–1236.PubMedCrossRefGoogle Scholar
  17. Damsky, C. H., and Werb, Z., 1992, Signal transduction by integrin receptors for extracellular matrix: coooperative processing of extracellular information, Cur. Opin. Cell Biol. 4:772–781.CrossRefGoogle Scholar
  18. Davis, B. H., Walter, R. J., Pearson, C. B., Becker, E. L., and Oliver, J. M., 1982, Membrane activity and topography of f-MET-Leu-Phe-treated polymorphonuclear leukocytes, Am. J. Pathol. 108:206–213.PubMedGoogle Scholar
  19. Dedhar, S., Rennie, P. S., Shago, M., Hagesteijn, C. Y., Yang, H., Filmus, J., Hawley, R. G., Bruchovsky, N., Cheng, H., and Matusik, R. J., 1994, Inhibition of nuclear hormone receptor activity by calreticulin, Nature 367:480–483.PubMedCrossRefGoogle Scholar
  20. Devrotes, P., and Zigmond, S., 1988, Chemotaxis in eukaryotic cells, Annu. Rev. Cell Biol. 4:649–686.CrossRefGoogle Scholar
  21. Divecha, N., and Irvine, R. F., 1995, Phospholipid signaling, Cell 80:269–278.PubMedCrossRefGoogle Scholar
  22. Erickson, C.A., 1990, Cell migration in the embryo and adult organism, Curr. Opin. Cell Biol. 2:61–74.CrossRefGoogle Scholar
  23. Erickson, H. P., and Bourdon, M. A., 1989, Tenascin: An extracellular matrix protein prominent on specialized embryonic tissues and tumors, Annu. Rev. Cell Biol. 5:71–92.PubMedCrossRefGoogle Scholar
  24. Faassen, A. E., Drake, S. L., Iida, J., Knutson, J. R., and McCarthy, J. B., 1992, Mechanisms of normal cell adhesion to the extracellular matrix and alterations associated with tumor invasion and metastasis, Adv. Pathol. Lab. Med. 5:229–259.Google Scholar
  25. Faassen, A. E., Schrager, J. A., Klein, D. J., Oegema, T. R., Couchman, J. R., and McCarthy, J. B., 1992, A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen mediated melanoma cell motility and invasion, J. Cell Biol. 116:521–531.PubMedCrossRefGoogle Scholar
  26. Faassen, A. E., Mooradian, D. L., Tranquillo, R. T., Dickinson, R. B., Letourneau, P. C., Oegema, T. R., and McCarthy, J. B., 1993, Cell surface CD-44 related chondroitin sulfate proteoglycan is required for transforming growth factor β-stimulated mouse melanoma cell motility and invasive behavior on type I collagen, J. Cell Science 105:501–511.PubMedGoogle Scholar
  27. Gailit, J., and Clark, R. A. F., 1994, Wound repair in the context of the extracellular matrix, Curr. Opin. Cell Biol. 6(5):717–725.PubMedCrossRefGoogle Scholar
  28. Ginsberg, M. H., Du, X., and Plow, E. F., 1992, Inside-out integrin signaling, Curr. Opin. Cell Biol. 4:766–771.PubMedCrossRefGoogle Scholar
  29. Goldschmidt-Clermont, P. J., Kim, J. W., Machesky, L. M., Rhee, S.-G., and Pollard, T. D., 1991, Regulation of phospholipase C-g1 by profilin and tyrosine phosphorylation, Science 251:1231–1233.PubMedCrossRefGoogle Scholar
  30. Grinnnell, F., Billingham, R. E., and Burgess, L., 1981, Distribution of fibronectin during wound healing in vivo, J. Invest. Dermatol 76:181–189.CrossRefGoogle Scholar
  31. Günthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller, M., Hauβmann, I., Matzku, S., Wenzel, A., Ponta, H., and Herrlich, P., 1991, A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells, Cell 65:13–24.PubMedCrossRefGoogle Scholar
  32. Hall, C. L., Wang, C., Lange, L. A., and Turley, E. A., 1994, Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity, J. Cell Biol 126:575–588.PubMedCrossRefGoogle Scholar
  33. Hammarback, J. A., McCarthy, J. B., Palm, S. L., Furcht, L. T., and Letourneau, P. C., 1988, Growth cone guidance by substrate-bound laminin pathways is correlated with neuron-to-pathway adhesivity, Dev. Biol. 126(1):29–39.PubMedCrossRefGoogle Scholar
  34. Hardwick, C., Hoare, K., Owens, R., Hohn, H. P., Höök, M., Moore, M., Cripps, V., Austen, L., Nance, D. M., and Turley, E. A., 1992, Molecular cloning of a novel hyaluronan receptor that mediated tumor cell motility, J. Cell Biol. 117:1343–1350.PubMedCrossRefGoogle Scholar
  35. Harris, A. K., 1973, The behavior of cultured cells on substrata of various adhesiveness, Exp. Cell Res. 77:285–297.PubMedCrossRefGoogle Scholar
  36. Harvath, L., 1990, Regulation of neutrophil chemotaxis: correlations with actin polymerization, Cancer Invest. 8:651–654.PubMedCrossRefGoogle Scholar
  37. Hynes, R. O., 1992, Integrins: versatility, modulation, and signaling in cell adhesion, Cell 69:11–25.PubMedCrossRefGoogle Scholar
  38. Iida, J., Milius, R. P., Oegema, T. R., Furcht, L. T., and McCarthy, J. B., 1994, Role of cell surface proteoglycans in tumor cell recognition of fibronectin, Trends Glycosc. Glycotechnol. 6:1–16.CrossRefGoogle Scholar
  39. Jalkanen, S., and Jalkanen, M., 1992, Lymphocyte CD44 binds the COOH-terminal heparin binding domain of fibronectin, J. Cell Biol. 116:817–825.PubMedCrossRefGoogle Scholar
  40. Jamney, P. A., and Stossel, T. P., 1987, Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate, Nature 325:362–364.CrossRefGoogle Scholar
  41. Juliano, R. L., and Haskill, S., 1993, Signal transduction from the extracellular matrix, J. Cell Biol. 120:577–585.PubMedCrossRefGoogle Scholar
  42. Kassner, P. D., and Hemler, M. E., 1993, Interchangeable a chain cytoplasmic domains play a positive role in control of cell adhesion mediated by VLA-4, a β1 integrin, J. Exp. Med. 178:649–660.PubMedCrossRefGoogle Scholar
  43. Kellie, S., Horvath, A. R., and Elmore, M. A., 1991, Cytoskeletal targets for oncogenic tyrosine kinases, J. Cell Sci. 99:207–211.PubMedGoogle Scholar
  44. Knutson, J. R., Iida, J., Fields, G. B., and McCarthy, J. B., 1995, CD44/Chondroitin sulfate proteoglycan and α2β1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes, Mol. Biol. Cell, in press.Google Scholar
  45. Lassing, I., and Lindberg, V., 1985, Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilin, Nature 314:472–474.PubMedCrossRefGoogle Scholar
  46. Laurent, T. C., and Fraser, J. R., 1992, Hyaluronan, FASEB J. 6:2397–2404.PubMedGoogle Scholar
  47. Lennon, D. P., Carrino, D. A., Baber, M. A., and Caplan, A. I., 1991, Generation of a monoclonal antibody against avian small dermatan sulfate proteoglycan: immunolocalization and tissue distribution of PG-II (decorin) in embryonic tissues, Matrix 11(6):412–427.PubMedCrossRefGoogle Scholar
  48. Lesley, J., and Hyman, R., 1992, CD44 can be activated to function as an hyaluronic acid receptor in normal murine T cells, J. Immunol. 22:2719–2723.Google Scholar
  49. Lesley, J., Hyman, R., and Kincade, P. W., 1993a, CD44 and its interaction with the cellular matrix, Adv. Immunol. 54:271–335.PubMedCrossRefGoogle Scholar
  50. Lesley, J., Kincade, P. W., and Hyman, R., 1993b, Antibody-induced activation of the hyaluronan receptor function in CD44 requires multivalent binding by antibody, Eur. J. Immunol. 23:1902–1909.PubMedCrossRefGoogle Scholar
  51. Liao, H. X., Levesque, M. C., Patton, K., Bergamo, B., Jones, D., Moody, M. A., Telen, M. J., and Haynes, B. F., 1993, Regulation of CD44H and CD44E isoform binding both hyaluronan by phorbol myristate acetate and anti-CD44 monoclonal and polyclonal antibodies, J. Immunol. 151:6490–6499.PubMedGoogle Scholar
  52. Lindberg, F. P., Gresham, H. D., Schwartz, E., and Brown, E. J., 1993, Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane spanning domains implicated in avβ3 dependent ligand binding, J. Cell Biol. 123:485–496.PubMedCrossRefGoogle Scholar
  53. Lokeshwar, V. B., and Borguignon, L. Y. W., 1991, Post-translational protein modification and expression of ankyrin-binding sites(s) in GP85 (Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis, J. Biol. Chem. 266:17983–17989.PubMedGoogle Scholar
  54. Lokeshwar, V. B., Fregien, N., and Bourguignon, L. Y. W., 1994, Ankyrin-binding domain of CD44 (GP85) is required for the expression of hyaluronic acid-mediated adhesion function, J. Cell Biol. 126(4): 1099–1109.PubMedCrossRefGoogle Scholar
  55. McCarthy, J., and Turley, E. A., 1993, Effects of extracellular matrix components on cell locomotion, Crit. Rev. Oral Biol. Med. 4:619–637.PubMedGoogle Scholar
  56. Miyamoto, S., Akiyama, S. K., and Yamada, K. M., 1995, Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function, Science 267:883–885.PubMedCrossRefGoogle Scholar
  57. Nelson, R. D., McCormack, R. T., and Fiegel, V. D., 1978, Chemotaxis of human leukocytes under agarose, in: Leukocyte Chemotaxis (J. I. Gallin and P. C. Quie, eds.), pp. 25–42, Raven Press, New York.Google Scholar
  58. O’Toole, T. E., Katagiri, Y., Faull, R. J., Peter, K., Quranta, V., Loftus, J. C., Shattil, S. J., and Ginsberg, M. H., 1994, Integrin cytoplasmic domains mediate inside-out signal transduction, J. Cell Biol. 124:1047–1059.PubMedCrossRefGoogle Scholar
  59. Pasqualini, R., and Hemler, M. E., 1994, Contrasting roles for integrin β1 and β5 cytoplasmic domains in subcellular localization, proliferation and cell migration, J. Cell Biol. 125:447–460.PubMedCrossRefGoogle Scholar
  60. Payrastre, B., Van Bergen en Henegouwen, P. M. P., Breton, M., den Hartigh, J. C., Plantavid, M., Verkleij, A. J., and Boonstra, J., 1991, Phosphoinositide kinase diacylglycerol kinase and phospholipase C activities associated to the cytoskeleton: effect of epidermal growth factor, J. Cell Biol. 115:121–128.PubMedCrossRefGoogle Scholar
  61. Peacock, E. E., and Van Winkle, W., 1976, Wound Repair. W. B. Saunders, Philadelphia.Google Scholar
  62. Pringle, G. A., Dodd, C. M., Osborn, J. W., Pearson, C. H., and Mosmann, T. R., 1985, Production and characterization of monoclonal antibodies to bovine proteodermatan sulfate, Collagen Related Res. 5:23–29.CrossRefGoogle Scholar
  63. Rapraeger, A., 1989, Transforming growth factor (type β) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia, J. Cell Biol. 109:2509–2518.PubMedCrossRefGoogle Scholar
  64. Repesh, L. A., Fitzgerald, T. J., and Furcht, L. T., 1982, Fibronectin involvement in granulation tissue and wound healing in rabbits, J. Histochem. Cytochem. 30:351–358.PubMedCrossRefGoogle Scholar
  65. Ridley, A. J., Comoglio, P. M., and Hall, A., 1995, Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells, Mol. Cell. Biol. 15(2): 1110–1122.PubMedGoogle Scholar
  66. Rudy, W., Hoffman, M., Schwartz-Albeiz, R., Zöller, M., Heider, K.-H., Ponta, H., and Herrlich, P., 1993, The two major CD44 proteins expressed on a metastatic rat tumor line are derived from different splice variants: each one individually suffices to confer metastatic behavior, Cancer Res. 53:1262–1268.PubMedGoogle Scholar
  67. Samuel, S. K., Hurta, R. A., Spearman, M. A., Wright, J. A., Turley, E. A., and Greenberg, A. H., 1993, TGF-Beta 1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan, J. Cell Biol. 123:749–758.PubMedCrossRefGoogle Scholar
  68. Sastry, S. K., and Horwitz, A. F., 1993, Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling, Curr. Opin. Cell Biol. 5:819–831.PubMedCrossRefGoogle Scholar
  69. Schaller, M. D., and Parsons, J. T., 1994, Focal Adhesion Kinase and Associated Proteins, Curr. Opin. Cell Biol. 6(5):705–710.PubMedCrossRefGoogle Scholar
  70. Schlaepfer, D. D., Hanks, S. K., Hunter, T., and van der Geer, P., 1994, Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase, Nature 372:786–791.PubMedGoogle Scholar
  71. Scholzen, T., Solursh, M., Suzuki, S., Reiter, R., Morgan, J. L., Buchberg, A. M., Siracusa, L. D., and Iozzo, R. V., 1994, The murine decorin. Complete cDNA cloning, genomic organization, chromosomal assignment, and expression during organogenesis and tissue differentiation, J. Biol. Chem. 269(45):28270–28281.PubMedGoogle Scholar
  72. Schonherr, E., Beavan, L. A., Hausser, H., Kresse, H., and Culp, L. A., 1993, Differences in decorin expression by papillary and reticular fibroblasts in vivo and in vitro, Biochem. J. 290(Pt 3):893–899.PubMedGoogle Scholar
  73. Schwartz, M. A., 1993, Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium, J. Cell Biol. 120:1003–1010.PubMedCrossRefGoogle Scholar
  74. Sherman, L., Sleeman, J., Herrlich, P., and Ponta, H., 1994, Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression, Curr. Opin. Cell Biol. 6(5):726–733.PubMedCrossRefGoogle Scholar
  75. Shur, B. D., 1989, Glycoconjugates as mediators of cellular interactions during development, Curr. Opin. Cell Biol. 1:905–912.PubMedCrossRefGoogle Scholar
  76. Stopak, D., and Harris, A. K., 1982, Connective tissue morphogenisis by fibroblast traction, Dev. Biol. 90:383–392.PubMedCrossRefGoogle Scholar
  77. Stopak, D., Wessells, N. K., and Harris, A. K., 1985, Morphogenetic rerrangement of injected collagen in developing chicken limb buds, Proc. Natl. Acad. Sci. USA 82:2804–2808.PubMedCrossRefGoogle Scholar
  78. Stossel, T. P., 1989, From signal to pseudopod formation. How cells control cytoplasmic actin assembly, J. Biol. Chem. 264:18261–18264.PubMedGoogle Scholar
  79. Stossel, T. P., 1990, How cells crawl: with the discovery that the cellular motor contains muscle proteins, we can begin to describe cell motility in molecular detail, Sci.Amer. 78:408–423.Google Scholar
  80. Stossel, T. P., Chaponnier, C., Ezzell, R. M., Hartwig, J. H., Jamney, P. A., Kwiartkowski, D. J., and Lind, S. E., 1985, Non muscle actin binding proteins, Ann. Rev. Cell Biol. 1:353–402.PubMedCrossRefGoogle Scholar
  81. Takaishi, K., Sasaki, T., Kato, M., Yamochi, W., Kuroda, S., Nakamura, T., Takeichi, M., and Takai, Y., 1994, Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility, Oncogene 9(1):273–279.PubMedGoogle Scholar
  82. Trinkaus, J. P., 1976, On the mechanism of metazoan cell movements, in: The Cell Surface in Animal Embryogenisis and Development (G. Poste and G. J. Nicolson, eds.), pp. 225–329, North Holland, Amsterdam.Google Scholar
  83. Trinkaus, J. P., 1984, Cell into Organs. The Forces That Shape the Embryo. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  84. Turley, E. A., 1992, Hyaluronan and cell locomotion, Cancer Metastasis Rev. 11:21–30.PubMedCrossRefGoogle Scholar
  85. Turley, E. A., Austen, L., Vandeligt, K., and Clary, C., 1991, Hyaluronan and a cell-associated binding protein regulate the locomotion of ras-transformed cells, J. Cell Biol. 112:1041–1047.PubMedCrossRefGoogle Scholar
  86. Wayner, E. A., and Carter, W. G., 1987, Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique a and common β subunits, J. Cell Biol. 105:1873–1884.PubMedCrossRefGoogle Scholar
  87. Wayner, E. A., and Carter, W. G., 1988, Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated human cells, J. Biol. Chem. 263:4193–4201.PubMedGoogle Scholar
  88. Wayner, E. A., Orlando, R. A., and Cheresh, D. A., 1991, Integrins avβ3 and avβ5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface, J. Cell Biol. 113:919–929.PubMedCrossRefGoogle Scholar
  89. Weiss, P., 1945, The problem of specificity in growth and development, Yale J. Biol. Med. 19:239–278.Google Scholar
  90. Weiss, P., 1985, Cell contact, Int. Rev. Cytol. 7:391–423.CrossRefGoogle Scholar
  91. Willen, M. D., Sorrell, J. M., Lekan, C. C., Davis, B. R., and Caplan, A. I., 1991, Patterns of glycosaminogly-can/proteoglycan immunostaining in human skin during aging, J. Invest. Dermatol. 96(6):968–974.PubMedCrossRefGoogle Scholar
  92. Woods, A., and Couchman, J. R., 1992, Protein kinase C involvement in focal adhesion formation, J. Cell Sci. 101:277–290.PubMedGoogle Scholar
  93. Yamada, K. M., Aota, S., Akiyama, S. K., and LaFlamme, S. E., 1992, Mechanisms of fibronectin and integrin function during cell adhesion and migration, Cold Spring Harbor Symp. Quant. Biol. 57:203–212.PubMedCrossRefGoogle Scholar
  94. Yamagata, M., Shinomura, T., and Kimata, K., 1993, Tissue variation of two large chondroitin sulfate proteoglycans (PG-M/versican and PG-H/aggrecan) in chick embryos, Anat. Embryol. 187(5):433–444.PubMedCrossRefGoogle Scholar
  95. Yang, B., Yang, B. L., Savani, R. C., and Turley, E. A., 1994, Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and Link Protein, EMBO J. 13:286–296.PubMedGoogle Scholar
  96. Yeo, T. K., Brown, L., and Dvorak, H. F., 1991, Alterations in proteoglycan synthesis common to healing wounds and tumors, Am. J. Pathol. 138(6):1437–1450.PubMedGoogle Scholar
  97. Zigmond, S. H., 1977, Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors, J. Cell Biol. 75:606–616.PubMedCrossRefGoogle Scholar
  98. Zigmond, S. H., 1989, Cell locomotion and chemotaxis, Curr. Opin. Cell Biol. 1:80–86.PubMedCrossRefGoogle Scholar
  99. Zigmond, S. H., and Hirsch, J. G., 1973, Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors, J. Exp. Med. 137:387–410.PubMedCrossRefGoogle Scholar
  100. Zigmond, S. H., Levitsky, H. I., and Kreel, B. J., 1981, Cell polarity: An examination of its behavior expression and its consequences for polymorphonuclear leukocyte chemotaxis, J. Cell Biol. 89:585–592.PubMedCrossRefGoogle Scholar
  101. Zimmermann, D. R., Dours-Zimmermann, M. T., Schubert, M., and Bruckner-Tuderman, L., 1994, Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis, J. Cell Biol. 124(5):817–825.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • James B. McCarthy
    • 1
  • Joji Iida
    • 1
  • Leo T. Furcht
    • 1
  1. 1.Department of Laboratory Medicine and Pathology, Biomedical Engineering CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations