Taurine 2 pp 601-606 | Cite as

Taurine in Hepatic Encephalopathy

  • Roger F. Butterworth
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 403)


Liver and brain are the major organs responsible for taurine synthesis. In both acute and chronic liver failure, brain taurine concentrations are decreased and, since taurine appears to be implicated in K+ and Ca2+ homeostasis in brain, such losses could contribute to the pathophysiology of hepatic encephalopathy. Furthermore, taurine concentrations in cerebrospinal fluid in experimental acute liver failure are increased early in the progression of encephalopathy and prior to the onset of cerebral edema, a potentially fatal complication of acute liver failure. These findings suggest an osmoregulatory role for taurine in brain in acute liver failure. Monitoring of cerebrospinal fluid taurine may be of prognostic value in this severe, frequently fatal disorder.


Hepatic Encephalopathy Brain Edema Acute Liver Failure Hepatic Coma Acute Hepatic Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benveniste, H., Drejer, T., Schousboe, A. and Diemer, N.H. 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.CrossRefGoogle Scholar
  2. 2.
    Bergeron, M., Pomier Layrargues, G. and Butterworth, R.F. 1989, Aromatic and branched-chain amino acids in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Metab. Brain Dis. 4:169–176.CrossRefGoogle Scholar
  3. 3.
    Blei, A.T., Olafsson, S., Therrien, G. and Butterworth, R.F. 1994, Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 19:1437–1444.CrossRefGoogle Scholar
  4. 4.
    Bosman, D.K., Deutz, N.E.P., Maas, M.A.W., van Eijk, H.M.H., Smit, J.J.H., de Haan, J.G. and Chamuleau, R.A.F.M. 1992, Amino acid release from cerebral cortex in experimental acute liver failure, studied by in vivo cerebral cortex microdialysis. J. Neurochem. 59:91–599.CrossRefGoogle Scholar
  5. 5.
    Butterworth, R.F. 1992, Evidence that hepatic encephalopathy results trom a defect of glutamatergic synaptic regulation. Mol. Neuropharmacol. 2:229–232.CrossRefGoogle Scholar
  6. 6.
    de Knegt, R.J. and Schalm, S.W. 1995, Extracellular brain taurine during acute hepatic failure and acute hyperammonemia simulating acute hepatic failure, in rabbits using in vivo brain dialysis. In: “Advances in Hepatic Encephalopathy and Metabolic Nitrogen Exchange”. CRC Press Inc., Boca Raton, Florida, pp. 259–264.Google Scholar
  7. 7.
    Florkin, M. and Schoffeniels, E. 1965, Euryhalinity and the concept of physiological radiation. In Studies in Comparative Biochemistry Munday K.A., ed., Pergamon Press, London, pp. 6–40.Google Scholar
  8. 8.
    Ganz R., Swain M., Traber P., DalCanto M., Butterworth, R.F. and Blei, A.T. 1989, Ammonia-induced swelling of rat cerebral cortical slices: implications for the pathogenesis of brain edema in acute hepatic failure. Metab. Brain Dis., 4:213–223.CrossRefGoogle Scholar
  9. 9.
    Hagberg, H., Lehmann, A., Sandberg, M., Nystrom, B., Jacobson, I. and Hamberger, A. 1985, Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments. J. Cereb. Blood Flow Metab. 5:413–419.CrossRefGoogle Scholar
  10. 10.
    Hilgier, W. and Olson, J.E. 1994, Brain ion and amino acid contents during edema development in hepatic encephalopathy. J. Neurochem. 62:197–204.CrossRefGoogle Scholar
  11. 11.
    Lavoie, J., Therrien, G., and Butterworth, R.F. 1995, Cerebrospinal fluid taurine in portal-systemic encephalopathy. In: “Advances in Hepatic Encephalopathy and Metabolic Nitrogen Exchange, vol. 42”. CRC Press, Boca Raton, Florida, pp. 265–269.Google Scholar
  12. 12.
    Martin, D.L., Madelian, V. and Shain, W. 1995, Osmotic sensitivity of isoproterenol-and high[K+]0-stimulated taurine release by cultured astroglia. In: “Taurine: Functional Neurochemistry, Physiology, and Cardiology”, Wiley-Liss Inc., pp. 349-356.Google Scholar
  13. 13.
    Mousseau, D.D., Perney, P., Pomier Layrargues, G. and Butterworth, R.F. 1993, Selective loss of pallidal dopamine D2 receptor density in hepatic encephalopathy. Neurosci. Lett. 162:192–196.CrossRefGoogle Scholar
  14. 14.
    Mutani, R., Bergamini, L. and Durelli, L. 1978, Taurine in experimental and human epilepsy. In: “Taurine and Neurological Disorders”, Barbeau, A. and Huxtable, R.J. eds. Raven Press, New York, pp. 359–373.Google Scholar
  15. 15.
    Oja, S.S., Saransaari, P. and Wysmyk, U. 1990, Is taurine involved in the pathogenesis of hepatic encephalopathy? Soc. Neurosci. Abs. 454.10.Google Scholar
  16. 16.
    Pasantes-Morales, H. and Schousboe, A. 1988, Volume regulation in astrocytes: a role for taurine as an osmoeffector. J. Neurosci. Res. 20:505–509.CrossRefGoogle Scholar
  17. 17.
    Raghavendra Rao, V.L., Audet, R.M. and Butterworth, R.F. 1996, Selective alterations of extracellular brain amino acids in relation to function in experimental portal-systemic encephalopathy: results of an in vivo microdialysis study. J. Neurochem. in press.Google Scholar
  18. 18.
    Record, CO., Buxton, B., Chase, R.A., Curzon, G., Murray-Lyon, I.M. and Williams, R. 1976, Plasma and brain amino acids in fulminant hepatic failure and their relationship to hepatic encephalopathy. J. Clin. Invest. 6:387–394.CrossRefGoogle Scholar
  19. 19.
    Siesjo, B.K. and Wielock, T. 1986, Epileptic brain damage: pathophysiology and neurochemical pathology. In: “Advances in Neurology, vol. 44”, Delgado-Escueta, A.V, Ward, A.A. Jr., Woodbury, D.M. and Porter, R.J. eds., Raven Press, New York, pp. 813–847.Google Scholar
  20. 20.
    Swain, M.S., Bergeron, M., Audet, R., Blei, A.T. and Butterworth, R.F. 1992, Monitoring of neurotrans-mitter amino acids by means of an indwelling cisterna magna catheter: a comparison of two rodent models of fulminant liver failure. Hepatology 16:1028–1035.CrossRefGoogle Scholar
  21. 21.
    Swain, M., Butterworth, R.F. and Blei, A.T. 1992, Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 15, 449–452.CrossRefGoogle Scholar
  22. 22.
    Takahashi, H., Koehler, R.C., Brusilow, S.W., Traystman, R.J. 1991, Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am. J. Physiol. 281:H826–H829.Google Scholar
  23. 23.
    Tossman, U., Wielock, T. and Ungerstedt, U. 1985, コ-Aminobutyric acid and taurine release in the striatum of the rat during hypoglycemic coma, studied by microdialysis. Neurosci. Lett. 62:231–235.CrossRefGoogle Scholar
  24. 24.
    van Gelder, N.M. 1983, Metabolic interactions between neurons and astroglia: glutamine synthetase, carbonic anhydrase and water balance, in: “Basic Mechanisms of Neuronal Hyperexcitability”, Ward, A. ed. A.R. Liss, New York, pp. 5–29.Google Scholar
  25. 25.
    Wade, J.V., Olson, P., Samson, R.E., Nelson, S.R. and Pazdernik, T.L. 1988, A possible role for taurine in osmoregulation within the brain. J. Neurochem. 51:740–745.CrossRefGoogle Scholar
  26. 26.
    Wade, J.V., Samson, F.E., Nelson, S.R. and Pazdernik, T.L. 1987, Changes in extracellular amino acids during soman and kainic acid-induced seizures. J. Neurochem. 49:645–650.CrossRefGoogle Scholar
  27. 27.
    Waltz, W. and Allen, A.F. 1987, Evaluation of the osmoregulatory function of taurine in brain cells. Exp. Brain Res. 68:290–298.Google Scholar
  28. 28.
    Waterfield, C.J., Turton, J.A., Scales, M.D.C. and Timbrell, J.A. 1991, Taurine, a possible urinary marker of liver damage: a study of taurine excretion in carbon tetrachloride-treated rats. Arch. Toxicol. 65:548–555.CrossRefGoogle Scholar
  29. 29.
    Wright, C.E., Tallan, H.H. and Lin, Y.Y. 1986, Taurine: biological update. Ann. Rev. Biochem. 55:427–453.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Roger F. Butterworth
    • 1
  1. 1.Neuroscience Research UnitHopital Saint-Luc (University of Montreal)MontrealCanada

Personalised recommendations