Wound Repair

Overview and General Considerations
  • Richard A. F. Clark


When tissue loss disrupts normal architecture in higher vertebrate adult animals, the organ fails to regenerate. Instead, repair proceeds as a fibroproliferative response that develops into a fibrotic scar. Thus, the organ is patched rather then restored. Alterations in the normal healing processes produce even less desirable outcomes. For example, when injurious events persist or recur, inflammation is perpetuated, extending tissue damage and repair. In addition, a plethora of pathobiological states, such as diabetes, Cushing’s syndrome, poor arterial perfusion, venous hypertension, poor nutrition, and sepsis, disrupt normal repair processes. Such situations often lead to nonhealing wounds or excessive fibrosis.


Hyaluronic Acid Granulation Tissue Wound Repair Fibrin Clot Fibrillar Collagen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., Flint, M. H., and James, D. W., 1956, Wound contraction in relation to collagen formation in scorbutic guinea pigs, J. Embryol. Exp. Morph. 4:167–175.Google Scholar
  2. Adzick, N. S., and Longaker, M. T., 1992, Fetal Wound Healing, Elsevier, New York.Google Scholar
  3. Ahlen, K., and Rubin, K., 1994, Platelet-derived growth factor-BB stimulates synthesis of the integrin α2-subunit in human diploid fibroblasts, Exp. Cell Res. 215:347–353.PubMedCrossRefGoogle Scholar
  4. Albelda, S. M., and Buck, C. A., 1990, Integrins and other cell adhesion molecules, FASEB J. 4:2868–2880.PubMedGoogle Scholar
  5. Alho, A. M., and Underhill, C. M., 1989, The hyaluronate receptor is preferentially expressed on poliferating epithelial cells, J. Cell Biol. 108:1557–1566.PubMedCrossRefGoogle Scholar
  6. Assoian, R. K., Frolik, C. A., Roberts, A. B., Miller, D. M., and Sporn, M. B., 1984, Transforming growth factor-β controls receptor levels for epidermal growth factor in NRK fibroblasts, Cell 36:35–41.PubMedCrossRefGoogle Scholar
  7. Assoian, R. K., Fleurdelys, B. E., Stevenson, H. C., Miller, P. J., Madtes, D. K., Raines, E. W., Ross, R., and Sporn, M. B., 1987, Expression and secretion of type β transforming growth factor by activated human macrophages, Proc. Natl. Acad. Sci. USA 84:6020–6024.PubMedCrossRefGoogle Scholar
  8. Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res. 14:53–65.PubMedCrossRefGoogle Scholar
  9. Ausprunk, D. H., Falterman, K., and Folkman, J., 1978, The sequence of events in the regression of corneal capillaries, Lab. Invest. 38:284–294.PubMedGoogle Scholar
  10. Ausprunk, D. H., Boudreau, C. L., and Nelson, D. A., 1981, Proteoglycans in the microvasculature. II. Histochemical localization in proliferating capillaries of the rabbit cornea, Am. J. Pathol. 103:367–375.PubMedGoogle Scholar
  11. Azizkhan, R. G., Azizkhan, J. C., Zetter, B. R., and Folkman, J., 1980, Mast cell heparin stimulates migration of capillary endothelial cells in vitro, J. Exp. Med. 152:931–944.PubMedCrossRefGoogle Scholar
  12. Bailey, A. J., Bazin, S., Sims, T. J., LeLeus, M., Nicholetis, C., and Delaunay, A., 1975, Characterization of the collagen of human hypertrophic and normal scars, Biochim. Biophys. Acta 405:412–421.PubMedCrossRefGoogle Scholar
  13. Baird, A., and Durkin, T., 1986, Inhibition of endothelial cell proliferation by type-beta transforming growth factor: Interactions with acidic and basic fibroblast growth factors, Biochem. Biophys. Res. Commun. 138:476–482.PubMedCrossRefGoogle Scholar
  14. Baird, A., Mormede, P., and Bohlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage growth factor, Biochem. Biophys. Res. Commun. 126:358–364.PubMedCrossRefGoogle Scholar
  15. Barrandon, Y., and Green, H., 1987, Cell migration is essential for sustained growth of keratinocytes colonies: The roles of transforming growth factor-α and epidermal growth factor, Cell 50:1131–1137.PubMedCrossRefGoogle Scholar
  16. Bar-Shavit, R., Kahn, A., Fenton, J. W., and Wilner, G. D., 1983, Chemotactic response of monocytes to thrombin, J. Cell Biol. 96:282–285.PubMedCrossRefGoogle Scholar
  17. Battegay, E. F., Rupp, J., Iruela-Arispe, L., Sage, E. H., and Pech, M., 1994, PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF β-receptors, J. Cell Biol. 125:917–928.PubMedCrossRefGoogle Scholar
  18. Bazin, S., and Delaunay, A., 1964, Biochimie de l’inflammation. VI. Fluctuations du taux de collagene et des proteines non fibrillaires dans differents types de foyers inflammatoires, Am. Inst. Pasteur 107:163–172.Google Scholar
  19. Bell, E., Ivarsson, B., and Merrill, C., 1979, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro, Proc. Natl. Acad. Sci. USA 76:1274–1278.CrossRefGoogle Scholar
  20. Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coulomb, B., Lepiere, C., Nusgens, B., and Neveux, Y., 1983, The reconstitution of living skin, J. Invest. Dermatol. 81(suppl.):2S–10S.PubMedCrossRefGoogle Scholar
  21. Bently, J. P., 1967, Rate of chondroitin sulfate formation in wound healing, Ann. Surg. 165:186–191.CrossRefGoogle Scholar
  22. Bergmann, J. E., Kupfer, A., and Singer, S. J., 1983, Membrane insertion at the leading edge of motile fibroblasts, Proc. Natl. Acad. Sci. USA 80:1367–1371.PubMedCrossRefGoogle Scholar
  23. Berk, B. C., Alexander, R. W., Brock, T. A., and Gimbrone, J. M.A., 1986, Vasoconstriction: A new activity for platelet-derived growth factor, Science 232:87–90.PubMedCrossRefGoogle Scholar
  24. Bernstein, L. R., Antoniades, H., and Zetter, B. R., 1982, Migration of cultured vascular cells in response to plasma and platelet-derived factors, J. Cell Sci. 56:71–82.PubMedGoogle Scholar
  25. Bertolami, C. N., and Donoff, R. B., 1982, Identification, characterization, and partial purification of mammalian skin wound hyaluronidase, J. Invest. Dermatol. 79:417–421.PubMedCrossRefGoogle Scholar
  26. Birk, D. E., Zycband, E. I., Winkelmann, D. A., and Trelstad, R. L., 1989, Collagen fibrillogenesis in situ: Fibril segments are intermediates in assembly, Proc. Natl. Acad. Sci. USA 86:4549–4553.PubMedCrossRefGoogle Scholar
  27. Birk, D. E., Zycband, E. I., Winkleman, D. A., and Trelstad, R. L., 1990, Collagen fibrilogenesis in situ, NY Acad. Sci. 580:176–194.CrossRefGoogle Scholar
  28. Bowersox, J. C., and Sorgente, N., 1982, Chemotaxis of aortic endothelial cells in response to fibronectin, Cancer Res. 42:2547–2551.PubMedGoogle Scholar
  29. Brachmann, R., Lindquist, P. B., Nagashima, M., Kohr, W., Lipari, T., Napier, M., and Derynck, R., 1989, Transmembrane TGF-α precursors activate EGF/TGF-α receptors, Cell 56:691–700.PubMedCrossRefGoogle Scholar
  30. Brenner, C. A., Adler, R. R., Rappolee, D. A., Pederson, R. A., and Werb, Z., 1989, Genes for extracellular matrix-degrading metalloproteases and their inhibitor, TIMP, are expressed during early mammalian development, Genes Dev. 3:848–859.PubMedCrossRefGoogle Scholar
  31. Bronson, R. E., Bertolami, C. N., and Siebert, E. P., 1987, Modulation of fibroblast growth and glycosaminoglycan synthesis by interleukin-1, Coll. Rel. Res. 7:323–332.CrossRefGoogle Scholar
  32. Bronson, R. E., Argenta, J. G., and Bertolami, N., 1988, Interleukin-1 induced changes in extracellular glycosaminoglycan composition of cutaneous scar-derived fibroblasts in culture, Coll. Rel. Res. 8:199–208.CrossRefGoogle Scholar
  33. Brooks, P. C., Clark, R. A. F., and Cheresh, D. A., 1994a, Requirement of vascular integrin αvβ3 for angiogenesis, Science 264:569–571.PubMedCrossRefGoogle Scholar
  34. Brooks, P. C., Montgomery, A. M. P., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., and Cheresh, D. A., 1994b, Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels, Cell 79:1157–1164.PubMedCrossRefGoogle Scholar
  35. Brown, E. J., and Goodwin, J. L., 1988, Fibronectin receptors of phagocytes. Characterization of the arg-glyasp binding proteins of human monocytesj and polymorphonuclear leukocytes, J. Exp. Med. 167:777–793.PubMedCrossRefGoogle Scholar
  36. Brown, G. L., Nanney, L. B., Griffen, J., Cramer, A. B., Yancey, J. M., Curtsinger, L. J., Holtzin, L., Schultz, G. S., Jurkiewicz, M. H., and Lynch, J. B., 1989, Enhancement of wound healing by topical treatment with epidermal growth factor, N. Engl. J. Med. 321:76–79.PubMedCrossRefGoogle Scholar
  37. Brown, L. F., Yeo, K.-T., Berse, B., Yeo, T.-K., Senger, D. R., Dvorak, H. F., and Van De Water, L., 1992, Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing, J. Exp. Med. 176:1375–1379.PubMedCrossRefGoogle Scholar
  38. Brown, L. F., Dubin, D., Lavigne, L., Logan, B., Dvorak, H. F., and Van De Water, L., 1993a, Macrophages and fibroblasts express “embryonic” fibronectins during cutaneous wound healing, Am. J. Pathol. 142:793–801.PubMedGoogle Scholar
  39. Brown, L. F., Lanir, N., McDonagh, J., Tognazzi, K., Dvorak, A. M., and Dvorak, H. F., 1993b, Fibroblast migration in fibrin gel matrices, Am. J. Pathol. 142(1):273–283.PubMedGoogle Scholar
  40. Bruns, R. R., Press, W., Engvall, E., Timpl, R., and Gross, J., 1986, Type VI collagen in extracellular, 100 nm periodic filaments and fibrils: Identification by immunoelectron microscopy, J. Cell Biol. 103:393–404.PubMedCrossRefGoogle Scholar
  41. Butler, P. E., and Bond, J. S., 1988, A latent proteinase in mouse kidney membranes. Characterization and relationship to meprin, J. Biol. Chem. 263:13419–13426.PubMedGoogle Scholar
  42. Campbell, E. J., Cury, J. D., Lazarus, C. J., and Welgus, H. G., 1987, Monocyte procollagenase and tissue inhibitor of metallopoteinases. Identification, characterization and regulation of secretion, J. Biol. Chem. 262:15862–15868.PubMedGoogle Scholar
  43. Carter, S. B., 1970, Cell movement and cell spreading: A passive or an active process? Nature 255:858–859.CrossRefGoogle Scholar
  44. Castellino, F. J., Strickland, D. K., Morris, J. P., Smith, J., and Chibber, B., 1983, Enhancement of the streptokinase-induced activation of human plasminogen by human fibrinogen and human fibrinogen fragment D1, Ann. NY Acad. Sci. 408:595–601.PubMedCrossRefGoogle Scholar
  45. Castellot, J. J., Addonizio, M. L., Rosenberg, R., and Karnovosky, M. J., 1981, Vascular endothelial cells produce a heparin-like inhibitor of smooth muscle growth, J. Cell Biol. 90:372–379.PubMedCrossRefGoogle Scholar
  46. Cavani, A., Zambruno, G., Marconi, A., Manca, V., Marchetti, M., and Giannetti, A., 1993, Distinctive integrin expression in the newly forming epidermis during wound healing in humans, J. Invest. Dermatol. 101:600–604.PubMedCrossRefGoogle Scholar
  47. Chan, B. M., Kassner, P. D., Schiro, J. A., Byers, R., Kupper, T. S., and Hemler, M. E., 1992, Distinct cellular functions mediated by different VLA integrin a subunit cytoplasmic domains, Cell 68:1051–1060.PubMedCrossRefGoogle Scholar
  48. Checovich, W. J., and Mosher, D. F., 1993, Lysophosphatidic acid enhances fibronectin binding to adherent cells, Arterioscler. Thromb. 13:1662–1667.PubMedCrossRefGoogle Scholar
  49. Chen, W.-T., 1981, Mechanism of retraction of the trailing edge during fibroblast movement, J. Cell Biol. 90:187–200.PubMedCrossRefGoogle Scholar
  50. Ciano, P. S., Colvin, R. B., Dvorak, A. M., McDonagh, J., and Dvorak, H. F., 1986, Macrophage migration in fibrin gel matrices, Lab. Invest. 54:62–70.PubMedGoogle Scholar
  51. Circolo, A., Welgus, H. G., Pierce, G. F., Kramer, J., and Strunk, R. C., 1991, Differential regulation of the expression of proteinases/antiproteinases in fibroblasts. Effects of interleukein-1 and platelet-derived growth factor, J. Biol. Chem. 266:12283–12288.PubMedGoogle Scholar
  52. Clark, R. A. F., 1988, Potential roles of fibronectin in cutaneous wound repair, Arch. Dermatol. 124:201–206.PubMedCrossRefGoogle Scholar
  53. Clark, R. A. F., 1990, Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin, J. Invest. Dermatol. 94(Suppl):128S–134S.PubMedCrossRefGoogle Scholar
  54. Clark, R. A. F., 1993, Mechanisms of cutaneous wound repair, in: Dermatology in General Medicine (T. B. Fitzpatrick, A. Z. Eisen, K. Wolff, I. M. Freedberg, and K. F. Austen, eds.), pp. 473–486, McGraw Hill, New York.Google Scholar
  55. Clark, R. A. F., DellaPelle, P., Manseau, E., Lanigan, J. M., Dvorak, H. F., and Colvin, R. B., 1982a, Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing, J. Invest. Dermatol. 79:269–276.PubMedCrossRefGoogle Scholar
  56. Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982b, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reep-ithelialization, J. Invest. Dermatol. 70:264–269.CrossRefGoogle Scholar
  57. Clark, R. A. F., Quinn, J. H., Winn, H. J., Lanigan, J. M., DellaPelle, P., and Colvin, R. B., 1982c, Fibronectin is produced by blood vessels in response to injury, J. Exp. Med. 156:646–651.PubMedCrossRefGoogle Scholar
  58. Clark, R. A. F., Quinn, H. J., Winn, H. J., and Colvin, R. B., 1983, Fibronectin beneath reepithelializing epidermis in vivo: Sources and significance, J. Invest. Dermatol. 80(Suppl):26S–30S.CrossRefGoogle Scholar
  59. Clark, R. A. F., Folkvord, J. M., and Wertz, R. L., 1985, Fibronectin, as well as other extracellular matrix proteins, mediates human keratinocyte adherence, J. Invest. Dermatol. 84:378–383.PubMedCrossRefGoogle Scholar
  60. Clark, R. A. F., Folkvord, J. M., and Nielsen, L. D., 1986, Either exogenous or endogenous fibronectin can promote adherence of human endothelial cells, J. Cell Sci. 82:263–280.PubMedGoogle Scholar
  61. Clark, R. A. F., Wikner, N. E., Doherty, D. E., and Noms, D. A., 1988, Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120 kDa fibroblastic cell-binding fragment, J. Biol. Chem. 263:12115–12123.PubMedGoogle Scholar
  62. Clark, R. A. F., Folkvord, J. M., Hart, C. E., Murray, M. J., and McPherson, J. M., 1989, Platelet isoforms of platelet-derived growth factor stimulate fibroblasts to contract collagen matrices, J. Clin. Invest. 84:1036–140.PubMedCrossRefGoogle Scholar
  63. Clark, R. A. F., Nielsen, L. D., Welch, M. P., and McPherson, J. M., 1995a, Collagen matrices attenuate the collagen synthetic response of cultured fibroblasts to TGF-β, J. Cell Sci. 108:1251–1261.PubMedGoogle Scholar
  64. Clark, R. A. F., Tonnesen, M. G., Gailit, J., and Cheresh, D. A., 1995b, Transient functional expression of αvβ3 on vascular cells during wound repair, Am. J. Path., in press.Google Scholar
  65. Clore, J. N., Cohen, I. K., and Biegelmann, R. F., 1979, Quantitation of collagen type I and III during wound healing in rat skin, Proc. Soc. Exp. Biol. Med. 161:337–340.PubMedCrossRefGoogle Scholar
  66. Coffey, R. J., Derynck, R., Wilcox, J. N., Bringman, T. S., Goustin, A. S., Moses, H. L., and Pittelkow, M. R., 1987, Induction and autoinduction of TGF-α in human keratinocytes, Nature 328:817–820.PubMedCrossRefGoogle Scholar
  67. Cohen, I. K., Keiser, H. R., and Sjoerdsma, A., 1971, Collagen synthesis in human keloid and hypertrophic scar, Surg. Forum 22:488–489.PubMedGoogle Scholar
  68. Compton, C. C., Gill, J. M., Bradford, D. A., Regauer, S., Galico, C. G., and O’Conner, N. E., 1989, Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscope and immunohistochemical study, Lab. Invest. 60:600–612.PubMedGoogle Scholar
  69. Cotsarelis, G., Sun, T.-T., and Lavker, R. M., 1990, Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis, Cell 61:1329–1337.PubMedCrossRefGoogle Scholar
  70. Damsky, C. H., and Werb, Z., 1992, Signal transduction by integrin receptors for extracellular matrix: Cooperative processing of extracellular information, Curr. Opin. Cell Biol. 4:772–781.PubMedCrossRefGoogle Scholar
  71. Danielson, A., Raub, E., Lindahl, U., and Bjork, I., 1986, Role of ternary complexes, in which heparin binds both antithrombin and proteinase, in the aceceleration of the reactions between antithrombin and thrombin or factor Xa, J. Biol. Chem. 261:15467–15473.Google Scholar
  72. Davis, E. D., 1992, Affinity of integrins for damaged extracellular matrix: avb3 binds to denatured collagen type I through RGD sites, Biochem. Biophys. Res. Commun. 182:1025–1031.PubMedCrossRefGoogle Scholar
  73. Dejana, E., Vergara-Dauden, M., Balconi, G., Pietra, A., Cherel, G., Bonati, M. B., Larrieu, M. J., and Marguerie, G., 1984, Specific binding of human fibrinogen to cultured human fibroblasts. Evidence for the involvement of the E domain, Eur. J. Biochem. 139:657–662.PubMedCrossRefGoogle Scholar
  74. Derynck, R., 1988, Transforming growth factor-α, Cell 54:593–595.PubMedCrossRefGoogle Scholar
  75. Diegelmann, R. F., Rothkopf, L. C., and Cohen, I. K., 1975, Measurement of collagen biosynthesis during wound healing, J. Surg. Res. 19:239–243.PubMedCrossRefGoogle Scholar
  76. Dinarello, C. A., 1984, Interleukin-1 and the pathogenesis of the acute-phase response, N. Engl. J. Med. 311:1413–1418.PubMedCrossRefGoogle Scholar
  77. DiScipio, R. G., 1982, The activation of the alternative pathway C3 convertase by human plasma kallikrein, Immunology 45:587–595.PubMedGoogle Scholar
  78. Doherty, D. E., Haslet, C., Tonnesen, M. G., and Henson, P. M., 1987, Human monocyte adherence: A primary effect of chemotactic factors on the monocyte to stimulate adherence to human endothelium, J. Immunol. 138:1762–1771.PubMedGoogle Scholar
  79. Doherty, D. E., Henson, P. M., and Clark, R. A. F., 1990, Fibronectin fragments containing the RGDS cell-binding domain mediate monocyte migration into the rabbit lung, J. Clin. Invest. 86:1065–1075.PubMedCrossRefGoogle Scholar
  80. Du, X. P., Plow, E. F., Frelinger, A. L., O’Toole, T. E., Loftus, J. C., and Ginsberg, M. H., 1991, Ligands activate integrin αIIbβ3 (platelet GPIIb-IIIa), Cell 65:409–416.PubMedCrossRefGoogle Scholar
  81. Duncan, M. R., and Berman, B., 1985, Gamma interferon is the lymphokine and beta interferon the monokine responsible for inhibition of fibroblast collagen production and late but not early fibroblast proliferation, J. Exp. Med. 162:516–527.PubMedCrossRefGoogle Scholar
  82. Ehrlich, H. P., and White, B. S., 1981, The identification of A and B collagen chains in hypertrophie scars, Exp. Mol. Pathol. 34:1–8.PubMedCrossRefGoogle Scholar
  83. Elenius, K., Vainio, S., Laato, M., Salmivirta, M., Theslef, I., and Jalkanen, M., 1991, Induced expression of syndecan in healing wounds, J. Cell. Biol. 114:585–595.PubMedCrossRefGoogle Scholar
  84. Elsbach, P., and Weiss, J., 1992, Oxygen-independent antimicrobial systems of phagocytosis, in: Inflammation: Basic Principles and Clinical Correlates (J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 603–636, Raven Press, New York.Google Scholar
  85. Epstein, E. H. J., 1974, α1(III)3 human skin collagen. Release by pepsin digestion and preponderance in fetal life, J. Biol. Chem. 249:3225–3231.PubMedGoogle Scholar
  86. Fernandez, H. Å., Henson, P. M., Otani, A., and Hugli, T. E., 1978, Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under simulated in vivo conditions, J. Immunol. 120:109–115.PubMedGoogle Scholar
  87. Ffrench-Constant, K., Van De Water, L., Dvorak, H. F., and Hynes, R. O., 1989, Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat, J. Cell. Biol. 109:903–914.PubMedCrossRefGoogle Scholar
  88. Folkman, J., 1982, Angiogenesis: Initiation and control, Ann. NY Acad. Sci. 401:212–227.PubMedCrossRefGoogle Scholar
  89. Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors, Science 235:442–448.PubMedCrossRefGoogle Scholar
  90. Folkman, J., and Shing, T., 1992, Angiogenesis, J. Biol. Chem. 267:10931–10934.PubMedGoogle Scholar
  91. Frater-Schroder, M., Muller, G., Birchmeirer, W., and Bohlem, P., 1986, Transforming growth factor-beta inhibits endothelial cell proliferation, Biochem. Biophys. Res. Commun. 137:295–302.PubMedCrossRefGoogle Scholar
  92. Fujikawa, L. S., Footer, C. S., Gipson, I. K., and Colvin, R. B., 1984, Basement membrane components in healing rabbit corneal epithelial wounds: Immunofluorescence and ultrastructural studies, J. Cell Biol. 98:128–138.PubMedCrossRefGoogle Scholar
  93. Fukai, N., Apte, S. S., and Olsen, B. R., 1994, Nonfibrillar collagens, in: Extracellular Matrix Components (E. Ruoslahti and E. Engvall, eds.), pp. 3–28, Academic Press, San Diego, CA.CrossRefGoogle Scholar
  94. Fukuda, Y., Masuda, Y., Kishi, J. I., Hashimoto, Y., Hayakawa, T., Nogawa, H., and Nakanishi, Y., 1988, The role of interstitial collagens in cleft formation of mouse embryonic submandibular gland during initial branching, Development 103:259–268.PubMedGoogle Scholar
  95. Funk, S. E., and Sage, E. H., 1993, Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial cells and fibroblasts, J. Cell. Physiol. 154:53–63.PubMedCrossRefGoogle Scholar
  96. Furie, B., and Furie, B. C., 1988, The molecular basis of blood coagulation, Cell 53:505–518.PubMedCrossRefGoogle Scholar
  97. Furie, M. B., and Rifkin, D. B., 1980, Proteolytically derived fragments of human plasma fibronectin and their localization within intact molecule, J. Biol. Chem. 365:3134–3140.Google Scholar
  98. Gabbiani, G., Hirschel, B. J., Ryan, G. B., Statkov, P. R., and Majno, G., 1972, Granulation tissue as a contractile organ. A study of structure and function, J. Exp. Med. 135:719–734.PubMedCrossRefGoogle Scholar
  99. Gabbiani, G., Lelous, M., Bailey, A. J., and Delauney, A., 1976, Collagen and myofibroblasts of granulation tissue. A chemical, ultrastructural and immunologic study, Virchows Arch. B Cell Pathol. 21:133–145.PubMedGoogle Scholar
  100. Gabbiani, G., Chapponnier, C., and Huttner, I., 1978, Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing, J. Cell Biol. 76:561–568.PubMedCrossRefGoogle Scholar
  101. Gailit, J., Pierschbacher, M., and Clark, R. A. F., 1993, Expression of functional α4 integrin by human dermal fibroblasts, J. Invest. Dermatol., in press.Google Scholar
  102. Gailit, J., Welch, M. P., and Clark, R. A. F., 1994, TGF-β1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds, J. Invest. Dermatol. 103:221–227.PubMedCrossRefGoogle Scholar
  103. Gailit, J., Bueller, H., and Clark, R., 1995, Platelet-derived growth factor and inflammatory cytokines have differential effects on the expression of integrins α1β1 and α5β1 by human dermal fibroblasts, J. Invest. Dermatol., in press.Google Scholar
  104. Garcia-Pardo, A., Pearlstein, E., and Frangione, B., 1985, Primary structure of human plasma fibronectin. Characterization of a 31,000 dalton fragment from the COOH-terminal region containing a free sulf-hydryl group and a fibrin binding site, J. Biol. Chem. 260:10320–10325.PubMedGoogle Scholar
  105. Ghebrehiwet, B., Silverberg, M., and Kaplan, A. P., 1981, Activation of classic pathway of complement by Hageman factor fragment, J. Exp. Med. 153:665–676.PubMedCrossRefGoogle Scholar
  106. Giancotti, F. G., and Ruoslahti, E., 1990, Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells, Cell 60:849–859.PubMedCrossRefGoogle Scholar
  107. Ginsberg, M. H., Loftus, J. C., and Plow, E. F., 1988, Cytoadhesins, integrins, and platelets, Thromb. Haemost. 59:1–6.PubMedGoogle Scholar
  108. Ginsberg, M. H., Du, X., and Plow, E. F., 1992, Inside-out integrin signalling, Curr. Opin. Cell Biol. 4:766–771.PubMedCrossRefGoogle Scholar
  109. Gipson, I. K., Spurr-Michaud, S. J., and Tisdale, A. S., 1988, Hemidesmosomes and anchoring fibril collagen apperar synchronously during development and wound healing, Dev. Biol. 126:253–262.PubMedCrossRefGoogle Scholar
  110. Gitay-Goren, H., Soker, S., Vlodavsky, I., and Neufeld, G., 1992, The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules, J. Biol. Chem. 267:6093–6098.PubMedGoogle Scholar
  111. Glaser, B. M., D’Amore, P. A., Seppa, H., Seppa, S., and Schiffmann, E., 1980, Adult tissues contain chemoattractants for vascular endothelial cells, Nature 288:483–484.PubMedCrossRefGoogle Scholar
  112. Goldstein, L. A., Zhou, D. F. H., Picker, L. J., Minty, C. N., Bargatze, R. F., Ding, J. F., and Butcher, E. C., 1989, A human lymphocyte homing receptor, the Hermes antigen, is related to cartilage proteoglycan core and link proteins, Cell 56:1063–1072.PubMedCrossRefGoogle Scholar
  113. Granstein, R. D., Murphy, G. F., Margolis, R. J., Byrne, M. H., and Amento, E. P., 1987, Gamma interferon inhibits collagen synthesis in vivo in the mouse, J. Clin. Invest. 79:1254–1258.PubMedCrossRefGoogle Scholar
  114. Grant, G. A., Eisen, A. Z., Manner, B. L., Roswit, W. T., and Goldberg, G. I., 1987, The activation of human skin fibroblast procollagenase. Sequence identification of the major conversion products, J. Biol. Chem. 262:5886–5889.PubMedGoogle Scholar
  115. Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., and Ross, R., 1990, PDGF and FGF stimulate wound healing in the genetically diabetic mouse, Am. J. Pathol. 136:1235–1246.PubMedGoogle Scholar
  116. Grimwood, R. E., Baskin, J. B., Nielsen, L. D., Ferris, C. F., and Clark, R. A. F., 1988, Fibronectin extracellular matrix assembly by human epidermal cells implanted into athymic mice, J. Invest. Dermatol. 90:434–440.PubMedCrossRefGoogle Scholar
  117. Grinnell, F., 1994, Fibroblasts, myofibroblasts, and wound contraction, J. Cell. Biol. 124:401–404.PubMedCrossRefGoogle Scholar
  118. Grinnell, F., and Feld, M. K., 1979, Initial adhesion of human fibroblasts in serum-free medium: Possible role of secreted fibronectin, Cell 17:117–129.PubMedCrossRefGoogle Scholar
  119. Grinnell, F., Feld, M., and Minter, D., 1980, Fibroblast adhesion to fibrinogen and fibrin substrata: Requirement for cold-insoluble globulin (plasma fibronectin), Cell 19:517–525.PubMedCrossRefGoogle Scholar
  120. Grinnell, F., Billingham, R. E., and Burgess, L., 1981, Distribution of fibronectin during wound healing in vivo, J. Invest. Dermatol. 76:181–189.PubMedCrossRefGoogle Scholar
  121. Grondahl-Hansen, J., Lund, L. R., Ralfkiaer, E., Ottevanger, V., and Dano, K., 1988, Urokinase-and tissuetype plasminogen activators in keratinocytes during wound reepithelilaization in vivo, J. Invest. Dermatol. 90:790–795.PubMedCrossRefGoogle Scholar
  122. Grotendorst, G. R., Soma, Y., Takehara, K., et al., 1989, EGF and TGF-alpha are potent chemoattractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration, J. Cell Physiol. 139:617–623.PubMedCrossRefGoogle Scholar
  123. Gruber, B. L., Marchese, M. J., Suzuki, K., Schwartz, L. B., Okada, Y., Nagase, H., and Ramamurthy, N. S., 1989, Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation, J. Clin. Invest. 84:1657–1662.PubMedCrossRefGoogle Scholar
  124. Gruskin-Lerner, L. S., and Trinkaus-Randall, V., 1991, Localization of integrin and syndecan in vivo in a corneal epithelial abrasion and keratectomy, Curr. Eye Res. 10:75–85.CrossRefGoogle Scholar
  125. Guimond, S., Maccarana, M., Olwin, B. B., Lindahl, U., and Rapraeger, A. C., 1993, Activating and inhibitory heparin sequences for FGF-2 (basic FGF): Distinct requirements for FGF-1, FGF-2 and FGF-4, J. Biol. Chem. 268:23906–23914.PubMedGoogle Scholar
  126. Hajjar, K., Jacovina, A., and Chacko, J., 1994, An endothelial cell receptor for plasminogen and tissue plasminogen activator: Identity with annexin II, J. Biol. Chem. 269:21191–21197.PubMedGoogle Scholar
  127. Hardwick, C., Hoare, K., Owens, R., Holn, H. P., Hook, M., Moore, D., Cripps, V., Austen, L., Nance, D. M., and Turley, E. A., 1992, Molecular cloning of a novel hyaluron receptor that mediates tumor cell motility, J. Cell Biol. 117:1343.Google Scholar
  128. Harris, A. K., Wild, P., and Stopak, S., 1980, Silicone rubber substrata: A new wrinkle in the study of cell locomotion, Science 208:177–179.PubMedCrossRefGoogle Scholar
  129. Hasty, K. A., Hibbs, M. S., Seyer, J. M., Mainardi, C. L., and Kang, A. H., 1986, Secreted forms of human neutrophil collagenase, J. Biol Chem. 261:5645–5650.PubMedGoogle Scholar
  130. Hay, E. D., 1991, Collagen and other matrix glycoproteins in embryogenesis, in: Cell Biology of the Extracellular Matrix (E. D. Hay, ed.), pp. 419–462, Plenum Press, New York.CrossRefGoogle Scholar
  131. Hebda, P. A., 1988, Stimulatory effects of transforming growth factor-beta and epidermal growth factor on epidermal cell outgrowth from porcine skin expiant cultures, J. Invest. Dermatol. 91:440–445.PubMedCrossRefGoogle Scholar
  132. Hebda, P. A., Klingbeil, C. K., Abraham, J. A., and Fiddes, J. C., 1990, Basic fibroblast growth factor stimulation of epidermal wound healing in pigs, J. Invest. Dermatol. 95:626–631.PubMedCrossRefGoogle Scholar
  133. Heimark, R. L., and Schwartz, S. M., 1988, The role of cell-cell interaction in the regulation of endothelial cell growth, in: Molecular and Cellular Biology of Wound Repair (R. A. F. Clark and P. M. Henson, eds.), pp. 359–371, Plenum Press, New York.CrossRefGoogle Scholar
  134. Heimark, R. L., Twardzik, D. R.S. S., 1986, Inhibition of endothelial cell regeneration by type-β transforming growth factor from platelets, Science 233:1078–1080.PubMedCrossRefGoogle Scholar
  135. Heino, J., Ignotz, R. A., Hemler, M. E., Crouse, C., and Massague, J., 1989, Regulation of cell adhesion receptors by transforming growth factor-β. Concomitant regulation of integrins that share a common β1 subunit, J. Biol. Chem. 264:380–388.PubMedGoogle Scholar
  136. Hennings, H., Michael, D., Cheng, D., Steinert, P., Holbrook, K., and Yuspa, S. H., 1980, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19:245–254.PubMedCrossRefGoogle Scholar
  137. Herbst, T. J., McCarthy, J. B., Tsilibary, E. C., and Furcht, L. T., 1988, Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration, J. Cell Biol. 106:1365–1373.PubMedCrossRefGoogle Scholar
  138. Hering, T. M., Marchant, R. E., and Anderson, J. M., 1983, Type V collagen during granulation tissue development, Exp. Mol. Pathol. 39:219–229.PubMedCrossRefGoogle Scholar
  139. Hibbs, M. S., Hoidal, J. R., and Kang, A. H., 1987, Expression of a metallo-proteinase that degrades native type V collagen and denatured collagens by cultured human alveolar macorophages, J. Clin. Invest. 80:1644–1650.PubMedCrossRefGoogle Scholar
  140. Higashiyama, S., Abraham, J. A., Miller, J., Fiddes, F. C., and Klagsbrun, M., 1991, A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF, Science 251:936–939.PubMedCrossRefGoogle Scholar
  141. Hocking, D. C., Sottile, J., and McKeown-Longo, P. J., 1994, Fibronectin’s III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin, J. Biol. Chem. 269:19183–19187.PubMedGoogle Scholar
  142. Holund, B., Clemmensen, I., Junke, R. P., and Lyon, H., 1982, Fibronectin in experimental granulation tissue, Acta Pathol. Microbiol. Immunol. Scand. 90:159–165.Google Scholar
  143. Hopwood, J. J., and Dorfman, A., 1977, Glycosaminoglycan synthesis by cultured human skin fibroblasts after transformation with simian virus 40, J. Biol. Chem. 252:4777–4785.PubMedGoogle Scholar
  144. Hsieh, P., and Chen, L. B., 1983, Behavior of cells seeded on isolated fibronectin matrices, J. Cell Biol. 96:1208–1217.PubMedCrossRefGoogle Scholar
  145. Huhtala, P., Humphries, M. J., McCarthy, J. B., Tremble, P. M., Werb, Z., and Damsky, C. H., 1995, α4β1 and α5β1 play differential roles in metalloproteinase induction, J. Cell Biol. 129:867–879.PubMedCrossRefGoogle Scholar
  146. Hunt, T. K., 1980, Wound Healing and Wound Infection: Theory and Surgical Practice, Appleton-Century-Crofts, New York.Google Scholar
  147. Hynes, R. O., 1992, Integrins: Versatility, modulation, and signaling in cell adhesion, Cell 69:11–25.PubMedCrossRefGoogle Scholar
  148. Ignatius, M. J., Large, T. H., Houde, M., Tawil, J. W., Barton, A., Esch, F., Carbonetto, S., and Reichardt, L. F., 1990, Molecular cloning of the rate integrin α1-subunit: A receptor for laminin and collagen, J. Cell Biol. 111:709–720.PubMedCrossRefGoogle Scholar
  149. Ignotz, R. A., and Massague, J., 1986, Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into extracellular matrix, J. Biol. Chem. 261:4337–4340.PubMedGoogle Scholar
  150. Iruela-Arispe, M., and Sage, H., 1993, Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-β1, J. Cell Biochem. 52:414–430.PubMedCrossRefGoogle Scholar
  151. Jackson, A., Friedman, S., Zhan, X., Engleka, K., Forough, R., and Maciag, T., 1992, Heat shock induces the release of FGF1 from NIH 3T3 cells, Proc. Natl. Acad. Sci. USA 89:10691–10695.PubMedCrossRefGoogle Scholar
  152. Juliano, R. L., and Haskill, S., 1992, Signal transduction from the extracellular matrix, J. Cell Biol. 120:577–585.CrossRefGoogle Scholar
  153. Kalebic, T., Garbisa, S., Glaser, B., and Liotta, L. A., 1983, Basement membrane collagen: Degradation by migrating endothelial cells, Science 221:281–283.PubMedCrossRefGoogle Scholar
  154. Kaminski, M., and McDonagh, J., 1983, Studies on the mechanism of thrombin interaction with fibrin, J. Biol. Chem. 258:10530–10535.PubMedGoogle Scholar
  155. Katz, M. H.F.A. A., Kirsner, R. S., Eaglstein, W. H., and Falanga, V., 1991, Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth, J. Am. Acad. Dermatol. 25:1054–1058.PubMedCrossRefGoogle Scholar
  156. Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Connolly, D. T., 1989, Vascular permeability factor, an endothelial cell mitogen related to PDGF, Science 246:1309–1313.PubMedCrossRefGoogle Scholar
  157. Keene, D. R., Engvall, E., and Glanvill, R. W., 1988, Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network, J. Cell Biol. 107:1995–2006.PubMedCrossRefGoogle Scholar
  158. Kinsella, M. G., and Wight, T. N., 1986, Modulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration, J. Cell Biol. 102:679–687.PubMedCrossRefGoogle Scholar
  159. Kischer, C. W., and Shetlar, M. R., 1974, Collagen and mucopolysaccharides in the hypertrophic scar, Connect. Tissue Res. 2:205–213.PubMedCrossRefGoogle Scholar
  160. Klebanoff, S. J., 1992, Oxygen metabolites from phagocytes, in: Inflammation: Basic Principles and Clinical Correlates (J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 541–601, Raven Press, New York.Google Scholar
  161. Klein, C. E., Dressel, D., Steinmayer, T., Mauch, C., Eckes, B., Krieg, T., Bankert, R. B., and Werber, L., 1991, Integrin α2β1 is up-regulated in fibroblasts and highly aggressive melanoma cells in three dimensional collagen lattices and mediates the reorganization of collagen I fibrils, J. Cell Biol. 115:1427–1436.PubMedCrossRefGoogle Scholar
  162. Knighton, D. R., Hunt, T. K., Scheuenstuhl, H., Halliday, B. J., Werb, Z., and Banda, M. J., 1983, Oxygen tension regulates the expression of angiogenesis factor by macrophages, Science 221:1283–1285.PubMedCrossRefGoogle Scholar
  163. Knox, P., Crooks, S., and Rimmer, C. S., 1986, Role of fibronectin in the migration of fibroblasts into plasma clots, J. Cell Biol. 102:2318–2323.PubMedCrossRefGoogle Scholar
  164. Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Einer, V. M., Einer, S. G., and Strieter, R. M., 1992, Interleukin-8 as a macrophage-derived mediator of angiogenesis, Science 258:1798–1801.PubMedCrossRefGoogle Scholar
  165. Kojima, T., Leone, C., Marchildon, G. A., Marcum, J. A., and Rosenberg, R. D., 1992, Isolation and characterization of heparan sulfate proteoglycans produced by cloned rat microvascular endothelial cells, J. Biol. Chem. 267:4859–4869.PubMedGoogle Scholar
  166. Kraemer, P. M., and Tobey, R. A., 1972, Cell-cycle-dependent desquamation of heparan sulfate from the cell surface, J. Cell Biol. 55:713–717.PubMedCrossRefGoogle Scholar
  167. Krawczyk, W. S., 1971, A pattern of epidermal cell migration during wound healing, J. Cell Biol. 49:247–263.PubMedCrossRefGoogle Scholar
  168. Krawczyk, W. S., and Wilgram, G. F., 1973, Hemidesmosome and desmosome morphogenesis during epidermal wound healing, J. Ultrastruct. Res. 45:93–101.PubMedCrossRefGoogle Scholar
  169. Kubota, Y., Kleinman, H. K., Martin, G. R., and Lawley, T. J., 1988, Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures, J. Cell Biol. 107:1589–1598.PubMedCrossRefGoogle Scholar
  170. Kurkinen, M., Vaheri, A., Roberts, P. J., and Stenman, S., 1980, Sequential appearance of fibronectin and collagen in experimental granulation tissue, Lab. Invest. 43:47–51.PubMedGoogle Scholar
  171. Laiho, M., Saksela, O., and Keski-Oja, J., 1986, Transforming growth factor β alters plasminogen activator activity in human skin fibroblasts, Exp. Cell Res. 164:399–407.PubMedCrossRefGoogle Scholar
  172. Lane, T. F., Iruela-Arispe, M. L., Johnson, R. S., and Sage, E. H., 1994, SPARC is a source of copper-binding peptides that stimulate angiogenesis, J. Cell Biol. 125:929–943.PubMedCrossRefGoogle Scholar
  173. Lanir, N., Ciano, P. S., Van de Water, L., McDonagh, J., Dvorak, A. M., and Dvorak, H. F., 1988, Macrophage migration in fibrin gel matrices II. Effects of clotting factor XIII, fibronectin, and gly-cosaminoglycan content on cell migration, J. Immunol. 140:2340–2349.PubMedGoogle Scholar
  174. Larjava, H., Salo, T., Haapasalmi, K., Kramer, R. H., and Heino, J., 1993, Expression of integrins and basement membrane components by wound keratinocytes, J. Clin. Invest. 92:1425–1435.PubMedCrossRefGoogle Scholar
  175. Lark, M. W., Laterra, J., and Culp, L. A., 1985, Close and focal contact adhesions of fibroblasts to a fibronectin-containing matrix, Fed. Proc. 44:394–403.PubMedGoogle Scholar
  176. Lawrence, W. T., Sporn, M. B., Gorschbath, C., North, J. A., and Grotendorst, G., 1986, The reversal of an adriamycin induced healing impairment with chemoattractants and growth factors, Ann. Surg. 203:142–147.PubMedCrossRefGoogle Scholar
  177. Leavesley, D. I., Schwartz, M. A., Rosenfeld, M., and Cheresh, D. A., 1993, Integrin β1-and β3-mediated endothelial cell migration is triggered through distinct signaling mechanisms, J. Cell Biol. 121:163–170.PubMedCrossRefGoogle Scholar
  178. Leibovich, S. J., and Ross, R., 1975, The role of the macrophage in wound repair: A study with hydrocortisone and antimacrophage serum, Am. J. Pathol. 78:71–100.PubMedGoogle Scholar
  179. Lembach, K. J., 1976, Enhanced synthesis and extracellular accumulation of hyaluronic acid during stimulation of quiescent human fibroblasts by mouse epidermal growth factor, J. Cell. Physiol. 89:277–288.PubMedCrossRefGoogle Scholar
  180. Levenson, S. M., Geever, E. F., Crowley, L. V., Oates, J. R B., Berard, C. W., and Rosen, H., 1965, The healing of rat skin wounds, Ann. Surg. 161:293–308.PubMedCrossRefGoogle Scholar
  181. Lin, C. Q., and Bissell, M. J., 1993, Multi-faceted regulation of cell differentiation by extracellular matrix, FASEB J. 7:737–743.PubMedGoogle Scholar
  182. Linsenmayer, T. F., 1991, Collagen, in: Cell Biology of Extracellular Matrix, 2nd ed. (E. D. Hay, ed.), pp. 7–44, Plenum Press, New York.CrossRefGoogle Scholar
  183. Liu, C. Y., Nossel, H. L., and Kaplan, K. L., 1979, The binding of thrombin by fibrin, J. Biol. Chem. 254:10421–10426.PubMedGoogle Scholar
  184. Loedam, J. A., Meijers, J. C. M., Sixma, J. J., and Bouma, B. N., 1988, Inactivation of human factor VIII by activated protein C: Cofactor activity of protein S and protective effect of von Willebrand factor, J. Clin. Invest. 82:1236–1243.CrossRefGoogle Scholar
  185. Loef, E. B., Proper, J. A., Goustin, A. S., Shipley, G. D., DiCorleto, P. E., and Moses, H. L., 1986, Induction of c-sis RNA and activity similar to platelet-derived growth factor by transforming growth factor-β: A proposed model for indirect mitogenesis involving autocrine activity, Proc. Natl. Acad. Sci. USA 83:2453–2457.CrossRefGoogle Scholar
  186. Longaker, M. T., Chiu, E., Adzick, N. S., Stern, M., Harrison, M., and Stern, R., 1991, Studies in fetal wound healing V. Prolonged presence of hyaluraonic acid in fetal wound fluid, Ann. Surg. 213:290–296.CrossRefGoogle Scholar
  187. Loskutoff, D. J., and Edgington, T. S., 1977, Synthesis of a fibrinolytic activator and inhibitor by endothelial cells, Proc. Natl. Acad. Sci. USA 74:3903–3907.PubMedCrossRefGoogle Scholar
  188. Lynch, S. E., Colvin, R. B., and Antoniades, H. N., 1989, Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wounds, J. Clin. Invest. 84:640–646.PubMedCrossRefGoogle Scholar
  189. Mackie, E. J., Halfter, W., and Liverani, D., 1988, Induction of tenascin in healing wounds, J. Cell Biol. 107:2757–2767.PubMedCrossRefGoogle Scholar
  190. Madri, J. A., and Stenn, K. S., 1982, Aortic endothelial cell migration. I. Matrix requirements and composition, Am. J. Pathol. 106:180–186.PubMedGoogle Scholar
  191. Madri, J. A., Pratt, B. M., and Tucker, A. M., 1988, Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix, J. Cell Biol. 156:1375–1385.CrossRefGoogle Scholar
  192. Madri, J. A., Reidy, M. A., Kocher, O., and Bell, L., 1989, Endothelial cell behavior after denudation injury is modulated by transforming growth factor-β1 and fibronectin, Lab. Invest. 60:755–765.PubMedGoogle Scholar
  193. Madtes, D. K., Raines, E. W., Sakariassen, K. S., Assoian, R. K., Sporn, M. B., Bell, G. I., and Ross, R., 1988, Induction of transforming growth factor-α in activated human alveolar macrophages, Cell 53:285–293.PubMedCrossRefGoogle Scholar
  194. Magnatti, P., Tsuboi, R., Robbins, E., and Rifkin, D. B., 1989, In vitro angiogenesis on the human amniotic membrane: Requirement for basic fibroblast growth factor-induced proteinases, J. Cell Biol. 108:671–682.CrossRefGoogle Scholar
  195. Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G. B., and Statkov, P. R., 1971, Contraction of granulation tissue in vitro: Similarity to smooth muscle, Science 173:548–550.PubMedCrossRefGoogle Scholar
  196. Mansbridge, J. N., and Knapp, A. M., 1987, Changes in keratinocyte maturation during wound healing, J. Invest. Dermatol. 89:253–263.PubMedCrossRefGoogle Scholar
  197. Matsuoka, J., and Grotendorst, G. R., 1989, Two peptides related to platelet-derived growth factor are present in human wound fluid, Proc. Natl. Acad. Sci. USA 86:4416–4420.PubMedCrossRefGoogle Scholar
  198. Mauch, C., Hatamochi, A., Scharffetter, K., and Krieg, T., 1988, Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel, Exp. Cell Res. 178:493–530.PubMedCrossRefGoogle Scholar
  199. McCaffrey, T. A., Falconed, D. J., and Dud, B., 1992, Transforming growth factor-β1 is a heparin-binding protein: Identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-β1, J. Cell. Physiol. 152:430–440.PubMedCrossRefGoogle Scholar
  200. McCarthy, K., and Henson, P. M., 1979, Induction of lysosomal enzyme secretion by macrophages in response to the purified complement fragments C5a and C5a des Arg, J. Immunol. 123:2511–2517.PubMedGoogle Scholar
  201. McDonald, J. A., and Kelley, D. G., 1980, Degradation of fibronectin by human leukocyte elastase, J. Biol. Chem. 255:8848–8858.PubMedGoogle Scholar
  202. McDonald, J. A., Kelley, D. G., and Broekelmann, T. J., 1982, Role of fibronectin in collagen deposition: Fab1 antibodies to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix, J. Cell Biol. 92:485–492.PubMedCrossRefGoogle Scholar
  203. McDonald, J. A., Quade, B. J., Broekelmann, T. J., LaChane, R., Forsman, K., Hasegawa, E., and Akiyama, S., 1987, Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in the assembly into fibroblast pericellular matrix, J. Biol. Chem. 262:2957–2967.PubMedGoogle Scholar
  204. McPherson, J. M., Sawamura, S., Condell, R. A., Rhee, W., and Wallace, D. G., 1988, The effects of heparin on the physicochemical properties of reconstituted collagen, Collagen Rel. Res. 8:65–82.CrossRefGoogle Scholar
  205. Merenmies, J., and Rauvala, G., 1990, Molecular cloning of the 18-kDa growth-associated protein of developing brain, J. Biol. Chem. 265:16721–16724.PubMedGoogle Scholar
  206. Messadi, D. V., and Bertolami, C. N., 1993, CD44 and hyaluronan expression in human cutaneous scar fibroblasts, Am. J. Pathol. 142:1041–1049.PubMedGoogle Scholar
  207. Moncada, S., Gryglewski, R., Bunting, S., and Vane, J. R., 1976, An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature 263:663–665.PubMedCrossRefGoogle Scholar
  208. Morla, A., and Ruoslahti, E., 1992, A fibronectin self-assembly site involved in fibronectin matrix assembly: Reconstruction in a synthetic peptide, J. Cell Biol. 118:421–429.PubMedCrossRefGoogle Scholar
  209. Moscatelli, D., and Rubin, H., 1975, Increased hyaluronic acid production on stimulation of DNA synthesis in chick embryo fibroblasts, Nature 254:65–66.PubMedCrossRefGoogle Scholar
  210. Mosesson, M. W., and Umfleet, R., 1970, The cold insoluble globulin of human plasma. I. Purification, primary characterization, and relationship to fibrinogen and other cold insoluble fraction components, J. Biol. Chem. 245:5726–5736.Google Scholar
  211. Mosher, D. F., and Johnson, R. B., 1983, Specificity of fibronectin-fibrin cross-linking, Ann. NY Acad. Sci. 408:583–594.PubMedCrossRefGoogle Scholar
  212. Mosher, D. F., Sottile, J., Wu, C., and McDonald, J. A., 1992, Assembly of extracellular matrix, Curr. Opin. Cell Biol. 4:810–818.PubMedCrossRefGoogle Scholar
  213. Muller-Eberhard, H. J., 1992, Complement: Chemistry and pathways, in: Inflammation: Basic Principles and Clinical Correlates (J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 33–61, Raven Press, New York.Google Scholar
  214. Muller-Esterl, N., 1989, Kininogens, kinins and kinships, Thromb. Haemost. 62:2–6.Google Scholar
  215. Mustoe, T. A., Pierce, G. F., Morishima, C., and Deuel, T. F., 1991, Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model, J. Clin. Invest. 87:694–703.PubMedCrossRefGoogle Scholar
  216. Nathan, C., and Sporn, M., 1991, Cytokines in context, J. Cell Biol. 113:981–986.PubMedCrossRefGoogle Scholar
  217. Newman, S. L., Henson, J. E., and Henson, P. M., 1982, Phagocytosis of senescent neutrophils by human monocyte derived macrophages and rabbit inflammatory macrophages, J. Exp. Med. 156:430–442.PubMedCrossRefGoogle Scholar
  218. Nickoloff, B. J., Mitra, R. S., Riser, B. L., Dixit, V. M., and Varani, J., 1988, A modulation of keratinocyte motility. Correlation with production of extracelluar matrix molecules in response to growth promoting and anti-proliferative factors, Am. J. Pathol. 132:543–551.PubMedGoogle Scholar
  219. O’Keefe, E. J. Payne R. E., Jr., Russell, N., and Woodley, D. T., 1985, Spreading and enhanced motility of human keratinocytes on fibronectin, J. Invest. Dermatol. 85:125–130.PubMedCrossRefGoogle Scholar
  220. O’Keefe, E. J., Chiu, M. L., and Payne, R. E., 1988, Stimulation of growth of keratinocytes by basic fibroblast growth factor, J. Invest. Dermatol. 90:767–769.PubMedCrossRefGoogle Scholar
  221. Odland, G., and Ross, R., 1968, Human wound repair. I. Epidermal regeneration, J. Cell Biol. 39:135–157.PubMedCrossRefGoogle Scholar
  222. Okada, Y., Konomi, H., Yada, T., Kimata, K., and Nagase, H., 1989, Degradation of type IX collagen by matrix metalloproteinase 3 (stromelysin) from human rheumatoid synovial cells, FEBS Lett. 244:473–476.PubMedCrossRefGoogle Scholar
  223. Oono, T., Specks, U., Eckes, B., Majewski, S., Hunzelmann, N., Timpl, R., and Krieg, T., 1993, Expression of type VI collagen mRNA during wound healing, J. Invest. Dermatol. 100:329–334.PubMedCrossRefGoogle Scholar
  224. Oppenheimer, C. L., Pessin, J. E., Massague, J., Gitomer, W., and Czech, M. P., 1983, Insulin action rapidly modulates the apparent affinity of the insulin-like growth factor II receptor, J. Biol. Chem. 258:4824–4830.PubMedGoogle Scholar
  225. Overall, C. M., Wrana, J. I., and Sodek, J., 1989, Independent regulation of collagenase, 72 kD progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-β, J. Biol. Chem. 264:1860–1869.PubMedGoogle Scholar
  226. Pardes, J. B., Takagi, H., Martin, T. A., Ochoa, M. S., and Falanga, V., 1995, Decreased levels of alpha 1(I) procollagen mRNA in dermal fibroblasts grown of fibrin gels and in response to fibrinopeptide B, J. Cell. Physiol. 162:9–14.PubMedCrossRefGoogle Scholar
  227. Perm, J.-P., Bonnet, F., Mailet, P., and Jolies, P., 1988, Characterization and N-terminal sequence of human platelet proteoglycan, Biochem. J. 255:1007–1013.Google Scholar
  228. Petersen, M. J., Woodley, D. T., Stricklin, G. P., and O’Keefe, E. J., 1990, Enhanced synthesis of collagenase by human keratinocytes cultured on type I or type IV collagen, J. Invest. Dermatol. 94:341–346.PubMedCrossRefGoogle Scholar
  229. Pfaff, M., Aumailley, M., Specks, U., Knolle, J., Zerwes, H. G., and Timpl, R., 1993, Integrin and Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI, Exp. Cell Res. 206(1):167–176.PubMedCrossRefGoogle Scholar
  230. Pierce, G. F., Mustoe, T. A., Lingelbach, J., Masakowski, V. R., Griffin, G. L., Senior, R. M., and Deuel, T. F., 1989, Platelet-derived growth factor and transforming growth factor-β enhance tissue repair activities by unique mechanisms, J. Cell Biol. 109:429–440.PubMedCrossRefGoogle Scholar
  231. Pierce, G. F., Mustoe, T. A., Altrock, B., Deuel, T. F., and Thomas, A., 1991, Role of platelet-derived growth factor in wound healing, J. Cell. Biochem. 45:319–326.PubMedCrossRefGoogle Scholar
  232. Pommier, C. G., Inada, S., Fried, L. F., et al., 1983, Plama fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes, J. Exp. Med. 157:1844–1854.PubMedCrossRefGoogle Scholar
  233. Postlethwaite, A. E., and Kang, A. H., 1976, Collagen and collagen peptide-induced chemotaxis of human blood monocytes, J. Exp. Med. 143:1299–1307.PubMedCrossRefGoogle Scholar
  234. Postlethwaite, A. E., and Seyer, J. M., 1991, Fibroblast chemotaxis induction by human recombinant interleukin-4: Identification by synthetic peptide analysis of two chemotactic domains residing in amino acid sequences 70–88 and 89–122, J. Clin. Invest. 87:2147–2152.PubMedCrossRefGoogle Scholar
  235. Postlethwaite, A. E., Seyer, J. M., and Kang, A. H., 1978, Chemotactic attraction of human fibroblast to type I, II, and III collagens and collagen-derived peptides, Proc. Natl. Acad. Sci. USA 75:871–875.PubMedCrossRefGoogle Scholar
  236. Postlethwaite, A. E., Snyderman, R., and Kang, A. H., 1979, Generation of a fibroblast chemotactic factor in serum by activation of complement, J. Clin. Invest. 64:1379–1385.PubMedCrossRefGoogle Scholar
  237. Postlethwaite, A. E., Keski-Oja, J., Balian, G., and Kang, A., 1981, Induction of fibroblast chemotaxis by fibronectin. Location of the chemotactic region to a 140,000 molecular weight nongelatin binding fragment, J. Exp. Med. 153:494–499.PubMedCrossRefGoogle Scholar
  238. Postlethwaite, A. E., Keski-Oja, J., Moses, H. L., and Kang, A. H., 1987, Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor-β, J. Exp. Med. 165:251–256.PubMedCrossRefGoogle Scholar
  239. Postlethwaite, A. E., Holness, M. A., Katai, H., and Raghow, R., 1992, Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4, J. Clin. Invest. 90:1479–1485.PubMedCrossRefGoogle Scholar
  240. Prehm, P., 1983, Synthesis of hyaluronate in differentiated teratocarcinoma cells: Mechanism of chain growth, Biochem. J. 211:191–198.PubMedGoogle Scholar
  241. Preissner, K. T., and Jenne, D., 1991, Vitronectins. A new molecular connection in haemostasis, Thromb. Haemost. 66:189–194.PubMedGoogle Scholar
  242. Raines, E. W., Dower, S. K., and Ross, R., 1989, Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDFG-AA, Science 243:393–396.PubMedCrossRefGoogle Scholar
  243. Rappolee, D. A., Mark, D., Banda, M. J., and Werb, Z., 1988, Wound macrophages express TGF-α and other growth factors in vivo: Analysis by mRNA phenotyping, Science 241:708–712.PubMedCrossRefGoogle Scholar
  244. Reich-Slotky, R., Bonneh-Barkay, D., Shaoul, E., Bluma, B., Svahn, C. M., and Ron, D., 1994, Differential effect of cell-associated heparan sulfates on the binding of keratinocyte growth factor (KGF) and acidic fibroblast growth factor to the KGH receptor, J. Biol. Chem. 269:32279–32285.PubMedGoogle Scholar
  245. Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, M. S., Heine, U. F., Liotta, L., Falanga, V., Kehrl, J. H., and Fauci, A. S., 1986, Transforming growth factor beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation, Proc. Natl. Acad. Sci. USA 83:4167–4171.PubMedCrossRefGoogle Scholar
  246. Roberts, R., Gallagher, J., Spooncer, E., Allen, R. D., Bloomfield, F., and Dexter, R. M., 1988, Heparan sulphate bound growth factors: A mechanism for stromal cell mediated haemopoiesis, Nature 332:376–378.PubMedCrossRefGoogle Scholar
  247. Ross, R. R., and Raines, E. W., 1990, Platelet-derived growth factor and cell proliferation, in: Growth Factors: From Genes to Clinical Application (V. R. Sara et al., eds.), pp. 193–199, Raven Press, New York.Google Scholar
  248. Ruggeri, Z. M., 1993, von Willebrand factor and fibrinogen, Curr. Opin. Cell Biol. 5:898–906.PubMedCrossRefGoogle Scholar
  249. Ruoslahti, E., 1991, Integrins, J. Clin. Invest. 87:1–5.PubMedCrossRefGoogle Scholar
  250. Ruoss, S. J., Hartmann, T., and Caughey, G. H., 1991, Mast cell tryptase is a mitogen for cultured fibroblasts, J. Clin. Invest. 88:493–499.PubMedCrossRefGoogle Scholar
  251. Saarialho-Kere, U. K., Chang, E. S., Welgus, H. G., and Parks, W. C., 1992, Distinct localization of collagenase and tissue inhibitor of metalloproteinases expression in wound healing associated with ulcerative pyogenic granuloma, J. Clin. Invest. 90:1952–1957.PubMedCrossRefGoogle Scholar
  252. Sakai, L., Keene, D. R., Morris, N. P., and Burgeson, R. E., 1986, Type VII collagen is a major structural component of anchoring fibrils, J. Cell Biol. 103:1577–1586.PubMedCrossRefGoogle Scholar
  253. Sakata, Y., and Aoki, N., 1980, Cross-linking of α2-plasma inhibitor to fibrin by fibrin-stabilizing factor, J. Clin. Invest. 65:290–297.PubMedCrossRefGoogle Scholar
  254. Salonen, E.-M., Vaheri, A., Pollanen, J., Stephens, R., Andreasen, P., Mayer, M., Dano, K., Gailit, J., and Ruoslahti, E., 1989, Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin, J. Biol. Chem. 264:6339–6343.PubMedGoogle Scholar
  255. Samuel, S. K., Hurta, R. A. R., Spearman, M. A., Wright, J. A., Turley, E. A., and Greenberg, A. H., 1993, TGF-β1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan, J. Cell Biol. 123:749–758.PubMedCrossRefGoogle Scholar
  256. Saus, J., Quinones, S., Otani, Y., Nagase, H., Harris, Jr., E. D., and Kurkinen, M., 1988, The complete primary structure of human matrix metallo-proteinase-3. Identity with stromelysin, J. Biol. Chem. 263:6742–6745.PubMedGoogle Scholar
  257. Savani, R. C., Wang, C., Yang, B., Zang, S., Kinsella, M. G., Wight, T. N., Stern, R., Nance, D. M., and Turley, E. A., 1994a, Migration of bovine aortic and muscle cells after wound injury: A role for hyaluronan and the hyaluronan receptor RHAMM, J. Clin. Invest. 95:1158–1168.CrossRefGoogle Scholar
  258. Savani, R. C., Wang, C., Stern, R., Khalil, N., Greenberg, A. H., and Turley, E. A., 1994b, The expression and role of hyaluronan (HA) and the HA receptor RHAMM in bleomycin-induced pulmonary inflammation, J. Exp. Med. In PressGoogle Scholar
  259. Sawada, H., Konomi, H., and Hirosawa, K., 1990, Characterization of the collagen in hexagonal lattice of Descemet’s membrane: Its relation to type VIII collagen, J. Cell. Biol., 110:219–227.PubMedCrossRefGoogle Scholar
  260. Scharffetter, K., Kulozik, M., Stolz, W., Lankat-Buttgereit, B., Hatamochi, A., Sohnchen, R., and Krieg, T., 1989, Localization of collagen α1(I) gene expression during wound healing by in situ hybridization, J. Invest. Dermatol. 93:405–412.PubMedCrossRefGoogle Scholar
  261. Schiro, J. A., Chan, B. M. C., Roswit, W. R., Kassner, P. D., Pentland, A. P., Hemler, M. E., Eisen, A. Z., and Kupper, T. S., 1991, Integrin α2β1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells, Cell 67:403–410.PubMedCrossRefGoogle Scholar
  262. Schultz, G., Rotatori, D. S., and Clark, W., 1991, EGF and TGF-α in wound healing and repair, J. Cell. Biochem. 45:346–352.PubMedCrossRefGoogle Scholar
  263. Scott, J. E., 1993, Proteoglycan-fibrillar collagen interactions in tissues: Dermatan sulfate proteoglycan as a tissue organizer, in: Dermatan Sulphate Proteoglycans: Chemistry, Biology, Chemical Pathology (J. E. Scott, ed.), pp. 165–181, Portland Press, London, England.Google Scholar
  264. Screaton, G. R., Bell, M. V., Jackson, D. G., Cornelis, F. B., Gerth, U., and Bell, J. I., 1992, Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons, Proc. Natl. Acad. Sci. USA 89:12160–12164.PubMedCrossRefGoogle Scholar
  265. Senior, R. M., Griffin, G. L., and Mecham, R. P., 1980, Chemotactic activity of elastin-derived peptides, J. Clin. Invest. 66:859–862.PubMedCrossRefGoogle Scholar
  266. Senior, R. M., Huang, J. S., Griffin, G. L., and Deuel, T. F., 1985, Dissociation of the chemotactic and mitpgenic activities of platelet-derived growth factor by human neutrophil elastase, J. Cell Biol. 100:351–356.PubMedCrossRefGoogle Scholar
  267. Senior, R. M., Griffin, G. L., Perez, H. D., and Webster, R. O., 1988, Human C5a and C5a des arg exhibit chemotactic activity for fibroblasts, J. Immunol. 141:3570–3574.PubMedGoogle Scholar
  268. Seppa, H. E. J., Grotendorst, G. R., Seppa, S. I., Schiffmann, E., and Martin, G. R., 1982, Platelet-derived growth factor is chemotactic for fibroblasts, J. Cell Biol. 92:584–588.PubMedCrossRefGoogle Scholar
  269. Shaw, R. J., Doherty, D. E., Ritter, A. G., Benedict, S. H., and Clark, R. A. F., 1990, Adherence-dependent increase in human monocyte PDGF(B) mRNA is associated with increases in c-fos, c-jun, and EGF2 mRNA, J. Cell Biol. 111:2139–2148.PubMedCrossRefGoogle Scholar
  270. Shaw, R. J., Benedict, S. H., Clark, R. A. F., and King, Jr., T. E., 1991, Pathogenesis of pulmonary fibrosis in interstitial lung disease: Alveolar macrophage PDGF(B) gene activation and up-regulation by interferon gamma, Am. Rev. Resp. Dis. 143:167–173.PubMedCrossRefGoogle Scholar
  271. Shetlar, M. R., Shetlar, C. L., Chien, S.-F., Linares, H. A., Dobrokovsky, M., and Larson, D. L., 1972, The hypertrophic scar. Hexosamine containing components of burn scars, Proc. Soc. Exp. Biol. Med. 139:544–547.PubMedCrossRefGoogle Scholar
  272. Shimokado, K., Raines, E. W., Madtes, D. K., Barrett, T. B., Benditt, E. P., and Ross, R., 1985, A significant part of macrophage-derived growth factor consists of two forms of PDGF, Cell 43:277–286.PubMedCrossRefGoogle Scholar
  273. Shipley, G. D., Pittelkow, M. R., Wille, J. J., Scott, R. E., and Moses, H. L., 1986, Reversible inhibition of normal human prokeratinocyte proliferation by type β transforming growth factor-growth inhibitor in serum-free medium, Cancer Res. 46:2068–2071.PubMedGoogle Scholar
  274. Sholley, M. M., Gimbrone, M. A. J., and Cotran, R. S., 1978, The effects of leukocyte depletion on corneal neovascularization, Lab. Invest. 38:32–40.PubMedCrossRefGoogle Scholar
  275. Siebenlist, K. R., DiOrio, J. P., Budzynski, A. Z., and Mosseson, M. W., 1990, The polymerization and thrombin-binding properties of des-(Bβ1-42)-fibrin, J. Biol. Chem. 265:18650–18655.PubMedGoogle Scholar
  276. Singer, I.I., Kawka, D. W., Kazazis, D. M., and Clark, R. A. F., 1984, In vivo co-distribution of fibronectin and actin fibers in granulation tissue: Immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface, J. Cell Biol. 98:2091–2106.PubMedCrossRefGoogle Scholar
  277. Singer, I. I., Scott, S., Kawka, D. W., Kazazis, D. M., Gailit, J., and Ruoslahti, E., 1988, Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extracellular matrix accumulation, J. Cell Biol. 106:2171–2182.PubMedCrossRefGoogle Scholar
  278. Somers, C. E., and Mosher, D. F., 1993, Protein kinase C modulation of fibronectin matrix assembly, J. Biol. Chem. 268:22277–22280.PubMedGoogle Scholar
  279. Sottile, J., and Wiley, S., 1994, Assembly of amino-terminal fibronectin dimers into the extracellular matrix, J. Biol. Chem. 269:17192–17198.PubMedGoogle Scholar
  280. Spivak-Kroizman, T., Lemmon, M. A., Dikic, I., Ladbury, J. E., Pinchasi, D., Huang, F., Jaye, M., Crumley, G., Schlessinger, J., and Lax, I., 1994, Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation and cell proliferation, Cell 79:1015–1024.PubMedCrossRefGoogle Scholar
  281. Sporn, M. B., and Roberts, A. B., 1986, Peptide growth factors and inflammation, tissue repair, and cancer, J. Clin. Invest. 78:329–332.PubMedCrossRefGoogle Scholar
  282. Sporn, M. B., and Roberts, A. M., 1992, Transforming growth factor-β: Recent progress and new challenges, J. Cell Biol. 119:1017–1021.PubMedCrossRefGoogle Scholar
  283. Sporn, M. B., Roberts, A. B., Shull, J. H., Smith, J. M., Ward, J. M., and Sodek, J., 1983, Polypeptide transforming growth factor isolated from bovine sources and used for wound healing in vitro, Science 219:1329–1331.PubMedCrossRefGoogle Scholar
  284. Sprugel, K. H., McPherson, J. M., Clowes, A. W., and Ross., R., 1987, Effects of growth factors in vivo, Am. J. Pathol. 129:601–613.PubMedGoogle Scholar
  285. Staatz, W. D., Rajpara, S. M., Wayner, E. A., Carter, W. G., and Santoro, S. A., 1989, The membrane glycoprotein Ia-IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen, J. Cell Biol. 108:1917–1924.PubMedCrossRefGoogle Scholar
  286. Stamenkovic, I., and Aruffo, A., 1994, Hyaluronic acid receptors, in: Methods in Enzymology (E. Ruoslahti and E. Engvall, ed.), pp. 195–218, Academic Press, San Diego, CA.Google Scholar
  287. Stamenkovic, I., Amiot, M., Pesando, J. M., and Seed, B., 1989, A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family, Cell 56:1057–1062.PubMedCrossRefGoogle Scholar
  288. Stenn, K. S., Madri, J. A., and Roll, R. J., 1979, Migrating epidermis produces AB2 collagen and requires continual collagen synthesis for movement, Nature 277:229–232.PubMedCrossRefGoogle Scholar
  289. Stern, D. M., Nawroth, P. P., Marcum, J., Handley, D., Kisiel, D., Rosenberg, R., and Stern, K., 1985, Interaction of antithrombin III with bovine aortic segments, J. Clin. Invest. 75:272–279.PubMedCrossRefGoogle Scholar
  290. Stetler-Stevenson, W. G., Krutzsch, H. C., Wacher, M. P., Margulies, I. M. K., and Liotta, L. A., 1989, The activation of human type IV collagenase proenzyme. Sequence identification of the major conversion product following organomercurial activation, J. Biol. Chem. 264:1353–1356.PubMedGoogle Scholar
  291. Stimler, N. P., Bach, M. K., Bloor, C. M., and Hugli, T. E., 1982, Release of leukotrienes from guinea pig lung stimulated by C5a des arg anaphylatoxin, J. Immunol. 128:2247–2257.PubMedGoogle Scholar
  292. Thomas, L., Byers, H. R., Vink, J., and Stamenkovic, I., 1992, CD44H regulates tumor cell migration on hyaluronate-coated substrate, J. Cell Biol. 118:971–977.PubMedCrossRefGoogle Scholar
  293. Thorsen, S., Glas-Greenwalt, P., and Astrup, T., 1972, Difference in the binding to fibrin of urokinase and tissue plasminogen activator, Thromb. Pathol. Haemost. 28:65–74.Google Scholar
  294. Toda, K.-I., Tuan, T.-L., Brown, P. J., and Grinnell, F., 1987, Fibronectin receptors of human keratinocytes and their expression during cell culture, J. Cell Biol. 105:3097–3104.PubMedCrossRefGoogle Scholar
  295. Tomida, M., Koyama, H., and Ono, T., 1974, Hyaluronic acid synthetase in cultured mammalian cells producing hyaluronic acid. Oscillatory change during the growth phase and suppression by 5-bro-modeoxyuridine, Biochim. Biophys. Acta 338:352–363.CrossRefGoogle Scholar
  296. Tonnesen, M. G., Worthen, G. S., and Johnston, R. B. J., 1988, Neutrophil emigration, activation, and tissue damage, in: Molecular and Cellular Biology of Wound Repair (R. A. F. Clark and P. M. Henson, eds.), pp. 149–183, Plenum Press, New York.CrossRefGoogle Scholar
  297. Tonnesen, M. G., Anderson, D. C., Springer, T. A., Knedler, A., Avdi, N., and Henson, P. M., 1989, Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family, J. Clin. Invest. 83:637–646.PubMedCrossRefGoogle Scholar
  298. Toole, B. P., 1972, Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton, Dev. Biol. 29:321–329.PubMedCrossRefGoogle Scholar
  299. Toole, B. P., 1981, Glycosaminoglycans in morphogenesis, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 259–294, Plenum Press, New York.CrossRefGoogle Scholar
  300. Toole, B. P., 1991, Proteoglycans and hyaluronan in morphogenesis and differentiation, in: Cell Biology of the Extracellular Matrix (E. D. Hay, ed.), pp. 305–341, Plenum Press, New York.CrossRefGoogle Scholar
  301. Toole, B. P., and Gross, J., 1971, The extracellular matrix of the regenerating newt limb: Synthesis and removal of hyaluronate prior to differentiation, Dev. Biol. 25:57–77.PubMedCrossRefGoogle Scholar
  302. Trinkaus, J. P., 1984, Cells into Organs. The Forces That Shape the Embryo, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  303. Tuckwell, D. S., Ayad, S., Grant, M. E., Takigawa, M., and Humphries, M. J., 1994, Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support α1β1 binding, and mediation of adhesion to denatured collagen by a novel α5β1-fibronectin bridge, J. Cell Sci. 107(Pt4):993–1005.PubMedGoogle Scholar
  304. Turley, E. A., 1992, Hyaluronan and cell locomotion, Cancer Metastasis Rev. 11:21–30.PubMedCrossRefGoogle Scholar
  305. Underhill, C., 1992, CD44: The hyaluronan receptor, J. Cell Sci. 103:293–298.PubMedGoogle Scholar
  306. Unemore, E. N., and Werb, Z., 1986, Reorganization of polymerized actin: A possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels, J. Cell Biol. 103:1021–1031.CrossRefGoogle Scholar
  307. Vartio, T., Seppa, H., and Vaheri, A., 1981, Susceptibility of soluble and matrix fibronectins to degraduation by tissue proteinases, mast cell chymase and cathepsin G, J. Biol. Chem. 256:471–477.PubMedGoogle Scholar
  308. Viljanto, J., Penttinen, R., and Raekallio, J., 1981, Fibronectin in early phases of wound healing in children, Acta Chir. Scand. 147:7–13.PubMedGoogle Scholar
  309. Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., Bashkin, P., Levi, E., Korner, G., Bar-Shavit, R., and Klagsbrun, M., 1991, Extrcellular matrix-resident basic fibroblast growth factor: Implication for the control of angiogenesis, J. Cell. Biochem. 45:167–176.PubMedCrossRefGoogle Scholar
  310. Wagner, O. F., Nicolosa, G., and Bachmann, F., 1989, Plasminogen activator inhibitor 1: Development of a radioimmunoassay and observations on its plasma concentration during venous occlusion and after platelet aggregation, Blood 70:1645–1653.Google Scholar
  311. Wahl, S. M., Hunt, D. A., Wakefield, L. M., McCartney-Francis, N., Wahl, L. M., Roberts, A. B., and Sporn, M. B., 1987, Transforming growth factor type β induces monocyte chemotaxis and growth factor production, Proc. Natl. Acad. Sci. USA 84:5788–5792.PubMedCrossRefGoogle Scholar
  312. Wall, R. T., Harker, L. A., and Striker, G. E., 1978, Human endothelial cell migration. Stimulated by a released platelet factor, Lab. Invest. 39:523–529.PubMedGoogle Scholar
  313. Wayner, E. A., and Carter, W. G., 1989, Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique a and common β subunits, J. Cell Biol. 105:1873–1884.CrossRefGoogle Scholar
  314. Weisman, D. M., Polverini, P. J., Kamp, D. W., and Leibovich, S. J., 1988, Transforming growth factor-beta (TGF-β) is chemotactic for human monocytes and induces their expression of angiogenic activity, Biochem. Biophys. Res. Commun. 157:793–800.CrossRefGoogle Scholar
  315. Weksler, B. B., 1992, Platelets, in: Inflammation: Basic Principle and Clinical Correlates (J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), pp. 727–746, Raven Press, New York.Google Scholar
  316. Welch, M. P., Odland, G. F., and Clark, R. A. F., 1990, Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction, J. Cell Biol. 110:133–145.PubMedCrossRefGoogle Scholar
  317. Werb, Z., and Clark, E. J., 1989, Phorbol diesters regulate expression of the membrane neutral metalloen-dopeptidase (EC in rabbit synovial fibroblasts and mammary epithelial cells, J. Biol. Chem. 264:9111–9113.PubMedGoogle Scholar
  318. Werb, Z., Tremble, P. M., Behrendtsen, O., Crowley, E., and Damsky, C. H., 1989, Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression, J. Cell Biol. 109:877–889.PubMedCrossRefGoogle Scholar
  319. Werb, Z., Tremble, P., and Damsky, C. H., 1990, Regulation of extracellular matrix degradation by cell-extracellular matrix interactions, Cell. Differ. Dev. 32:299–306.PubMedCrossRefGoogle Scholar
  320. Werner, S., Peters, K. G., Longaker, M. T., Fuller-Pace, F., Banda, M. J., and Williams, L. T., 1992, Large induction of keratinocyte growth factor in the dermis during wound healing, Proc. Natl. Acad. Sci. USA 89:6896–6900.PubMedCrossRefGoogle Scholar
  321. Werner, S., Breeden, M., Hubner, G., Greenhalgh, D. G., and Longaker, M. T., 1994, Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse, J. Invest. Dermatol. 103:469–475.PubMedCrossRefGoogle Scholar
  322. Wight, T. N., Heinegard, D. K., and Hascall, V. C., 1991, Proteoglycans: Structure and function, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 45–78, Plenum Press, New York.CrossRefGoogle Scholar
  323. Wikner, N. E., Persichitte, K. A., Baskin, J. B., Nielsen, L. D., and Clark, R. A. F., 1988, Transforming growth factor-β stimulates the expression of fibronectin by human keratinocytes, J. Invest. Dermatol. 91:207–212.PubMedCrossRefGoogle Scholar
  324. Wilhelm, S. M., Collier, I. E., Kronberger, A., Eisen, A. Z., Marnier, B. L., Grant, G. A., Bauer, E. A., and Goldberg, G. I., 1987, Human skin fibroblast stromelysin: Structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells, Proc. Natl. Acad. Sci. USA 84:6725–6729.PubMedCrossRefGoogle Scholar
  325. Wilkinson, P. C., and Lackie, J. M., 1983, The influence of contact guidance on chemotaxis of human neutrophil leukocytes, Exp. Cell Res. 145:255–264.PubMedCrossRefGoogle Scholar
  326. Williams, G. T., 1991, Programmed cell death: Apoptosis and oncogenesis, Cell 65:1097–1098.PubMedCrossRefGoogle Scholar
  327. Williams, T. J., 1988, Factors that affect vessel reactivity and leukocyte emigration, in: Molecular and Cellular Biology of Wound Repair (R. A. F. Clark and P. M. Henson, eds.), pp. 115–183, Plenum Press, New York.CrossRefGoogle Scholar
  328. Wilner, G. D., Danitz, M. P., Mudd, M. S., Hsieh, K.-H., and Fenton II, J. W., 1981, Selective immobilization of alpha-thrombin by surface-bound fibrin, J. Lab. Clin. Med. 97:403–411.PubMedGoogle Scholar
  329. Winter, G. D., 1962, Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig, Nature 193:293–294.PubMedCrossRefGoogle Scholar
  330. Winter, G. D., 1972, Epidermal regeneration studied in the domestic pig, in: Epidermal Wound Healing (H. I. Maibach and D. T. Rovee, eds.), pp. 71–112, Yearbook Medical Publishing, Chicago.Google Scholar
  331. Wolpe, S. D., and Cerami, A., 1989, Macrophage inflammatory proteins 1 and 2: Members of a novel superfamily of cytokines, FASEB J. 3:2565–2573.PubMedGoogle Scholar
  332. Wood, G. C., 1960, The formation of fibrils from collagen solutions. Effect of chondroitin sulfate and other naturally occurring polyanions on the rate of formation, Biochem. J. 75:605–612.PubMedGoogle Scholar
  333. Woodley, D. T., Kalebec, T., Banes, A. J., Link, W., Prunieras, M., and Liotta, L., 1986, Adult human keratinocytes migrating over nonviable dermal collagen produce collagenolytic enzymes that degrade type I and type IV collagen, J. Invest. Dermatol. 86:418–423.PubMedCrossRefGoogle Scholar
  334. Woodley, D. T., Yamauchi, M., Wynn, K. C., Mechanic, G., and Briggaman, R. A., 1991, Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction, J. Invest. Dermatol. 97:580–585.PubMedCrossRefGoogle Scholar
  335. Woods, A., and Couchman, J. R., 1994, Syndecan-4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion components, Mol. Biol. Cell 5:183–192.PubMedGoogle Scholar
  336. Wu, C., Bauer, J. S., Juliano, R. L., and McDonald, J. A., 1993, The α5β1 integrin fibronectin receptor, but not the α5 cytoplasmic domain, functions in an early and essential step in fibronectin matrix assembly, J. Biol. Chem. 268:21883–21888.PubMedGoogle Scholar
  337. Xu, J., and Clark, R. A. F., 1995, Extracellular matrix alters PDGF regulation of fibroblast integrins, J. Cell Biol., in press.Google Scholar
  338. Yamagata, M., Saga, S., Kato, M., Bernfield, M., and Kimata, K., 1993, Selective distributions of proteoglycans and their ligands in pericellular matrix of cultured fibroblasts. Implications for their roles in cell-substratum adhesion, J. Cell Sci. 106:55–65.PubMedGoogle Scholar
  339. Yamaguchi, T., and Ruoslahti, E., 1988, Expression of human proteoglycan in Chinese hamster ovary cells inhibits cell proliferation, Nature 336:244–246.PubMedCrossRefGoogle Scholar
  340. Yamaguchi, T., Mann, D. M., and Ruoslahti, E., 1990, Negative regulation of transforming growth factor-β by the proteoglycan decorin, Nature 346:281–284.PubMedCrossRefGoogle Scholar
  341. Yamamoto, T., and Cochrane, C. G., 1981, Guinea pig Hageman factor as a vascular permeability enhancement factor, Am. J. Pathol. 105:164–175.PubMedGoogle Scholar
  342. Yamauchi, M., London, R. E., Guenat, C., Hashimoto, F., and Mechanic, G. L., 1987, Structure and formation of a stable histidine-based trifunctional cross-link in skin collagen, J. Biol. Chem. 262:11428–11434.PubMedGoogle Scholar
  343. Yang, B., Yang, B., Savani, R. C., and Turley, E. A., 1994, Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 an link protein, EMBO J. 13:286–296.PubMedGoogle Scholar
  344. Yang, E. Y., and Moses, H. L., 1990, Transforming growth factor-β1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane, J. Cell Biol. 111:731–741.PubMedCrossRefGoogle Scholar
  345. Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M., 1991, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 64:841–848.PubMedCrossRefGoogle Scholar
  346. Yeo, T.-K., Brown, L., and Dvorak, H. F., 1991, Alterations in proteoglycan synthesis common to healing wounds and tumors, Am. J. Pathol. 138:1437–1450.PubMedGoogle Scholar
  347. Yurchenco, P. D., and Schittny, J. C., 1990, Molecular architecture of basement membranes, FASEB J 4:1577–1590.PubMedGoogle Scholar
  348. Zhang, Z., Morla, A. O., Vuori, K., Bauer, J. S., Juliano, R. L., and Ruoslahti, E., 1993, The αvβ1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin, J. Cell Biol. 122:235–242.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Richard A. F. Clark
    • 1
  1. 1.Department of Dermatology, Health Sciences CenterState University of New York at Stony BrookStony BrookUSA

Personalised recommendations