Skip to main content

Abstract

Angiogenesis, the formation of new vessels during development, in response to injury and tumor angiogenic factors is a dynamic process that is controlled by many diverse, sometimes complex factors acting together in a local environment. The principal cell type involved in the process of angiogenesis is the microvascular endothelial cell. This cell type is quite distinct from the endothelia lining the larger vessels of the circulatory system in its normal physiological functions and in its response to injury (Madri et al., 1991, 1992a, b). Following denudation injury (angioplasty, endarterectomy, synthetic and autologous bypass grafting), large-vessel endothelial cells undergo sheet migration that is modulated by both existing and newly synthesized extracellular matrix components and soluble factors (Madri et al., 1988b, 1991, 1992a, b; Madri and Bell, 1992). In contrast, following injury, microvascular endothelial cells initiate an angiogenic process also modulated by both existing and newly synthesized extracellular matrix components and soluble factors, consisting of local disruption of their investing basement membrane, migration into the local interstitial stroma, cell proliferation, new vessel formation, stabilization, and eventually involution of the newly formed vascular bed (Madri and Pratt, 1988; Madri and Marx, 1992; Madri et al., 1992a, b; Marx et al., 1994). Distinct behavioral patterns exhibited by these two different endothelial cell populations have led to the development of the hypothesis that large-vessel endothelial cells exhibit “dysfunctional” behavior in response to injury-induced changes in the extracellular matrix and soluble factor environments, favoring the development of arteriosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albelda, A. M., and Buck, C. A., 1990, Integrins and other cell adhesion molecules, FASEB J. 4:2868–2880.

    PubMed  CAS  Google Scholar 

  • Albelda, S. M., Muller, W. A., Buck, C. A., and Newman, P. J., 1991, Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell-cell adhesion molecule, J. Cell Biol. 114:1059–1068.

    Article  PubMed  CAS  Google Scholar 

  • Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res. 14:53–65.

    Article  PubMed  CAS  Google Scholar 

  • Bacharach, E., Itin, A., and Keshet, E., 1992, In vivo patterns of expression of urokinse and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis, Proc. Natl. Acad. Sci. USA 89:10686–10690.

    Article  PubMed  CAS  Google Scholar 

  • Basson, C. T., Knowles, W. J., Abelda, S., Bell, L., Castronovo, V., Liotta, L. A., and Madri, J. A., 1990, Spatiotemporal segregation of endothelial cell integrin and non-integrin extracellular matrix binding proteins during adhesion events, J. Cell Biol. 110:789–802.

    Article  PubMed  CAS  Google Scholar 

  • Basson, C. T., Kocher, O., Basson, M. D., Asis, A., and Madri, J. A., 1992, Differential modulation of vascular cell integrin and extracellular matrix expression in vitro by TGF-βl correlates with reciprocal effects on cell migration, J. Cell. Physiol. 153:118–128.

    Article  PubMed  CAS  Google Scholar 

  • Bates, R. C., Buret, A., van Helden, D. F., Horton, M. A., and Burns, G. F., 1994, Apoptosis induced by inhibition of intercellular contact, J. Cell Biol. 125:403–415.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, J. S., Schreiner, C. L., Giancotti, F. G., Ruoslahti, E., and Juliano, R. L., 1992, Motility of fibronectin receptor-deficient cells on fibronectin and vitronectin: Collaborative interactions among integrins, J. Cell Biol. 116:477–487.

    Article  PubMed  CAS  Google Scholar 

  • Bell, L., and Madri, J. A., 1989, The effects of soluble platelet factors on bovine aortic enothelial and smooth muscle cell migration, Circ. Res. 65:1057–1065.

    Article  PubMed  CAS  Google Scholar 

  • Bell, L., and Madri, J. A., 1990, Influence of the angiotensin system on endothelial and smooth muscle cell migration in vitro, Am. J. Pathol. 137:7–12.

    PubMed  CAS  Google Scholar 

  • Bell, L., Luthringer, D. J., Madri, J. A., and Warren, S. L., 1992, Autocrine angiotensin system regulation of endothelial cell behavior involves modulation of pp60c-src expression, J. Clin. Invest. 89:315–320.

    Article  PubMed  CAS  Google Scholar 

  • Blasi, F., 1993, Urokinase and urokinase receptor: A paracrine/autocrine system regulating cell migration and invasiveness, Bioessays 15:105–111.

    Article  PubMed  CAS  Google Scholar 

  • Brem, H., Gresser, I., Grosfeld, J., and Folkman, J., 1993, The combination of antiangiogenic agents to inhibit primary tumor growth and metastasis, J. Pediatr. Surg. 28:1253–1257.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, P. C., Clark, R. A. F., and Cheresh, D. A., 1994, Requirement of vascular integrin ωβ3 for angiogenesis, Science 264:569–571.

    Article  PubMed  CAS  Google Scholar 

  • Burger, P. C., and Klintworth, G. K., 1981, Autoradiographic study of corneal neovascularization induced by chemical cautery, Lab. Invest. 45:328–335.

    PubMed  CAS  Google Scholar 

  • Crum, R., Szabo, S., and Folkman, J., 1985, A new class of steriods inhibits angiogenesis in the presence of heparin or a heparin fragment, Science 230:1375–1378.

    Article  PubMed  CAS  Google Scholar 

  • Culliton, B. J., 1989a, Designing cells to deliver drugs, Science 246:746.

    Article  PubMed  CAS  Google Scholar 

  • Culliton, B. J., 1989b, Gore Tex organoids and genetic drugs, Science 246:747–749.

    Article  PubMed  CAS  Google Scholar 

  • Culliton, B. J., 1989c, A genetic shield to prevent emphysema? Science 246:750–751.

    Article  PubMed  CAS  Google Scholar 

  • Dichek, D. A., Neville, R. F., Zwiebel, J. A., Freeman, S. M., Leon, M. B., and Anderson, W. F., 1989, Seeding of intravascular stents with genetically engineered endothelial cells, Circulation 80:1347–1353.

    Article  PubMed  CAS  Google Scholar 

  • Doherty, P., Rowett, L. H., Moore, S. E., Mann, D. A., and Walsh, F. S., 1991, Neurite outgrowth in response to transfected N-CAM and N-cadherin reveals fundamental differences in neuronal responsiveness to CAMs, Neuron 6:247–258.

    Article  PubMed  CAS  Google Scholar 

  • Form, D. M., Pratt, B. M., and Madri, J. A., 1986, Endothelial cell proliferation during angiogenesis: In vitro modulation by basement membrane components, Lab. Invest. 55:521–530.

    PubMed  CAS  Google Scholar 

  • Frisch, S. M., and Francis, H., 1994, Disruption of epithelial cell-matrix interaction induces apoptosis, J. Cell Biol. 124:619–626.

    Article  PubMed  CAS  Google Scholar 

  • Gamble, J. R., Matthias, L. J., Meyer, G., Kaur, P., Russ, G., Faull, R., Berndt, M. C., and Vadas, M. A., 1993, Regulation of in vitro capillary tube formation by anti-integrin antibodies, J. Cell Biol. 121:931–943.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, I., Johnson, D. R., and Madri, J. A., 1993a, Differential induction of VCAM-1 on human iliac venous and arterial endothelial cells and its role in adhesion, J. Immunol. 151:1–14.

    Google Scholar 

  • Hauser, I., Setter, E., Bell, L., and Madri, J. A., 1993b, Fibronectin expression correlates with U937 cell adhesion to migrating bovine aortic endothelial cells in vitro, Am. J. Pathol. 143:173–180.

    PubMed  CAS  Google Scholar 

  • Hynes, R. O., 1992, Integrins: Versatility, modulation and signaling in cell adhesion, Cell 69:11–25.

    Article  PubMed  CAS  Google Scholar 

  • Juliano, R. L., and Haskill, S., 1993, Signal transduction from the extracellular matrix, J. Cell Biol. 120:577–585.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, S. P., Smith, J. D., Burton, W. V., Springhorn, J. P., Squinto, S. P., Madri, J. A., and Zavoico, G. B., 1994, Novel gene product delivery system utilizing capillary endothelial cells in a three-dimensional matrix, J. Cell. Biochem. 18(abstr.):301.

    Google Scholar 

  • Kocher, O., and Madri, J. A., 1989, Modulation of actin mRNAs in cultured capillary endothelial and aortic endothelial and smooth muscle cells by matrix components and TGF-β1, In Vitro 25:424–434.

    CAS  Google Scholar 

  • Kusaka, M., Sudo, K., Matsutani, E., Kozai, Y., Marui, S., Fujita, T., Ingber, D., and Folkman, J., 1994, Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470), Br. J. Cancer 69:212–216.

    Article  PubMed  CAS  Google Scholar 

  • Langdon, R., Cuono, C., Birchall, N., Madri, J. A., Kuklinska, E., McGuire, J., and Moellmann, G., 1988, Reconstitution of dermoepidermal and endothelial basement membrane zones in composite skin grafts derived from autologous cultured keratinocytes and cryopreserved allogeneic dermis, J. Invest. Dermatol. 91:478–485.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A., and Bell, L., 1992, Vascular cell responses to injury: Modulation by extracellular matrix and soluble factors, in: Ultrastructure, Membranes and Cell Interactions in Atherosclerosis (H. Robenek and N. Severs, eds.), pp. 167–181, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Madri, J. A., and Marx, M., 1992, Matrix composition, organization and soluble factors: Modulators of microvascular cell differentiation in vitro, Kidney Int. 41:560–565.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A., and Pratt, B. M., 1988, Angiogenesis, in: The Molecular and Cellular Biology of Wound Healing, 1st éd. (R. F. Clark and P. Henson, eds.), pp. 337–358, Plenum Press, New York.

    Chapter  Google Scholar 

  • Madri, J. A., and Williams, S. K., 1983, Capillary endothelial cell cultures: Phenotypic modulation by matrix components, J. Cell Biol. 97:153–165.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A., Pratt, B. M., and Tucker, A. M., 1988a, Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix, J. Cell Biol. 106:1375–1384.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A., Pratt, B. M., and Yannariello-Brown, J., 1988b, Endothelial cell extracellular matrix interactions: Matrix as a modulator of cell function, in: Endothelial Cell Biology in Health and Disease (N. Simionescu and M. Simionescu, eds.), pp. 167–188, Plenum Press, New York.

    Chapter  Google Scholar 

  • Madri, J. A., Pratt, B. M., and Yannariello-Brown, J., 1988c, Matrix driven cell size changes modulate aortic endothelial cell proliferation and sheet migration, Am. J. Pathol. 132:18–27.

    PubMed  CAS  Google Scholar 

  • Madri, J. A., Reidy, M., Kocher, O., and Bell, L., 1989, Endothelial cell behavior following denudation injury is modulated by TGF-β and fibronectin, Lab. Invest. 60:755–765.

    PubMed  CAS  Google Scholar 

  • Madri, J. A., Bell, L., Marx, M., Merwin, J. R., Basson, C. T., and Prinz, C., 1991, The effects of soluble factors and extracellular matrix components on vascular cell behavior in vitro and in vivo: Models of de-endothelialization and repair, J. Cell. Biochem. 45:1–8.

    Article  Google Scholar 

  • Madri, J. A., Bell, L., and Merwin, J. R., 1992a, Modulation of vascular cell behavior by transforming growth factors beta, Mol. Reprod. Dev. 32:121–126.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A., Merwin, J. R., Bell, L., Basson, C. T., Kocher, O., Perlmutter, R., and Prinz, C., 1992b, Interactions of matrix components and soluble factors in vascular cell responses to injury: Modulation of cell phenotype, in: Endothelial Cell Dysfunction (N. Simionescu and M. Simionescu, eds.), pp. 11–30, Plenum Press, New York.

    Google Scholar 

  • Marx, M., Perlmutter, R., and Madri, J. A., 1994, Modulation of PDGF-receptor expression in microvascular endothelial cells during in vitro angiogenesis, J. Clin. Invest. 93:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Ment, L. R., Stewart, W. B., Ardito, T. A., and Madri, J. A., 1991, Vascular basement membrane re-modeling during germinal matrix maturation in the neonate: Associations with interventricular hemorrhage in the beagle pup model, Stroke 22:390–395.

    Article  PubMed  CAS  Google Scholar 

  • Ment, L. R., Stewart, W. B., Ardito, T. A., Huang, E., and Madri, J. A., 1992, Indomethacin promotes germinal matrix microvasculature maturation in the newborn pup, Stroke 23:1132–1137.

    Article  PubMed  CAS  Google Scholar 

  • Meredith, J. E., Fazeli, B., and Schwartz, M. A., 1993, The extracellular matrix as a cell survival factor, Mol. Biol. Cell 4:953–961.

    PubMed  CAS  Google Scholar 

  • Merwin, J. R., Anderson, J., Kocher, O., van Itallie, C., and Madri, J. A., 1990, Transforming growth factor β1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis, J. Cell Physiol. 142:117–128.

    Article  PubMed  CAS  Google Scholar 

  • Merwin, J. R., Newman, W., Beall, D., Tucker, A., and Madri, J. A., 1991, Vascular cells respond differentially to transforming growth factors-beta1 and beta2, Am. J. Pathol. 138:37–51.

    PubMed  CAS  Google Scholar 

  • Merwin, J. R., Lynch, M. J., Madri, J. A., Pastan, I., and Seigall, C. B., 1992, Acidic FGF-Pseudomonas exotoxin (aFGF-PE) chimeric protein elicits anti-angiogenic effects on endothelial cells, Cancer Res. 52:4995–5001.

    PubMed  CAS  Google Scholar 

  • Mignatti, P., Morimoto, T., and Rifkin, D. B., 1992, Basic fibroblast growth factor released by single isolated cells stimulates their migration in an autocrine manner, Proc. Natl. Acad. Sci. USA 88:11007–11011.

    Article  Google Scholar 

  • Montesano, R., Pepper, M. S., Mohle-Steinlen, U., Risau, W., Wagner, E. F., and Orci, L., 1990, Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing middle T oncogene, Cell 62:435–445.

    Article  PubMed  CAS  Google Scholar 

  • Nabel, E. G., Plautz, G., Boyce, F. M., Stanley, J. C., and Nabel, G. J., 1989, Recombinant gene expression in vivo within endothelial cells of the artery wall, Science 244:1342–1344.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia, R. F., and Madri, J. A., 1987, The microvascular extracellular matrix: Developmental changes during angiogenesis in the aortic ring-plasma clot model, Am. J. Pathol. 128:78–90.

    PubMed  CAS  Google Scholar 

  • Pepper, M. S., and Montesano, R., 1990, Proteolytic balance and capillary morphogenesis, Cell Differ. Dev. 32:319–328.

    Article  PubMed  CAS  Google Scholar 

  • Pepper, M. S., Sappino, A. P., Montesano, R., Orci, L., and Vassalli, J.-D., 1992, Plasminogen activator inhibitor-1 is induced in migrating endothelial cells, J. Cell. Physiol. 153:129–139.

    Article  PubMed  CAS  Google Scholar 

  • Pepper, M. S., Sappino, A.-P., Stocklin, R., Montesano, R., Orci, L., and Vassalli, J.-D., 1993, Up-regulation of urokinase receptor expression on migrating endothelial cells, J. Cell Biol. 122:673–684.

    Article  PubMed  CAS  Google Scholar 

  • Pober, J. S., 1988, Cytokine-mediated activation of vascular endothelium, Am. J. Pathol. 133:426–433.

    PubMed  CAS  Google Scholar 

  • Pober, J. S., and Cotran, R. S., 1990, Cytokines and endothelial cell biology, Physiol. Rev. 70:427–451.

    PubMed  CAS  Google Scholar 

  • Romanic, A. M., and Madri, J. A., 1994a, The induction of 72 kDa gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent, J. Cell Biol. 125:1165–1178.

    Article  PubMed  CAS  Google Scholar 

  • Romanic, A. M., and Madri, J. A., 1994b, Extracellular matrix-degrading proteinases in the nervous system, Brain Pathol 4:145–156.

    Article  PubMed  CAS  Google Scholar 

  • Saksela, O., Moscatelli, D., and Rifkin, D. B., 1987, The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator activity in capillary endothelial cells, J. Cell Biol 105:957–963.

    Article  PubMed  CAS  Google Scholar 

  • Schimmenti, Yan, H-C., Madri, J. A., and Albelda, S., 1992, Cell adhesion molecule PECAM-1 modulates cell migration, J. Cell. Physiol. 153:417–428.

    Article  PubMed  CAS  Google Scholar 

  • Seftor, R. E. B., Seftor, E. A., Gehlsen, K. R., Stetler-Stevenson, W. G., Brown, P. D., Rouslahti, E., and Hendrix, M. J. C., 1992, Role of the αvβ3 integrin in human melanoma cell invasion, Proc. Natl. Acad. Sci. USA 89:1557–1561.

    Article  PubMed  CAS  Google Scholar 

  • Springer, T. A., 1990, Adhesion receptors of the immune system, Nature 346:425–432.

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi, R., Sato, Y., and Rifkin, D. B., 1990, Correlation of cell migration, cell invasion, receptor number, proteinase production and basic fibroblast growth factor levels in endothelial cells, J. Cell Biol. 110:511–517.

    Article  PubMed  CAS  Google Scholar 

  • Vlodavsky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M., 1987, Endothelial cell derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix, Proc. Natl. Acad. Sci. USA 84:2292–2296.

    Article  PubMed  CAS  Google Scholar 

  • Wang, N., Butler, J. P., and Ingber, D. E., 1993, Mechanotransduction across the cell surface and through the cytoskeleton, Science 260:1124–1127.

    Article  PubMed  CAS  Google Scholar 

  • White, C. W., Sondheimer, H. M., Crouch, E. C., Wilson, H., and Fan, L. L., 1989, Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a, New Engl. J. Med. 320:1197–1200.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. M., Birinyi, L. K., Salomon, R. N., Libby, P., Callow, A. D., and Mulligan, R. C., 1989, Implantation of vascular grafts lined with genetically modified endothelial cells, Science 244:1344–1346.

    Article  PubMed  CAS  Google Scholar 

  • Zwiebel, J. A., Freeman, S. M., Kantoff, P. W., Cornetta, K., Ryan, U. S., and Anderson, W. F., 1989, High-level recombinant gene expression in rabbit endothelial cells transduced by retroviral vectors, Science 243:220–222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madri, J.A., Sankar, S., Romanic, A.M. (1988). Angiogenesis. In: Clark, R.A.F. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0185-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0185-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0187-3

  • Online ISBN: 978-1-4899-0185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics