• Joseph A. Madri
  • Sabita Sankar
  • Anne M. Romanic


Angiogenesis, the formation of new vessels during development, in response to injury and tumor angiogenic factors is a dynamic process that is controlled by many diverse, sometimes complex factors acting together in a local environment. The principal cell type involved in the process of angiogenesis is the microvascular endothelial cell. This cell type is quite distinct from the endothelia lining the larger vessels of the circulatory system in its normal physiological functions and in its response to injury (Madri et al., 1991, 1992a, b). Following denudation injury (angioplasty, endarterectomy, synthetic and autologous bypass grafting), large-vessel endothelial cells undergo sheet migration that is modulated by both existing and newly synthesized extracellular matrix components and soluble factors (Madri et al., 1988b, 1991, 1992a, b; Madri and Bell, 1992). In contrast, following injury, microvascular endothelial cells initiate an angiogenic process also modulated by both existing and newly synthesized extracellular matrix components and soluble factors, consisting of local disruption of their investing basement membrane, migration into the local interstitial stroma, cell proliferation, new vessel formation, stabilization, and eventually involution of the newly formed vascular bed (Madri and Pratt, 1988; Madri and Marx, 1992; Madri et al., 1992a, b; Marx et al., 1994). Distinct behavioral patterns exhibited by these two different endothelial cell populations have led to the development of the hypothesis that large-vessel endothelial cells exhibit “dysfunctional” behavior in response to injury-induced changes in the extracellular matrix and soluble factor environments, favoring the development of arteriosclerosis.


Tube Formation Microvascular Endothelial Cell Type Versus Collagen Germinal Matrix Smooth Muscle Cell Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albelda, A. M., and Buck, C. A., 1990, Integrins and other cell adhesion molecules, FASEB J. 4:2868–2880.PubMedGoogle Scholar
  2. Albelda, S. M., Muller, W. A., Buck, C. A., and Newman, P. J., 1991, Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell-cell adhesion molecule, J. Cell Biol. 114:1059–1068.PubMedCrossRefGoogle Scholar
  3. Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res. 14:53–65.PubMedCrossRefGoogle Scholar
  4. Bacharach, E., Itin, A., and Keshet, E., 1992, In vivo patterns of expression of urokinse and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis, Proc. Natl. Acad. Sci. USA 89:10686–10690.PubMedCrossRefGoogle Scholar
  5. Basson, C. T., Knowles, W. J., Abelda, S., Bell, L., Castronovo, V., Liotta, L. A., and Madri, J. A., 1990, Spatiotemporal segregation of endothelial cell integrin and non-integrin extracellular matrix binding proteins during adhesion events, J. Cell Biol. 110:789–802.PubMedCrossRefGoogle Scholar
  6. Basson, C. T., Kocher, O., Basson, M. D., Asis, A., and Madri, J. A., 1992, Differential modulation of vascular cell integrin and extracellular matrix expression in vitro by TGF-βl correlates with reciprocal effects on cell migration, J. Cell. Physiol. 153:118–128.PubMedCrossRefGoogle Scholar
  7. Bates, R. C., Buret, A., van Helden, D. F., Horton, M. A., and Burns, G. F., 1994, Apoptosis induced by inhibition of intercellular contact, J. Cell Biol. 125:403–415.PubMedCrossRefGoogle Scholar
  8. Bauer, J. S., Schreiner, C. L., Giancotti, F. G., Ruoslahti, E., and Juliano, R. L., 1992, Motility of fibronectin receptor-deficient cells on fibronectin and vitronectin: Collaborative interactions among integrins, J. Cell Biol. 116:477–487.PubMedCrossRefGoogle Scholar
  9. Bell, L., and Madri, J. A., 1989, The effects of soluble platelet factors on bovine aortic enothelial and smooth muscle cell migration, Circ. Res. 65:1057–1065.PubMedCrossRefGoogle Scholar
  10. Bell, L., and Madri, J. A., 1990, Influence of the angiotensin system on endothelial and smooth muscle cell migration in vitro, Am. J. Pathol. 137:7–12.PubMedGoogle Scholar
  11. Bell, L., Luthringer, D. J., Madri, J. A., and Warren, S. L., 1992, Autocrine angiotensin system regulation of endothelial cell behavior involves modulation of pp60c-src expression, J. Clin. Invest. 89:315–320.PubMedCrossRefGoogle Scholar
  12. Blasi, F., 1993, Urokinase and urokinase receptor: A paracrine/autocrine system regulating cell migration and invasiveness, Bioessays 15:105–111.PubMedCrossRefGoogle Scholar
  13. Brem, H., Gresser, I., Grosfeld, J., and Folkman, J., 1993, The combination of antiangiogenic agents to inhibit primary tumor growth and metastasis, J. Pediatr. Surg. 28:1253–1257.PubMedCrossRefGoogle Scholar
  14. Brooks, P. C., Clark, R. A. F., and Cheresh, D. A., 1994, Requirement of vascular integrin ωβ3 for angiogenesis, Science 264:569–571.PubMedCrossRefGoogle Scholar
  15. Burger, P. C., and Klintworth, G. K., 1981, Autoradiographic study of corneal neovascularization induced by chemical cautery, Lab. Invest. 45:328–335.PubMedGoogle Scholar
  16. Crum, R., Szabo, S., and Folkman, J., 1985, A new class of steriods inhibits angiogenesis in the presence of heparin or a heparin fragment, Science 230:1375–1378.PubMedCrossRefGoogle Scholar
  17. Culliton, B. J., 1989a, Designing cells to deliver drugs, Science 246:746.PubMedCrossRefGoogle Scholar
  18. Culliton, B. J., 1989b, Gore Tex organoids and genetic drugs, Science 246:747–749.PubMedCrossRefGoogle Scholar
  19. Culliton, B. J., 1989c, A genetic shield to prevent emphysema? Science 246:750–751.PubMedCrossRefGoogle Scholar
  20. Dichek, D. A., Neville, R. F., Zwiebel, J. A., Freeman, S. M., Leon, M. B., and Anderson, W. F., 1989, Seeding of intravascular stents with genetically engineered endothelial cells, Circulation 80:1347–1353.PubMedCrossRefGoogle Scholar
  21. Doherty, P., Rowett, L. H., Moore, S. E., Mann, D. A., and Walsh, F. S., 1991, Neurite outgrowth in response to transfected N-CAM and N-cadherin reveals fundamental differences in neuronal responsiveness to CAMs, Neuron 6:247–258.PubMedCrossRefGoogle Scholar
  22. Form, D. M., Pratt, B. M., and Madri, J. A., 1986, Endothelial cell proliferation during angiogenesis: In vitro modulation by basement membrane components, Lab. Invest. 55:521–530.PubMedGoogle Scholar
  23. Frisch, S. M., and Francis, H., 1994, Disruption of epithelial cell-matrix interaction induces apoptosis, J. Cell Biol. 124:619–626.PubMedCrossRefGoogle Scholar
  24. Gamble, J. R., Matthias, L. J., Meyer, G., Kaur, P., Russ, G., Faull, R., Berndt, M. C., and Vadas, M. A., 1993, Regulation of in vitro capillary tube formation by anti-integrin antibodies, J. Cell Biol. 121:931–943.PubMedCrossRefGoogle Scholar
  25. Hauser, I., Johnson, D. R., and Madri, J. A., 1993a, Differential induction of VCAM-1 on human iliac venous and arterial endothelial cells and its role in adhesion, J. Immunol. 151:1–14.Google Scholar
  26. Hauser, I., Setter, E., Bell, L., and Madri, J. A., 1993b, Fibronectin expression correlates with U937 cell adhesion to migrating bovine aortic endothelial cells in vitro, Am. J. Pathol. 143:173–180.PubMedGoogle Scholar
  27. Hynes, R. O., 1992, Integrins: Versatility, modulation and signaling in cell adhesion, Cell 69:11–25.PubMedCrossRefGoogle Scholar
  28. Juliano, R. L., and Haskill, S., 1993, Signal transduction from the extracellular matrix, J. Cell Biol. 120:577–585.PubMedCrossRefGoogle Scholar
  29. Kennedy, S. P., Smith, J. D., Burton, W. V., Springhorn, J. P., Squinto, S. P., Madri, J. A., and Zavoico, G. B., 1994, Novel gene product delivery system utilizing capillary endothelial cells in a three-dimensional matrix, J. Cell. Biochem. 18(abstr.):301.Google Scholar
  30. Kocher, O., and Madri, J. A., 1989, Modulation of actin mRNAs in cultured capillary endothelial and aortic endothelial and smooth muscle cells by matrix components and TGF-β1, In Vitro 25:424–434.Google Scholar
  31. Kusaka, M., Sudo, K., Matsutani, E., Kozai, Y., Marui, S., Fujita, T., Ingber, D., and Folkman, J., 1994, Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470), Br. J. Cancer 69:212–216.PubMedCrossRefGoogle Scholar
  32. Langdon, R., Cuono, C., Birchall, N., Madri, J. A., Kuklinska, E., McGuire, J., and Moellmann, G., 1988, Reconstitution of dermoepidermal and endothelial basement membrane zones in composite skin grafts derived from autologous cultured keratinocytes and cryopreserved allogeneic dermis, J. Invest. Dermatol. 91:478–485.PubMedCrossRefGoogle Scholar
  33. Madri, J. A., and Bell, L., 1992, Vascular cell responses to injury: Modulation by extracellular matrix and soluble factors, in: Ultrastructure, Membranes and Cell Interactions in Atherosclerosis (H. Robenek and N. Severs, eds.), pp. 167–181, CRC Press, Boca Raton, Florida.Google Scholar
  34. Madri, J. A., and Marx, M., 1992, Matrix composition, organization and soluble factors: Modulators of microvascular cell differentiation in vitro, Kidney Int. 41:560–565.PubMedCrossRefGoogle Scholar
  35. Madri, J. A., and Pratt, B. M., 1988, Angiogenesis, in: The Molecular and Cellular Biology of Wound Healing, 1st éd. (R. F. Clark and P. Henson, eds.), pp. 337–358, Plenum Press, New York.CrossRefGoogle Scholar
  36. Madri, J. A., and Williams, S. K., 1983, Capillary endothelial cell cultures: Phenotypic modulation by matrix components, J. Cell Biol. 97:153–165.PubMedCrossRefGoogle Scholar
  37. Madri, J. A., Pratt, B. M., and Tucker, A. M., 1988a, Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix, J. Cell Biol. 106:1375–1384.PubMedCrossRefGoogle Scholar
  38. Madri, J. A., Pratt, B. M., and Yannariello-Brown, J., 1988b, Endothelial cell extracellular matrix interactions: Matrix as a modulator of cell function, in: Endothelial Cell Biology in Health and Disease (N. Simionescu and M. Simionescu, eds.), pp. 167–188, Plenum Press, New York.CrossRefGoogle Scholar
  39. Madri, J. A., Pratt, B. M., and Yannariello-Brown, J., 1988c, Matrix driven cell size changes modulate aortic endothelial cell proliferation and sheet migration, Am. J. Pathol. 132:18–27.PubMedGoogle Scholar
  40. Madri, J. A., Reidy, M., Kocher, O., and Bell, L., 1989, Endothelial cell behavior following denudation injury is modulated by TGF-β and fibronectin, Lab. Invest. 60:755–765.PubMedGoogle Scholar
  41. Madri, J. A., Bell, L., Marx, M., Merwin, J. R., Basson, C. T., and Prinz, C., 1991, The effects of soluble factors and extracellular matrix components on vascular cell behavior in vitro and in vivo: Models of de-endothelialization and repair, J. Cell. Biochem. 45:1–8.CrossRefGoogle Scholar
  42. Madri, J. A., Bell, L., and Merwin, J. R., 1992a, Modulation of vascular cell behavior by transforming growth factors beta, Mol. Reprod. Dev. 32:121–126.PubMedCrossRefGoogle Scholar
  43. Madri, J. A., Merwin, J. R., Bell, L., Basson, C. T., Kocher, O., Perlmutter, R., and Prinz, C., 1992b, Interactions of matrix components and soluble factors in vascular cell responses to injury: Modulation of cell phenotype, in: Endothelial Cell Dysfunction (N. Simionescu and M. Simionescu, eds.), pp. 11–30, Plenum Press, New York.Google Scholar
  44. Marx, M., Perlmutter, R., and Madri, J. A., 1994, Modulation of PDGF-receptor expression in microvascular endothelial cells during in vitro angiogenesis, J. Clin. Invest. 93:131–139.PubMedCrossRefGoogle Scholar
  45. Ment, L. R., Stewart, W. B., Ardito, T. A., and Madri, J. A., 1991, Vascular basement membrane re-modeling during germinal matrix maturation in the neonate: Associations with interventricular hemorrhage in the beagle pup model, Stroke 22:390–395.PubMedCrossRefGoogle Scholar
  46. Ment, L. R., Stewart, W. B., Ardito, T. A., Huang, E., and Madri, J. A., 1992, Indomethacin promotes germinal matrix microvasculature maturation in the newborn pup, Stroke 23:1132–1137.PubMedCrossRefGoogle Scholar
  47. Meredith, J. E., Fazeli, B., and Schwartz, M. A., 1993, The extracellular matrix as a cell survival factor, Mol. Biol. Cell 4:953–961.PubMedGoogle Scholar
  48. Merwin, J. R., Anderson, J., Kocher, O., van Itallie, C., and Madri, J. A., 1990, Transforming growth factor β1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis, J. Cell Physiol. 142:117–128.PubMedCrossRefGoogle Scholar
  49. Merwin, J. R., Newman, W., Beall, D., Tucker, A., and Madri, J. A., 1991, Vascular cells respond differentially to transforming growth factors-beta1 and beta2, Am. J. Pathol. 138:37–51.PubMedGoogle Scholar
  50. Merwin, J. R., Lynch, M. J., Madri, J. A., Pastan, I., and Seigall, C. B., 1992, Acidic FGF-Pseudomonas exotoxin (aFGF-PE) chimeric protein elicits anti-angiogenic effects on endothelial cells, Cancer Res. 52:4995–5001.PubMedGoogle Scholar
  51. Mignatti, P., Morimoto, T., and Rifkin, D. B., 1992, Basic fibroblast growth factor released by single isolated cells stimulates their migration in an autocrine manner, Proc. Natl. Acad. Sci. USA 88:11007–11011.CrossRefGoogle Scholar
  52. Montesano, R., Pepper, M. S., Mohle-Steinlen, U., Risau, W., Wagner, E. F., and Orci, L., 1990, Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing middle T oncogene, Cell 62:435–445.PubMedCrossRefGoogle Scholar
  53. Nabel, E. G., Plautz, G., Boyce, F. M., Stanley, J. C., and Nabel, G. J., 1989, Recombinant gene expression in vivo within endothelial cells of the artery wall, Science 244:1342–1344.PubMedCrossRefGoogle Scholar
  54. Nicosia, R. F., and Madri, J. A., 1987, The microvascular extracellular matrix: Developmental changes during angiogenesis in the aortic ring-plasma clot model, Am. J. Pathol. 128:78–90.PubMedGoogle Scholar
  55. Pepper, M. S., and Montesano, R., 1990, Proteolytic balance and capillary morphogenesis, Cell Differ. Dev. 32:319–328.PubMedCrossRefGoogle Scholar
  56. Pepper, M. S., Sappino, A. P., Montesano, R., Orci, L., and Vassalli, J.-D., 1992, Plasminogen activator inhibitor-1 is induced in migrating endothelial cells, J. Cell. Physiol. 153:129–139.PubMedCrossRefGoogle Scholar
  57. Pepper, M. S., Sappino, A.-P., Stocklin, R., Montesano, R., Orci, L., and Vassalli, J.-D., 1993, Up-regulation of urokinase receptor expression on migrating endothelial cells, J. Cell Biol. 122:673–684.PubMedCrossRefGoogle Scholar
  58. Pober, J. S., 1988, Cytokine-mediated activation of vascular endothelium, Am. J. Pathol. 133:426–433.PubMedGoogle Scholar
  59. Pober, J. S., and Cotran, R. S., 1990, Cytokines and endothelial cell biology, Physiol. Rev. 70:427–451.PubMedGoogle Scholar
  60. Romanic, A. M., and Madri, J. A., 1994a, The induction of 72 kDa gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent, J. Cell Biol. 125:1165–1178.PubMedCrossRefGoogle Scholar
  61. Romanic, A. M., and Madri, J. A., 1994b, Extracellular matrix-degrading proteinases in the nervous system, Brain Pathol 4:145–156.PubMedCrossRefGoogle Scholar
  62. Saksela, O., Moscatelli, D., and Rifkin, D. B., 1987, The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator activity in capillary endothelial cells, J. Cell Biol 105:957–963.PubMedCrossRefGoogle Scholar
  63. Schimmenti, Yan, H-C., Madri, J. A., and Albelda, S., 1992, Cell adhesion molecule PECAM-1 modulates cell migration, J. Cell. Physiol. 153:417–428.PubMedCrossRefGoogle Scholar
  64. Seftor, R. E. B., Seftor, E. A., Gehlsen, K. R., Stetler-Stevenson, W. G., Brown, P. D., Rouslahti, E., and Hendrix, M. J. C., 1992, Role of the αvβ3 integrin in human melanoma cell invasion, Proc. Natl. Acad. Sci. USA 89:1557–1561.PubMedCrossRefGoogle Scholar
  65. Springer, T. A., 1990, Adhesion receptors of the immune system, Nature 346:425–432.PubMedCrossRefGoogle Scholar
  66. Tsuboi, R., Sato, Y., and Rifkin, D. B., 1990, Correlation of cell migration, cell invasion, receptor number, proteinase production and basic fibroblast growth factor levels in endothelial cells, J. Cell Biol. 110:511–517.PubMedCrossRefGoogle Scholar
  67. Vlodavsky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M., 1987, Endothelial cell derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix, Proc. Natl. Acad. Sci. USA 84:2292–2296.PubMedCrossRefGoogle Scholar
  68. Wang, N., Butler, J. P., and Ingber, D. E., 1993, Mechanotransduction across the cell surface and through the cytoskeleton, Science 260:1124–1127.PubMedCrossRefGoogle Scholar
  69. White, C. W., Sondheimer, H. M., Crouch, E. C., Wilson, H., and Fan, L. L., 1989, Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a, New Engl. J. Med. 320:1197–1200.PubMedCrossRefGoogle Scholar
  70. Wilson, J. M., Birinyi, L. K., Salomon, R. N., Libby, P., Callow, A. D., and Mulligan, R. C., 1989, Implantation of vascular grafts lined with genetically modified endothelial cells, Science 244:1344–1346.PubMedCrossRefGoogle Scholar
  71. Zwiebel, J. A., Freeman, S. M., Kantoff, P. W., Cornetta, K., Ryan, U. S., and Anderson, W. F., 1989, High-level recombinant gene expression in rabbit endothelial cells transduced by retroviral vectors, Science 243:220–222.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Joseph A. Madri
    • 1
  • Sabita Sankar
    • 1
  • Anne M. Romanic
    • 1
  1. 1.Department of PathologyYale University School of MedicineNew HavenUSA

Personalised recommendations