Skip to main content

Abstract

Reepithelialization is the term used in common parlance to indicate the covering of a skin wound with a new epithelium. In clinical practice, this term is truly ill-defined and usually does not take into account the complexity and specialty cells of an unwounded, mature, human epidermal layer. In the examination of a healed or healing wound, the clinician often says that the wound is “reepithelialized” if the moist erythematous vascular granulation bed is covered by a dry film of epithelium. At the clinical level, the physician usually does not take into account other functions of this epithelial membrane such as its immune function directed by epidermal Langerhan’s cells, the role of pigment-producing melanocytes, the sensory function of epithelial Merkel’s cells, the barrier function of an organized and mature stratum corneum, and the stable epidermal-dermal adherence that occurs by a fully formed neobasement membrane zone between the epidermis and the underlying neodermis. In the future, as we advance our abilities to measure these functions, it is hoped that the definition of reepithelialization on the clinical level will undergo more refinement and discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer, E. A., 1977, Cell culture density as a modulator of collagenase expression in normal human fibroblast cultures, Exp. Cell Res. 107:209–276.

    Article  Google Scholar 

  • Bauer, E. A., Gordon, J. M., Reddick, M. E., and Eisen, A. Z., 1977, Quantitation and immunocytochemical localization of human skin collagenase in basal cell carcinoma, J. Invest. Dermatol. 69:363–367.

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn, J., Strohmeier, R., Kunzenbacher, I., Beck, K., and Voth, M., 1981, Locomotion of Xenopus epidermis cells in primary culture, J. Cell. Sci. 52:289–311.

    PubMed  CAS  Google Scholar 

  • Brown, C., Stenn, K. S., Falk, R. J., Woodley, D. T., and O’Keefe, E. J., 1991, Vitronectin: Effects on keratinocyte motility and inhibition of collagen-induced motility, J. Invest. Dermatol. 96:724–728.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G. L., Nanney, L. B., Griffen, J., Cramer, A. B., Yancey, J. M., Curtsinger, III, L. J., Holtzin, L., Schultz, G. S., Jurkiewicz, M. J., and Lynch, J. B., 1989, Enhancement of wound healing by topical treatment with epidermal growth factor, N. Engl. J. Med. 321:76–79.

    Article  PubMed  CAS  Google Scholar 

  • Carter, W. G., Ryan, M. C., and Gahn, P. J., 1991, Epiligrin, a new cell adhesion ligand for integrin α3β1 in epithelial basement membranes, Cell 65:599–610.

    Article  PubMed  CAS  Google Scholar 

  • Ceilley, E., Watanabe, N., Shapiro, D., Verrando, P., Bauer, E. A., Burgeson, R., Briggaman, R. A., and Woodley, D. T., 1993, Labeling of fractured human skin with antibodies to BM 600/nicein, epiligrin, kalinin and other matrix components, J. Dermatol. Sci. 5:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. D., Kim, J. P., Zhang, K., Sarret, Y., Wynn, K. C., Kramer, R. H., and Woodley, D. T., 1993a, Epidermal growth factor (EGF) promotes human keratinocyte locomotion on collagen by increasing the α2 integrin subunit, Exp. Cell Res. 209:216–223.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. D., Langhofer, M., Iwasaki, T., Kim, Y. H., Jones, J. C. R., Krueger, J. G., Carter, D. M., and Woodley, D. T., 1993b, Junctional epidermolysis bullosa (JEB) keratinocytes fail to secrete hemidesmo-some (HD)-associated matrix elements and demonstrate enhanced locomotion, J. Invest. Dermatol. 11(4): 170 (Abstract).

    CAS  Google Scholar 

  • Chen, J. D., Lapierre, J.-C., Sauder, D., Peavey, C., and Woodley, D. T., 1995, Interleukin-1 alpha stimulates keratinocyte migration through an EGF/TGF-alpha independent pathway, J. Invest. Dermatol. 104:729–733.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reep-ithelialization, J. Invest. Dermatol. 79:264–269.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Folkvord, J. M., and Wertz, R. L., 1985, Fibronectin, as well as other extracellular matrix proteins, mediate human keratinocyte adherence, J. Invest. Dermatol. 85:368–383.

    Article  Google Scholar 

  • Colman, G. J., and Roenigk, H. H., 1978, Topical therapy of leg ulcers with 20 percent benzoyl peroxide lotion, Cutis 21:491–494.

    PubMed  CAS  Google Scholar 

  • Cornelius, L. A., Woodley, D. T., Cronce, D. J., and Briggaman, R. A., 1986, Dermal-epidermal junction reformation following human skin wounding studied by correlative ultrastructural and immunochemical techniques, J. Invest. Dermatol. 86:469 (Abstract).

    Google Scholar 

  • Diaz, L. A., Ratrie, H., Saunders, W. S., Futamura, S., Squiquera, H. R., Anhalt, G. J., and Guidice, G. J., 1990, Isolation of a human epidermal cDNA corresponding to the 180 kD autoantigen recognized by bullous pemphigoid and herpes gestationis sera. Immunolocaliazation of this protein to the hemidesmo-some, J. Clin. Invest. 86:1088–1094.

    Article  PubMed  CAS  Google Scholar 

  • DiPasquale, A., 1975, Locomotion of epithelial cells, Exp. Cell Res. 95:425–439.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, D. J., and Mahan, J. T., 1983, Fibrinogen and fibronectin on substrates from epidermal cell migration during wound closure, J. Cell Sci. 62:117–123.

    PubMed  CAS  Google Scholar 

  • Donaldson, D. J., and Mahan, J. T., 1984, Influence of catecholamines on epidermal cell migration during wound closure in adult newts, Comp. Biochem. Physiol. 78C:267–270.

    CAS  Google Scholar 

  • Duband, J. L., Nuckolls, G. H., Ishihara, A., Hasegawa, T., Yamada, K. M., Thiery, J. P., and Jacobson, K., 1988, Fibronectin receptor exhibits high lateral motility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells, J. Cell Biol. 107:1385–1396.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, M. K., 1980, Cyclic AMP levels in migrating and non-migrating newt epidermal cells, J. Cell. Physiol. 104:367–373.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, M. K., and Donaldson, D. J., 1978, Inability of colchicine to inhibit newt epidermal cell migration or prevent concanavalin A-mediated inhibition of migration studies in vivo, Exp. Cell Res. 116:15–19.

    Article  PubMed  CAS  Google Scholar 

  • Eaglstein, W. H., Davis, S. C., Mehle, A. L., and Mertz, P. M., 1988, Optimal use of an occlusive dressing to enhance healing, Arch. Dermatol. 124:392–395.

    Article  PubMed  CAS  Google Scholar 

  • Falanga, V., Katz, M. H., and Alvarez, A. F., 1991, Dibutryl cyclic AMP by itself or in combination with growth factors can stimulate or inhibit growth of human keratinocytes or dermal fibroblasts, Wounds 3:70–78.

    Google Scholar 

  • Fritsch, P., Tappeiner, G., and Huspek, G., 1979, Keratinocyte substrate adhesion is magnesium-dependent and calcium independent, Cell Biol. Int. Rep. 3:593–598.

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani, G., Chaponnier, C., and Huttner, I., 1978, Cytoplasmic filament and gap functions in epithelial cells and myofibroblasts during wound healing, J. Cell Biol. 76:561–568.

    Article  PubMed  CAS  Google Scholar 

  • Gailit, J., Welch, M. P., and Clark, R. A. F., 1994, TGF-β1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds, Invest. Dermatol. 103:221–227.

    Article  CAS  Google Scholar 

  • Gentzkow, G. D., Alon, G., Taler, G., Eltorai, I., and Montray, R., 1993, Healing of refractory stage III and IV pressure ulcers by a new electrical stimulation device, Wounds 5(3): 160–172.

    Google Scholar 

  • Gibbins, J. R., 1972, Metabolic requirements for epithelial migration as defined by the use of metabolic inhibitors in organ culture, Exp. Cell Res. 71:329–337.

    Article  PubMed  CAS  Google Scholar 

  • Gibbins, J. R., 1973, Epithelial migration in organ culture. Role of protein synthesis as determined by metabolic inhibitors, Exp. Cell Res. 80:281–290.

    Article  PubMed  CAS  Google Scholar 

  • Gilchrest, B. A., Nemore, R. E., and Maciag, T., 1980, Growth of human keratinocytes on fibronectin-coated plates, Cell Biol. Int. Rep. 4:1009–1016.

    Article  PubMed  CAS  Google Scholar 

  • Gipson, I. K., and Anderson, R. A., 1980, Effect of lectin on migration of the corneal epithelium, Invest. Ophthalmol. Vis. Sci. 19:341–349.

    PubMed  CAS  Google Scholar 

  • Gipson, I. K., and Kiorpes, T. C., 1982, Epithelial sheet movement: Protein and glycoprotein synthesis, Dev. Biol. 92:259–262.

    Article  PubMed  CAS  Google Scholar 

  • Gipson, I. K., Westcott, M. J., and Brooksby, N. G., 1982, Effects of cytochalasins B and D and colchicine on migration of the corneal epithelium, Invest. Ophthal. Vis. Sci. 22:633–642.

    PubMed  CAS  Google Scholar 

  • Guidice, G., Squiquera, H. L., Elias, P. M., and Diaz, L. A., 1991, Identification of two collagen domains within the bullous pemphigoid autoantigen, BP180, J. Clin. Invest. 87:734–738.

    Article  Google Scholar 

  • Haymen, E. G., Pierschbacher, M. D., Suzuki, S., and Ruoslahti, E., 1985, Vitronectin: A major cell attachment-promoting protein in filal bound serum, Exp. Cell. Res. 160:245–258.

    Article  Google Scholar 

  • Hebda, P. A., 1988, Stimulatory effects of transforming growth factor beta and epidermal growth factor on epidermal cell outgrowth from porcine skin expiant cultures, J. Invest. Dermatol. 91:440–445.

    Article  PubMed  CAS  Google Scholar 

  • Hebda, P. A., Klingbeil C., Abraham J., and Fiddes, J. C., 1988, Acceleration of epidermal wound healing by human basic fibroblast growth factor, J. Invest. Dermatol. 90:568a.

    Google Scholar 

  • Hintner, H., Fritsch, P. O., Foidart, T. M., Stingl, G., Schuler, G., and Katz, S. I., 1980, Expression of basement membrane zone antigens at the dermo-epibolic junction in organ cultures of human skin, J. Invest. Dermatol. 74:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki, T., Kim, J. P., Wynn, K. C., and Woodley, D. T., 1994, Dibutryl cyclic AMP modulates keratinocyte locomotion, J. Invest. Dermatol. 102:891–897.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. P., Chen, J. D., and Woodley, D. T., 1992a, Mechanism of human keratinocyte migration on fibronectin: Unique roles of RGD site and integrins, J. Cell. Physiol. 151:443–450.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. P., Zhang, K., Kramer, R. H., Schall, T. J., and Woodley, D. T., 1992b, Integrin receptors and RGD sequences in human keratinocyte migration: Unique anti-migratory function of α3β1, J. Clin. Invest. 98:764–770.

    CAS  Google Scholar 

  • Kim, Y. H., Kim, J. P., Chen, J. D., Iwasaki, T., Hernandez, G., Saraf, P., Bauer, E. A., and Woodley, D. T., 1993, Biologic characteristics of recessive dystrophic epidermolysis bullosa (RDEB) keratinocytes, J. Invest. Dermatol. 11(4):551 (Abstract).

    Google Scholar 

  • Kim, J. P., Schall, T. J., Kleinman, H. K., and Woodley, D. T., 1994a, Human keratinocyte migration on type IV collagen: Unique roles of heparin binding site and integrins, Lab. Invest. 71:401–408.

    PubMed  CAS  Google Scholar 

  • Kim, J. P., Zhang, K., Chen, J. D., Kramer, R. H., and Woodley, D. T., 1994b, Vitronectin-driven human keratinocyte locomotion is mediated the αvβ5 integrin receptor, J. Biol. Chem. 43:26926–26932.

    Google Scholar 

  • Kono, I., Matsumoto, Y., Kano, K., Yasuhisa, I., Narushima, K., Kabashima, T., Yamane, K., Sakurai, T., and Kashiwagi, H., 1985, Beneficial effect of topical fibronectin in patients with keratoconjunctivitis sicca of Sjorgren’s syndrome, J. Rheumatol. 12:487–489.

    PubMed  CAS  Google Scholar 

  • Kubo, M., Noms, D. A., Howell, S. E., and Clark, R. A. F., 1984, Human keratinocytes synthesize, secrete and deposit fibronectin in the pericellular matrix, J. Invest. Dermatol. 82:580–586.

    Article  PubMed  CAS  Google Scholar 

  • Kupper, T. S., Ballard, D. W., Chua, A. O., McGuire, J. S., Flood, P. M., Horowitz, M. C., Langdon, L., and Gubler, V., 1986, Expression of mRNA homologous to interleukin-1 in human epidermal cells, J. Exp. Med. 64:2095–2098.

    Article  Google Scholar 

  • Kuwabara, T., Perkins, D. G., and Cogan, D. G., 1976, Sliding of the epithelium in experimental corneal wounds, Invest. Ophthalmol. 15:4–14.

    PubMed  CAS  Google Scholar 

  • Liotta, L. A., Siegeto, A., Gebron-Robey, P., and Martin, A. K., 1979, Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic tumor, Proc. Natl. Acad. Sci. USA 76:2268–2272.

    Article  PubMed  CAS  Google Scholar 

  • Luger, T. A., Stadler, B. M., Katz, S. I., and Oppenheimer, J. J., 1981, Epidermal cell derived thymocyte activating factor (ETAF), J. Immunol. 127:1493–1498.

    PubMed  CAS  Google Scholar 

  • Lyon, R. A., and Reynolds, T. E., 1929, Promotion of healing by benzoyl peroxide and other agents, Proc. Soc. Exp. Biol. Med. 27:122–151.

    Article  Google Scholar 

  • Marinkovich, M. P., Peavey, C. L., Burgeson, R. E., and Woodley, D. T., 1994, Kalinin inhibits collagen-driven human keratinocyte migration, J. Clin. Invest. 102(4): 157 (Abstract).

    Google Scholar 

  • Mertz, P., Davis, C., Cazzaniga, A., Cheng, K., Reich, J., and Eaglstein, W., 1993, Electrical stimulation: Acceleration of soft tissue repair by varying the polarity, Wounds 5(3): 153–159.

    Google Scholar 

  • Mustoe, T. A., Pierce, G. F., Thomason, A., Sporn, M., Gramates, P. H., and Deuel, T. F., 1987, Accelerated healing of incisional wounds in rats induced by transforming growth factor β, Science 237:1333–1335.

    Article  PubMed  CAS  Google Scholar 

  • Mutasim, D. F., Takahashi, Y., Ramzy, L. S., Anhalt, G. J., Patel, H. P., and Diaz, L. A., 1985, A pool of bullous pemphigoid antigen(s) is intracellular and associated with the basal cell cytoskeleton-hemidesmosome complex, J. Invest. Dermatol. 84:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, T., Nakagawa, S., and Manabe, R., 1985, Clinical evaluation of fibronectin eye drops on epithelial disorders after herpetic keratitis, Ophthalmology 92:213–216.

    PubMed  CAS  Google Scholar 

  • Ödland, G., and Ross, R., 1968, Human wound repair. I Epidermal regeneration, J. Cell Biol. 39:135–151.

    Article  PubMed  Google Scholar 

  • O’Keefe, E. J., Woodley, D., Castillo, G., Russell, N., and Payne, R. E., 1984, Production of soluble and cell associated fibronectin by cultured keratinocytes, J. Invest. Dermatol. 82:150–155.

    Article  PubMed  Google Scholar 

  • O’Keefe, E. J., Payne, R. E., Russell, N., and Woodley, D. T., 1985, Spreading and enhanced motility of human keratinocytes on fibronectin, J. Invest. Dermatol. 85:125–130.

    Article  PubMed  Google Scholar 

  • O’Keefe, E. J., Chiu, M. L., and Payne, R. E., 1988, Stimulation of growth of keratinocytes by basic fibroblast growth factor, J. Invest. Dermatol. 90:767–769.

    Article  PubMed  Google Scholar 

  • Peavey, C. L., Ladin, D. A., Mustoe, T. A., and Woodley, D. T., 1994, Hypoxia stimulates human keratinocyte migration on interstitial collagen, J. Clin. Invest. 102(4):699 (Abstract).

    Google Scholar 

  • Petersen, M. J., Woodley, D. T., Stricklin, G. P., and O’Keefe, E. J., 1989, Constitutive production of procollagenase and collagenase inhibitor by human keratinocytes in culture, J. Invest. Dermatol. 92:156–159.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, M. J., Woodley, D. T., Stricklin, G. P., and O’Keefe, E. J., 1990, Enhanced synthesis of collagenase by human keratinocytes cultured on type I or type IV collagen, J. Invest. Dermatol. 94:341–346.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite, A. E., Lachman, L. B., Mainardi, C. L., and Kang, A. H., 1982, Interleukin I stimulation of collagenase production by cultured fibroblasts, J. Exp. Cell Biol. 157:801–806.

    Google Scholar 

  • Rao, C. N., Ladine, D., Liu, Y., Hou, Z., Chilukuri, K., and Woodley, D. T., 1995, Alpha 1 antitypsin is degraded and non-functional in chronic wounds: The inhibitor protects fibronectin from degradation by chronic wound fluid enzymes, J. Invest. Dermatol. in press.

    Google Scholar 

  • Regnier, M., Prunieras, M., and Woodley, D., 1981, Growth and differentiation of adult human epidermal cells on dermal substrate, Front. Matrix Biol. 9:4–32.

    Google Scholar 

  • Robledo, M. A., Kim, S.-C., Korman, N. J., Stanley, J. R., Labib, R. S., Futamura, S., and Anhalt, G. J., 1990, Studies of the relationship of the 230 kD and 180 kD bullous pemphigoid antigens, J. Invest. Dermatol. 94:793–797.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, V., Horn, Y. K., and Marinkovich, M. P., 1986, Basal lamina inhibition suppresses synthesis of calcium-dependent proteins associated with mammary epithelial cell spreading, Exp. Cell Res. 165:450–460.

    Article  PubMed  CAS  Google Scholar 

  • Rousselle, P., Lunstrum, G. P., Keene, D. R., and Burgeson, R. E., 1991, Kalinin: An epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments, J. Cell Biol. 114:567–576.

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti, E., and Pierschbacher, M. D., 1987, New perspectives in cell adhesion: RGD and integrins, Science 238:491–497.

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti, E., Engvall, E., and Hayman, E. G., 1981, Fibronectin: Current concepts of its structure and function, Coll. Res. 1:95–128.

    Article  CAS  Google Scholar 

  • Sarret, Y., Kleinman, H. K., and Woodley, D. T., 1991, The peptide (CSIKVAVS-NH2) near the amino terminus of the laminin A chain markedly inhibits human keratinocyte locomotion, Clin. Res. 39(2):514A (Abstract).

    Google Scholar 

  • Sarret, Y., Raftery, K., and Woodley, D. T., 1992a, Intracellular and extracellular calcium levels dramatically alter human keratinocyte migration, J. Invest. Dermatol. 98(4):572 (Abstract).

    Google Scholar 

  • Sarret, Y., Woodley, D. T., Grigsby, K., Wynn, K. C., and O’Keefe, E. J., 1992b, Human keratinocyte locomotion: The effect of selected cytokines, J. Invest. Dermatol. 98:12–16.

    Article  PubMed  CAS  Google Scholar 

  • Sauder, D. N., Carter, C., Katz, S. I., and Oppenheim, J. J., 1982, Epidermal cell production of thymocyte activating factor (ETAF), J. Invest. Dermatol. 79:34–39.

    Article  PubMed  CAS  Google Scholar 

  • Sauder, D. N., Stanulis-Prager, B. M., and Gilchrist, B. A., 1988, Autocrine growth stimulation of human keratinocytes by epidermal cell derived thymocyte activating factor, Arch. Dermatol. Res. 280:71–78.

    Article  PubMed  CAS  Google Scholar 

  • Schaumburg-Lever, G., Rule, R. A., Schmidt-Ullrich, B., and Lever, W. F., 1975, Ultrastructural localization of in vivo bound immunoglobulins in bullous pemphigoid: A preliminary report, J. Invest. Dermatol. 64:47–49.

    Article  PubMed  CAS  Google Scholar 

  • Scheel, G., Rahsoth, B., Franke, J., and Grau, P., 1991, Acceleration of wound healing by local application of fibronectin, Arch. Orthop. Trauma Surg. 110:284–287.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, J. R., Alvarez, O. M., Bere, E. W., Eaglstein, W. H., and Katz, S. I., 1981, Detection of membrane zone antigens during epidermal wound healing in pigs, J. Invest. Dermatol. 7:240–243.

    Article  Google Scholar 

  • Stanley, J. R., Woodley, D. T., Katz, S. I., and Martin, G. R., 1982a, Structure and function of basement membrane, J. Invest. Dermatol. 79:69s–72s.

    Article  PubMed  Google Scholar 

  • Stanley, J. R., Hawley-Nelson, P., Yaar, M., Martin, G. R., and Katz, S. I., 1982b, Laminin and bullous pemphigoid antigen are distinct basement membrane proteins synthesized by epidermal cells, J. Invest. Dermatol. 78:456–459.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, J. R., Tanaka, T., Mueller, S., Klaus-Kouan, V., and Roop, D., 1988, Isolation of complementary DNA for bullous pemphigoid antigen by use of patients’ autoantibodies, J. Clin. Invest. 82:1864–1870.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., 1978, The role of serum in the epithelial outgrowth of mouse skin expiants, Br. J. Dermatol. 98:411–416.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., 1981, Epibolin: A protein of human plasma which supports epithelial cell movement, Proc. Natl. Acad. Sci. USA 78:6907–6911.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., 1987, Coephibolin, the activity of human serum that enhances the cell-spreading properties of epibolin, associates with albumin, J. Invest. Dermatol. 89:59–63.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., and Core, N. G., 1986, Calton dependence of guinea pig epidermal cell spreading, In Vitro Cell. Dev. Biol. 22:217–222.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., and Depalma, L., 1988, Re-epithelialization, in: The Molecular and Cellualr Bilolgy of Wound Repair, 1st ed. (R. A. F. Clark and P. M. Hensen, eds.), pp. 321–325, Plenum Press, New York.

    Chapter  Google Scholar 

  • Stenn, K. S., and Dvoretzky, I., 1979, Human serum and epithelial spread in tissue culture, Arch. Dermatol. Res. 246:3–15.

    Article  Google Scholar 

  • Stenn, K. S., Madri, J. A., and Roll, F. J., 1979, Migrating epidermis produces AB2 collagen and requires continual collagen synthesis for movement, Nature 277:229–232.

    Article  PubMed  CAS  Google Scholar 

  • Takashima, A., and Grinnell, F., 1984, Human keratinocyte adhesion and phagocytosis promoted by fibronectin, J. Invest. Dermatol. 83:352–358.

    Article  PubMed  CAS  Google Scholar 

  • Varghese, M. C., Balin, A. K., Carter, M., and Caldwell, D., 1986, Local environment of chronic wounds under synthetic dressings, Arch. Dermatol. 122:52–56.

    Article  PubMed  CAS  Google Scholar 

  • Verrando, P., Hsi, B. L., Yeh, C.-J., Pisani, A., Serieys, N., and Ortonne, J.-P., 1987, Monoclonal antibody GB3, a new probe in the study of human basement membranes and hemidesmosomes, Exp. Cell Res. 170:116–128.

    Article  PubMed  CAS  Google Scholar 

  • Westgate, G. E., Weaver, A. C., and Couchman, J. R., 1985, Bullous pemphigoid antigen localization suggests an intracellular association with hemidesmosomes, J. Invest. Dermatol. 84:218–224.

    Article  PubMed  CAS  Google Scholar 

  • Wilke, M. S., and Furcht, L. T., 1990, Human keratinocytes adhere to a unique heparin-binding peptide sequence within the triple helical domain of type IV collagen, J. Invest. Dermatol. 95:264–270.

    Article  PubMed  CAS  Google Scholar 

  • Winter, G. D., 1962, Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig, Nature 193:293–294.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., and Kim, Y. H., 1992, A double-blind comparison of wound dressings using uniform suction blister wounds, Arch. Dermatol. 128:1354–1357.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., Didierjean, L., Regnier, M., Saurat, J., and Prunieras, M., 1980a, Bullous pemphigoid antigen synthesized in vitro by human epidermal cells, J. Invest. Dermatol. 75:148–151.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., Regnier, M., and Prunieras, M., 1980b, In vitro basal lamina formations may require non-epidermal cell living substrate, Br. J. Dermatol. 103:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., Rao, C. N., Hassell, J. R., Liotta, L. A., Martin, G. R., and Kleinman, H. K., 1983, Interactions of basement membrane components, Biochim. Biophys. Acta 761:278–283.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., O’Keefe, E. J., and Prunieras, M., 1985a, Cutaneous wound healing: A model for cell-matrix interactions, J. Am. Acad. Dermatol. 12:420–433.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., Briggaman, R. A., Gammon, W. R., and O’Keefe, E. J., 1985b, Epidermolysis bullosa acquisita antigen is synthesized by human keratinocytes cultured in serum-free medium, Biochem. Biophys. Res. Commun. 130:1267–1272.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., Kelebec, T., Banes, A. J., Link, W., Prunieras, M., and Liotta, L. A., 1986, Adult human keratinocytes migrating over nonviable dermal collagen produce collagenolytic enzymes that degrade type I and type IV collagen, J. Invest. Dermatol. 86:418–423, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., O’Keefe, E. J., McDonald, J. A., 1987, Specific affinity between fibronectin and the epidermolysis bullosa acquisita antigen, J. Clin. Invest. 179:1826–1830.

    Article  Google Scholar 

  • Woodley, D. T., Bachmann, P. M., and O’Keefe, E. J., 1988a, Laminin inhibits human keratinocyte migration, J. Cell. Physiol. 136:140–146.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., Peterson, H. D., Herzog, S. R., Stricklin, G. P., Burgeson, R. E., Briggaman, R. A., Cronce, D. J., and O’Keefe, E. J., 1988b, Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils, J. Am. Med. Assoc. 259:2566–2571.

    Article  CAS  Google Scholar 

  • Woodley, D. T., Briggaman, R. A., Herzog, S., Meyers, A., Peterson, H. D., and O’Keefe, E. J., 1990a, Characterization of neo-dermis formation beneath cultured human epidermal autografts transplanted on muscle fascia, J. Invest. Dermatol. 95:20–26.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., Wynn, K. C., and O’Keefe, E. J., 1990b, Type IV collagen and fibronectin enhance human keratinocyte thymidine incorporation, J. Invest. Dermatol. 94:139–143.

    Article  PubMed  CAS  Google Scholar 

  • Wysocki, A., Baxter, C. R., Bergstresser, P. R., Grinnell, F., Horowitz, M. S., and Horowitz, B., 1988, Topical fibronectin therapy for treatment of a patient with chronic status ulcers, Arch. Dermatol. 124:175–177.

    Article  PubMed  CAS  Google Scholar 

  • Wysocki, A. B., and Grinnell, F., 1990, Fibronectin profiles in normal and chronic wound fluid, Lab. Invest. 63:825–831.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woodley, D.T. (1988). Reepithelialization. In: Clark, R.A.F. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0185-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0185-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0187-3

  • Online ISBN: 978-1-4899-0185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics