Skip to main content
Book cover

Taurine 2 pp 73–84Cite as

High Levels of Dietary Protein or Methionine have Different Effects on Cysteine Metabolism in Rat Hepatocytes

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 403))

Abstract

Cysteine catabolism in mammalian liver can occur by both cysteine sulfinate-dependent and cysteine sulfinate-independent pathways. Both pathways lead to the production of pyruvate and sulfate, but only the cysteine sulfinate-dependent pathway leads to taurine production. Cysteine dioxygenase (CDO; EC 1.13.11.20) catalyzes the first reaction in the cysteine sulfinate-dependent catabolic pathway, by which cysteine is oxidized to cysteine sulfinate. Cysteine sulfinate has two possible catabolic fates. It can be transaminated by aspartate aminotransferase (AAT; EC 2.6.1.1) which ultimately yields pyruvate and sulfate, or it can be decarboxylated by cysteine sulfinate decarboxylase (CSAD; EC 4.1.1.29) to hypotaurine. Hypotaurine is then presumably non-enzymatically oxidized to taurine. Both taurine and sulfate are important metabolites required by the body for essential functions as well as being end-products of cysteine catabolism that are excreted in the urine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AIN Ad Hoc Committee on Standards for Nutrition Studies. Report of the AIN ad hoc committee on standards for nutritional studies. J. Nutr. 107:1340-1348, 1977.

    Google Scholar 

  2. Bagley, P. J., and M. H. Stipanuk. The activities of hepatic cysteine dioxygenase and cysteinesulfinate decarboxylase are regulated in a reciprocal manner in response to dietary casein level in rats. J. Nutr. 124:2410–2421, 1994.

    CAS  Google Scholar 

  3. Bagley, P. J., and M. H. Stipanuk. Rats fed a low protein diet supplemented with sulfur amino acids have increased cysteine dioxygenase activity and increased taurine production in hepatocytes. J. Nutr. 125: 933–940, 1995.

    CAS  Google Scholar 

  4. Bella, D. L., and M. H. Stipanuk. Comparison of effects of excess dietary protein, methionine or chloride on acid-base balance and on cysteine catabolism to taurine versus sulfate. Am. J. Physiol., 1995, in press.

    Google Scholar 

  5. Bergmeyer, H. U., and Bernt, E. Glutamate-oxaloacetate transaminawe. In: Methods in Enzymatic Analysis, edited by H. U. Bergmeyer, New York: Academic Press, Inc., vol. 2, 1974, p. 727–744.

    Chapter  Google Scholar 

  6. Berry, M. N., A. M. Edwards, and G. J. Borritt. Isolated Hepatocytes: Preparation, Properties and Applications. Elsevier, New York, 1991, p.16–32, 56-57.

    Google Scholar 

  7. Claus, T. H., C. R. Park, and S. J. Pilkis. Glucagon and gluconeogenesis. In: Glucagon I, edited by P. Lefebvre, Berlin, Germany: Springer-Verlag, 1983, p. 361–382

    Google Scholar 

  8. Coloso, R. M., M. R. Drake, and M. H. Stipanuk. Effect of bathocuproine disulfonate, a copper chelator, on cyst(e)ine metabolism in freshly isolated rat hepatocytes. Am. J. Physiol. 259:E443–E450, 1990.

    CAS  Google Scholar 

  9. Coloso, R. M., and M. H. Stipanuk]. Metabolism of cyst(e)ine in rat enterocytes. J. Nutr. 119:1914–1924, 1

    CAS  Google Scholar 

  10. Daniels, K. M., and M. H. Stipanuk. The effect of dietary cysteine level on cysteine metabolism in rats. J. Nutr. 112(11):2130–2141, 1982.

    CAS  Google Scholar 

  11. Fariss, M. W., and D. J. Reed. High-performance liquid chromatography of thiols and disulfides: dinitrophenyl derivatives. Methods Enzymol. 143:101–109, 1987.

    Article  CAS  Google Scholar 

  12. Gaull, G. E., D. K. Rassin, N.C.R. Raiha, and K. Heinonen. Milk protein quantity and quality in low-birth-weight infants. III. Effects on sulfur amino acids in plasma and urine. J. Pediat. 90:348–355, 19

    Article  CAS  Google Scholar 

  13. Hardison, W.G.M., C. A. Wood, and J. H. Proffitt. Quantification of taurine synthesis in the intact rat and cat liver. Proc. Soc. Exp. Biol. Med. 155:55–58, 1977.

    Article  CAS  Google Scholar 

  14. Hosokawa, Y., S. Nizeki, H. Tojo, I. Sato, and K. Yamaguchi. Hepatic cysteine dioxygenase activity and sulfur amino acid metabolism in rats: possible indicators in the evaluation of protein quality. J. Nutr. 118:456–461, 1988.

    CAS  Google Scholar 

  15. Hosokawa, Y., K. Yamaguchi, N. Kohashi, Y. Kori, and I. Ueda. Decrease of rat liver cysteine dioxygenase (cysteine oxidase) activity mediated by glucagon. J. Biochem. 84:419–424, 1978.

    CAS  Google Scholar 

  16. Jacobsen, J. G., and L. H. Smith, Jr. Comparison of decarboxylation of cysteine sulflnic acid-l-14C and cysteic acid-l-14C by human, dog and rat liver and brain. Nature 200:575–577, 1963.

    Article  CAS  Google Scholar 

  17. Jacobsen, J. G., L. L. Thomas, and L. Smith. Properties and distribution of mammalian L-cysteine sulfinate carboxylyases. Biochim. Biophys. Acta 85:103–116, 1964.

    CAS  Google Scholar 

  18. Jerkins, A. A., L. E. Bobroff, and R. D. Steele. Hepatic cysteine sulfinic acid decarboxylase activity in rats fed various levels of dietary casein. J. Nutr. 119:1593–1597, 1989.

    CAS  Google Scholar 

  19. Jerkins, A. A., and R. D. Steele. Dietary sulfur amino acid modulation of cysteine sulfinic acid decarboxylase. Am. J. Physiol. 261:E551–E555, 1991.

    CAS  Google Scholar 

  20. Kohashi, N., K. Yamaguchi, Y. Hosokawa, Y. Kori, O. Fuji, and I. Ueda. Dietary control of cysteine dioxygenase in rat liver. J. Biochem. 84:159–168, 1978.

    CAS  Google Scholar 

  21. Knopf, K., J. A. Sturman, M. Armstrong, and K. C. Hayes. Taurine: an essential nutrient for the cat. J. Nutr. 108:773–778, 1978.

    CAS  Google Scholar 

  22. Lamprecht, W., and I. Trautschold. ATP determination with hexokinase and glucose-6-phosphate dehy-drogenase. In: Methods of Enzymatic Analysis, edited by H. Bergmeyer. New York: Academic Press, vol. 4, 1974, p. 2101–2110.

    Google Scholar 

  23. Lu, S. C., and J-L. Ge. Loss of suppression of GSH synthesis at low cell density in primary cultures of rat hepatocytes. Am. J. Physiol. 263:C1181–C1189, 1992.

    CAS  Google Scholar 

  24. Markwell, M.A.K., S. M. Haas, L. L. Bieber, and N. E. Tolbert. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87:206–210, 1

    Article  CAS  Google Scholar 

  25. Richman, P. G., and A. Meister. Regulation of τ-glutamylcysteine synthetase by nonallosteric feedback inhibition of glutathione. J. Biol. Chem. 216:763–773, 1975.

    Google Scholar 

  26. Schimke, R. T. Adaptive characteristics of urea cycle enzymes in the rat. J. Biol. Chem. 237:459–468, 1962.

    CAS  Google Scholar 

  27. Snodgrass, P. J., R. C. Lin, W. A. Muller, and T. T. Aoki. Induction of urea cycle enzymes of rat liver by glucagon. J. Biol. Chem. 253:2748–2753, 1

    CAS  Google Scholar 

  28. Steel, R.G.D., and J. H. Torrie. Principles and Procedures of Statistics. New York: McGraw-Hill, 1960, p. 99–160.

    Google Scholar 

  29. Stipanuk, M. H. Effect of excess dietary methionine on the catabolism of cysteine in rats. J. Nutr. 109:2126–2139, 1979.

    CAS  Google Scholar 

  30. Stipanuk, M. H., L. L. Hirschberger, and P. J. Bagley. Anion-exchange HPLC of taurine, cysteinesulfinate and cysteic acid. In: Taurine-Nutritional Value and Mechanisms of Action, edited by J. B. Lombardini, S. W. Schaffer and J. Azurne. New York: Plenum Press, 1992, p. 429–435.

    Google Scholar 

  31. Yamaguchi, K., S. Sakakibara, K. Kyoichiro, and U. Iwao. Induction and activation of cysteine oxidase of rat liver I. The effects of cysteine, hydrocortisone and nicotinamide injection on hepatic cysteine oxidase and tyrosine aminotransferase activities of intact and adrenalectomized rats. Biochim. Biophys. Acta 237:502–512, 1971.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bella, D.L., Stipanuk, M.H. (1996). High Levels of Dietary Protein or Methionine have Different Effects on Cysteine Metabolism in Rat Hepatocytes. In: Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M., Baba, A. (eds) Taurine 2. Advances in Experimental Medicine and Biology, vol 403. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0182-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0182-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0184-2

  • Online ISBN: 978-1-4899-0182-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics